Academic literature on the topic 'Electron-Ion Collider (EIC)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electron-Ion Collider (EIC).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electron-Ion Collider (EIC)"
Oliveira, C. P., D. Hadjimichef, and M. V. T. Machado. "Compton-like dark photon production in electron–nucleus collisions." Journal of Physics G: Nuclear and Particle Physics 49, no. 3 (January 31, 2022): 035001. http://dx.doi.org/10.1088/1361-6471/ac3dcc.
Full textYang, Shuailiang, Qi Xu, Yateng Zhang, and Xiaoyu Wang. "The Collins Asymmetry in Λ Hyperon Produced SIDIS Process at Electron–Ion Colliders." Symmetry 15, no. 4 (March 31, 2023): 841. http://dx.doi.org/10.3390/sym15040841.
Full textBanks, Michael. "Electron-ion collider hits milestone." Physics World 37, no. 5 (May 1, 2024): 16ii. http://dx.doi.org/10.1088/2058-7058/37/05/18.
Full textQiu, Jian-Wei. "Electron-Ion Collider — Taking us to the Next QCD Frontier." International Journal of Modern Physics: Conference Series 37 (January 2015): 1560020. http://dx.doi.org/10.1142/s2010194515600204.
Full textGUZEY, VADIM. "3D IMAGING OF SEA QUARKS AND GLUONS AT AN ELECTRON-ION COLLIDER." International Journal of Modern Physics: Conference Series 04 (January 2011): 1–8. http://dx.doi.org/10.1142/s2010194511001504.
Full textLi, Xuan, Ivan Vitev, Melynda Brooks, Lukasz Cincio, J. Matthew Durham, Michael Graesser, Ming X. Liu, et al. "A New Heavy Flavor Program for the Future Electron-Ion Collider." EPJ Web of Conferences 235 (2020): 04002. http://dx.doi.org/10.1051/epjconf/202023504002.
Full textStaśto, Anna. "The physics of the EIC." EPJ Web of Conferences 296 (2024): 01032. http://dx.doi.org/10.1051/epjconf/202429601032.
Full textKim, Yongjun. "Simulation study of Dual-Readout Calorimeter for a forward calorimeter at the Electron-Ion Collider." EPJ Web of Conferences 276 (2023): 05006. http://dx.doi.org/10.1051/epjconf/202327605006.
Full textZheng, Liang, E. C. Aschenauer, J. H. Lee, Bo-Wen Xiao, and Zhong-Bao Yin. "Measuring Gluon Sivers Function at a Future Electron-Ion Collider." International Journal of Modern Physics: Conference Series 46 (January 2018): 1860021. http://dx.doi.org/10.1142/s2010194518600212.
Full textRadici, Marco. "Electron Ion Collider: 3D-Imaging the Nucleon." EPJ Web of Conferences 182 (2018): 02062. http://dx.doi.org/10.1051/epjconf/201818202062.
Full textDissertations / Theses on the topic "Electron-Ion Collider (EIC)"
Pilleux, Noémie. "Nucleon structure studies at Jefferson Lab and the Electron-Ion Collider." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP113.
Full textThe research programs of Thomas Jefferson Laboratory (JLab) and the future Electron-Ion Collider (EIC) focus on one of the main goals of strong interaction studies: understanding the structure of nucleons in terms of the quarks and gluons composing them. Their structure is encoded in functions such as Generalized Parton Distributions (GPDs), which describe how quarks and gluons' transverse position and longitudinal momentum are distributed inside nucleons. GPDs allow to obtain three-dimensional pictures of nucleons and to understand some of their fundamental properties, such as their internal pressure or the emergence of their spin from the dynamics of the partons composing them. At JLab and the EIC, electron beams are used to probe nucleons. Measurement of reactions such as Deeply Virtual Compton Scattering (DVCS) allows access to GPDs.The first longitudinally polarized-target experiment of the CLAS12 program at Jlab took place in 2022-2023. Combining polarized electron beams and nucleon targets, this experiment offers unique access to observables that allow the measurement of different types of GPDs. In particular, the DVCS beam- and target-spin asymmetries for protons and neutrons in deuterium will be measured for the first time. They give access to kinds of GPDs that are still poorly known, and the comparison between proton and neutron data will allow the extraction of the flavor dependence of the structure of nucleons. Specific analysis methods have been implemented to work with a polarized nuclear target and are presented in this thesis. These methods allow to obtain preliminary results for the asymmetries, waiting for the complete statistics to be available.In the long term, the experimental program for the EIC has been established with a strong emphasis on the measurement of the structure of nucleons at high energy. Measurements of reactions such as DVCS impose strict requirements on the electromagnetic calorimeter that will allow to measure the energy of the scattered electrons and photons. This calorimeter, which is under development, will be based on scintillating crystals read by Silicon Photomultipliers (SiPMs). A new type of glass-based scintillating material was tested, evaluating the possibilities to meet the technical requirