Journal articles on the topic 'Electron Localization Function'

To see the other types of publications on this topic, follow the link: Electron Localization Function.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Electron Localization Function.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Savin, Andreas, Reinhard Nesper, Steffen Wengert, and Thomas F. Fässler. "ELF: The Electron Localization Function." Angewandte Chemie International Edition in English 36, no. 17 (September 17, 1997): 1808–32. http://dx.doi.org/10.1002/anie.199718081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nalewajski, Roman F., Andreas M. Köster, and Sigfrido Escalante. "Electron Localization Function as Information Measure." Journal of Physical Chemistry A 109, no. 44 (November 2005): 10038–43. http://dx.doi.org/10.1021/jp053184i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pilmé, Julien. "Electron localization function from density components." Journal of Computational Chemistry 38, no. 4 (November 17, 2016): 204–10. http://dx.doi.org/10.1002/jcc.24672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tsirelson, Vladimir, and Adam Stash. "Determination of the electron localization function from electron density." Chemical Physics Letters 351, no. 1-2 (January 2002): 142–48. http://dx.doi.org/10.1016/s0009-2614(01)01361-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Matito, Eduard, Bernard Silvi, Miquel Duran, and Miquel Solà. "Electron localization function at the correlated level." Journal of Chemical Physics 125, no. 2 (July 14, 2006): 024301. http://dx.doi.org/10.1063/1.2210473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krokidis, Xénophon, Nigel W. Moriarty, William A. Lester, Jr, and Michael Frenklach. "Propargyl radical: an electron localization function study." Chemical Physics Letters 314, no. 5-6 (December 1999): 534–42. http://dx.doi.org/10.1016/s0009-2614(99)00880-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kohout, Miroslav, Frank Richard Wagner, and Yuri Grin. "Electron localization function for transition-metal compounds." Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 108, no. 3 (October 1, 2002): 150–56. http://dx.doi.org/10.1007/s00214-002-0370-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

SAVIN, A., R. NESPER, S. WENGERT, and T. F. FAESSLER. "ChemInform Abstract: ELF: The Electron Localization Function." ChemInform 28, no. 48 (August 2, 2010): no. http://dx.doi.org/10.1002/chin.199748342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shukla, Padma Kant, and Bengt Eliasson. "Localization of intense electromagnetic waves in plasmas." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1871 (January 24, 2008): 1757–69. http://dx.doi.org/10.1098/rsta.2007.2184.

Full text
Abstract:
We present theoretical and numerical studies of the interaction between relativistically intense laser light and a two-temperature plasma consisting of one relativistically hot and one cold component of electrons. Such plasmas are frequently encountered in intense laser–plasma experiments where collisionless heating via Raman instabilities leads to a high-energetic tail in the electron distribution function. The electromagnetic waves (EMWs) are governed by the Maxwell equations, and the plasma is governed by the relativistic Vlasov and hydrodynamic equations. Owing to the interaction between the laser light and the plasma, we can have trapping of electrons in the intense wakefield of the laser pulse and the formation of relativistic electron holes (REHs) in which laser light is trapped. Such electron holes are characterized by a non-Maxwellian distribution of electrons where we have trapped and free electron populations. We present a model for the interaction between laser light and REHs, and computer simulations that show the stability and dynamics of the coupled electron hole and EMW envelopes.
APA, Harvard, Vancouver, ISO, and other styles
10

Maurya, V., and K. B. Joshi. "Electron Localization Function and Compton Profiles of Cu2O." Journal of Physical Chemistry A 123, no. 10 (March 4, 2019): 1999–2007. http://dx.doi.org/10.1021/acs.jpca.8b12102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Fuentealba, Patricio, and Juan C. Santos. "Electron Localization Function as a Measure of Electron Delocalization and Aromaticity." Current Organic Chemistry 15, no. 20 (October 1, 2011): 3619–26. http://dx.doi.org/10.2174/138527211797636200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Malozovsky, Y. M., J. D. Fan, and B. Rambabu. "Electron Correlation in Carbon Nanotubes: Superconductivity Versus Localization." International Journal of Modern Physics B 17, no. 18n20 (August 10, 2003): 3648–54. http://dx.doi.org/10.1142/s0217979203021551.

Full text
Abstract:
We study the effect of electron correlation in the armchair carbon nanotubes (CNT). We model the carbon nanotube as a tubule with electrons confined to the surface of the tubule by an attractive δ-function potential. We derived the pair interaction potential between two electrons in the tubule incorporating short-range and exchange correlation. Dispersions of plasmon modes at different values of orbital momentum (ℓ) and single-particle excitations are derived as well. We find that the plasma modes are not Landau damped and the lowest mode has acoustic behavior. We also find that the multiple scattering of an electron on the plasma acoustic mode leads to the so-called plasmaron quasiparticle and self-localization of an electron in the polarization well. We also show that there is a competition between superconducting correlation and self-localization due to the electron plasma interaction.
APA, Harvard, Vancouver, ISO, and other styles
13

Tian, LU, and CHEN Fei-Wu. "Meaning and Functional Form of the Electron Localization Function." Acta Physico-Chimica Sinica 27, no. 12 (2011): 2786–92. http://dx.doi.org/10.3866/pku.whxb20112786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chesnut, D. B. "An Electron Localization Function Study of the Lone Pair." Journal of Physical Chemistry A 104, no. 49 (December 2000): 11644–50. http://dx.doi.org/10.1021/jp002957u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Noury, Stéphane, Xénophon Krokidis, Franck Fuster, and Bernard Silvi. "Computational tools for the electron localization function topological analysis." Computers & Chemistry 23, no. 6 (November 1999): 597–604. http://dx.doi.org/10.1016/s0097-8485(99)00039-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gadre, Shridhar R., Sudhir A. Kulkarni, and Rajeev K. Pathak. "Density‐based electron localization function via nonlocal density approximation." Journal of Chemical Physics 98, no. 4 (February 15, 1993): 3574–76. http://dx.doi.org/10.1063/1.464082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Fuentealba, P. "A modified version of the electron localization function (ELF)." International Journal of Quantum Chemistry 69, no. 4 (1998): 559–65. http://dx.doi.org/10.1002/(sici)1097-461x(1998)69:4<559::aid-qua13>3.0.co;2-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kohout, Miroslav, and Andreas Savin. "Influence of core-valence separation of electron localization function." Journal of Computational Chemistry 18, no. 12 (September 1997): 1431–39. http://dx.doi.org/10.1002/(sici)1096-987x(199709)18:12<1431::aid-jcc1>3.0.co;2-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Melin, Junia, and P. Fuentealba. "Application of the electron localization function to radical systems." International Journal of Quantum Chemistry 92, no. 4 (2003): 381–90. http://dx.doi.org/10.1002/qua.10515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Tupitsyn I. I., Kaygorodov M. Y., Glazov D. A., Ryzhkov A. M., Usov D. P., and Shabaev V. M. "Application of the Relativistic Electron Localization Function to Study the Electronic Structure of Superheavy Elements." Optics and Spectroscopy 130, no. 7 (2022): 824. http://dx.doi.org/10.21883/eos.2022.07.54722.3459-22.

Full text
Abstract:
A formula for calculating the relativistic electron localization function (RELF) within the framework of the Dirac-Fock method is obtained. An approach similar to that used earlier in [A.D. Becke and K.E. Edgecombe, The Journal of Chemical Physics 92, 5397 (1990)] in deriving an expression for the nonrelativistic electron localization function (ELF) is applied. It is demonstrated that the expression for RELF differs from the expression for ELF with replacement of the nonrelativistic electron density by its relativistic counterpart. Relativistic calculations of ELF and RELF for a number of superheavy elements are performed and the results are compared. By several examples it is shown that the ELF value equal to 0.5 does not necessarily correspond to the distribution density of homogeneous electron gas. Keywords: relativistic electron localization function, Dirac-Fock method, superheavy elements, electron gas.
APA, Harvard, Vancouver, ISO, and other styles
21

Scemama, Anthony, Patrick Chaquin, and Michel Caffarel. "Electron pair localization function: A practical tool to visualize electron localization in molecules from quantum Monte Carlo data." Journal of Chemical Physics 121, no. 4 (July 22, 2004): 1725–35. http://dx.doi.org/10.1063/1.1765098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Fuentealba, Patricio, and Juan C. Santos. "ChemInform Abstract: Electron Localization Function as a Measure of Electron Delocalization and Aromaticity." ChemInform 43, no. 12 (February 23, 2012): no. http://dx.doi.org/10.1002/chin.201212278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Oña, Ofelia B., Diego R. Alcoba, William Tiznado, Alicia Torre, and Luis Lain. "An orbital localization criterion based on the topological analysis of the electron localization function." International Journal of Quantum Chemistry 113, no. 9 (September 25, 2012): 1401–8. http://dx.doi.org/10.1002/qua.24332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Nesper, Reinhard, and Steffen Wengert. "Localization Patterns in Interstitial Space: A Special Property of the Electron Localization Function (ELF)." Chemistry - A European Journal 3, no. 6 (June 1997): 985–91. http://dx.doi.org/10.1002/chem.19970030621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Saraf, Sarvin Hossien, and Reza Ghiasi. "Quantum theory of atoms in molecules, electron localization function, and localized-orbital locator investigations on trans-(NHC)PtI2(para-NC5H4X) complexes." Journal of Chemical Research 44, no. 7-8 (February 17, 2020): 482–86. http://dx.doi.org/10.1177/1747519820907243.

Full text
Abstract:
In this study, the MPW1PW91 method is applied to analyze the quantum theory of atoms in molecules, the electron localization function, and the localized-orbital locator in trans-(NHC)PtI2( para-NC5H4X) (X = H, F, COOH, CN, NO2, Me, OH, NH2) complexes. The substituent effect is assessed in the presence of electron-withdrawing groups and electron-donating groups and their influence on the Pt–C and Pt–N bonds of the molecules is analyzed using quantum theory of atoms in molecules, electron localization function, and localized-orbital locator methods. In addition, the eta index (η) is used to evaluate the Pt–C and Pt–N bonds in the studied complexes. The correlations between electron localization function, localized-orbital locator, and the η index values of Pt–C and Pt–N bonds with Hammett constants (σp) and dual parameters (σI and σR) are given.
APA, Harvard, Vancouver, ISO, and other styles
26

Santos, J. C., W. Tiznado, R. Contreras, and P. Fuentealba. "Sigma–pi separation of the electron localization function and aromaticity." Journal of Chemical Physics 120, no. 4 (January 22, 2004): 1670–73. http://dx.doi.org/10.1063/1.1635799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ormeci, A., H. Rosner, F. R. Wagner, M. Kohout, and Yu Grin. "Electron Localization Function in Full-Potential Representation for Crystalline Materials." Journal of Physical Chemistry A 110, no. 3 (January 2006): 1100–1105. http://dx.doi.org/10.1021/jp054727r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gibbs, G. V., D. F. Cox, N. L. Ross, T. D. Crawford, J. B. Burt, and K. M. Rosso. "A mapping of the electron localization function for earth materials." Physics and Chemistry of Minerals 32, no. 3 (May 20, 2005): 208–21. http://dx.doi.org/10.1007/s00269-005-0463-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Savin, A., B. Silvi, and F. Colonna. "Topological analysis of the electron localization function applied to delocalized bonds." Canadian Journal of Chemistry 74, no. 6 (June 1, 1996): 1088–96. http://dx.doi.org/10.1139/v96-122.

Full text
Abstract:
What is a local viewpoint of delocalized bonds? We try to provide an answer to this paradoxical question by investigating representative conjugated organic molecules (namely, allyl cation, trans-butadiene, and benzene) together with reference nonconjugated systems (ethylene and propene) by means of topological analysis of the electron localization function ELF. The valence attractors of the ELF gradient field are classified according to their synaptic order (i.e., connections with core attractors). The basin populations [Formula: see text] (i.e., the integrated density over the attractor basins) and their standard deviation, σ, have been calculated and are discussed. The basin populations and their relative fluctuations, defined as [Formula: see text] are sensitive criteria of delocalization. In the case of well-localized C—C or C=C bonds, λ ~0.4, whereas for delocalized bonds λ increases to about 0.5. Another criterion of delocalization is provided by the basin hierarchy, which is defined from the reduction of the localization domains. For most systems, delocalization occurs not only for neighboring carbon-carbon disynaptic attractor basins, but also for nearest neighbor disynaptic protonated attractor basins. Key words: electron localization function, topological analysis, delocalization, population analysis.
APA, Harvard, Vancouver, ISO, and other styles
30

Modak, P., and Ashok K. Verma. "Pressure induced multi-centre bonding and metal–insulator transition in PtAl2." Physical Chemistry Chemical Physics 21, no. 24 (2019): 13337–46. http://dx.doi.org/10.1039/c9cp02034a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kanazawa, I. "The Electron Localization in the Quasicrystal-Like System." Modern Physics Letters B 17, no. 15 (June 30, 2003): 841–45. http://dx.doi.org/10.1142/s0217984903005834.

Full text
Abstract:
By using the thermal Green's function technique, we consider the transport properties in a randomly distributed system of the aggregation that corresponds to the correlated unit-cell configurations, in which the nearest distance between each configuration is ~ 2π/2k F . We introduce the temperature dependence of the conductivity of the quasicrystal-like system.
APA, Harvard, Vancouver, ISO, and other styles
32

Werstiuk, Nick H., Heidi M. Muchall, and Stéphane Noury. "An Electron Localization Function (ELF) Study of the 2-Norbornyl Cation†." Journal of Physical Chemistry A 104, no. 49 (December 2000): 11601–5. http://dx.doi.org/10.1021/jp001978l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Pavarini, E., A. Yamasaki, J. Nuss, and O. K. Andersen. "How chemistry controls electron localization in 3d1perovskites: a Wannier-function study." New Journal of Physics 7 (September 5, 2005): 188. http://dx.doi.org/10.1088/1367-2630/7/1/188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Feixas, Ferran, Eduard Matito, Miquel Duran, Miquel Solà, and Bernard Silvi. "Electron Localization Function at the Correlated Level: A Natural Orbital Formulation." Journal of Chemical Theory and Computation 6, no. 9 (August 23, 2010): 2736–42. http://dx.doi.org/10.1021/ct1003548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Feixas, Ferran, Eduard Matito, Miquel Duran, Miquel Solà, and Bernard Silvi. "Electron Localization Function at the Correlated Level: A Natural Orbital Formulation." Journal of Chemical Theory and Computation 7, no. 4 (March 4, 2011): 1231. http://dx.doi.org/10.1021/ct2001123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Joubert, L. "Electron localization function view of bonding in selected aluminum fluoride molecules." Journal of Molecular Structure: THEOCHEM 463, no. 1-2 (April 23, 1999): 75–80. http://dx.doi.org/10.1016/s0166-1280(98)00395-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Savin, Andreas. "The electron localization function (ELF) and its relatives: interpretations and difficulties." Journal of Molecular Structure: THEOCHEM 727, no. 1-3 (August 2005): 127–31. http://dx.doi.org/10.1016/j.theochem.2005.02.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Silvi, B. "Chemical Bonds in Minerals: Topological Analysis of the Electron Localization Function." Mineralogical Magazine 58A, no. 2 (1994): 842–43. http://dx.doi.org/10.1180/minmag.1994.58a.2.174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chesnut, D. B., and L. J. Bartolotti. "The electron localization function description of aromaticity in five-membered rings." Chemical Physics 253, no. 1 (February 2000): 1–11. http://dx.doi.org/10.1016/s0301-0104(99)00366-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Fuentealba, P., and A. Savin. "Bonding Analysis of Hydrogenated Lithium Clusters Using the Electron Localization Function." Journal of Physical Chemistry A 105, no. 51 (December 2001): 11531–33. http://dx.doi.org/10.1021/jp012004b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

BURKHARDT, A., U. WEDIG, H. G. VON SCHNERING, and A. SAVIN. "ChemInform Abstract: The Electron Localization Function (ELF) in closo Boron Clusters." ChemInform 24, no. 18 (August 20, 2010): no. http://dx.doi.org/10.1002/chin.199318001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kalinowski, Jaroslaw, Slawomir Berski, and Agnieszka J. Gordon. "Electron Localization Function Study on Intramolecular Electron Transfer in the QTTFQ and DBTTFI Radical Anions." Journal of Physical Chemistry A 115, no. 46 (November 24, 2011): 13513–22. http://dx.doi.org/10.1021/jp204585s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Parise, Angela, Aurelio Alvarez-Ibarra, Xiaojing Wu, Xiaodong Zhao, Julien Pilmé, and Aurélien de la Lande. "Quantum Chemical Topology of the Electron Localization Function in the Field of Attosecond Electron Dynamics." Journal of Physical Chemistry Letters 9, no. 4 (January 31, 2018): 844–50. http://dx.doi.org/10.1021/acs.jpclett.7b03379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Gibbs, G. V., D. F. Cox, N. L. Ross, T. D. Crawford, R. T. Downs, and J. B. Burt. "Comparison of the Electron Localization Function and Deformation Electron Density Maps for Selected Earth Materials." Journal of Physical Chemistry A 109, no. 44 (November 2005): 10022–27. http://dx.doi.org/10.1021/jp052661u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

ŠETRAJČIĆ, JOVAN P., STEVAN ARMAKOVIĆ, IGOR J. ŠETRAJČIĆ, and LJUBIŠA D. DŽAMBAS. "SURFACE LOCALIZATION OF ELECTRONS IN ULTRATHIN CRYSTALLINE STRUCTURES." Modern Physics Letters B 28, no. 04 (February 4, 2014): 1450023. http://dx.doi.org/10.1142/s0217984914500237.

Full text
Abstract:
Electron subsystem of ultrathin films was analyzed using Green's function method including quantum size effect and effect of boundaries on Hamiltonian parameters. We have calculated basic physical properties of electrons in crystalline films: energy spectra, possible states, space distribution of electrons and the position of Fermi level, which enabled the complete insight into the thermodynamic or conducting characteristics of observed film-structure. The comparison with crystal bulk have shown that electronic properties of the materials are strongly influenced by both the sample dimensions and boundary conditions. The numerical calculations performed for very thin crystalline metallic-like films show that localized states and spatial distribution of the (quasi)free electrons might be manipulated by varying the surface parameters which is significant for operation of devices based on thin films.
APA, Harvard, Vancouver, ISO, and other styles
46

GODA, MASAKI, MARK YA AZBEL, and HIROAKI YAMADA. "NON-EXPONENTIALLY LOCALIZED STATES IN A TWO-DIMENSIONAL DISORDERED SYSTEM?" International Journal of Modern Physics B 13, no. 21n22 (September 10, 1999): 2705–25. http://dx.doi.org/10.1142/s0217979299002605.

Full text
Abstract:
We study the length L dependence of the forward component of the transfer matrix for an electron passing through a strip with δ-function impurity potentials, with particular attention to the slowest growth-rate characteristic. In the first step of our microscopic study we obtain the inverse localization length for low energy electron in a weakly perturbed system. We show by considering an ensemble averaged mixed tensor a critical energy dividing exponential localization and non-exponential localization in the two-dimensional disordered system.
APA, Harvard, Vancouver, ISO, and other styles
47

Alcoba, Diego R., Ofelia B. Oña, Alicia Torre, Luis Lain, and William Tiznado. "An orbital localization criterion based on the topological analysis of the electron localization function at correlated level." International Journal of Quantum Chemistry 118, no. 14 (February 6, 2018): e25588. http://dx.doi.org/10.1002/qua.25588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Koumpouras, Konstantinos, and J. Andreas Larsson. "Distinguishing between chemical bonding and physical binding using electron localization function (ELF)." Journal of Physics: Condensed Matter 32, no. 31 (May 6, 2020): 315502. http://dx.doi.org/10.1088/1361-648x/ab7fd8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chesnut, D. B. "Atoms-in-Molecules and Electron Localization Function Study of the Phosphoryl Bond." Journal of Physical Chemistry A 107, no. 21 (May 2003): 4307–13. http://dx.doi.org/10.1021/jp022292r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Contreras-García, Julia, Ángel Martín Pendás, Bernard Silvi, and J. Manuel Recio. "Useful applications of the electron localization function in high-pressure crystal chemistry." Journal of Physics and Chemistry of Solids 69, no. 9 (September 2008): 2204–7. http://dx.doi.org/10.1016/j.jpcs.2008.03.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography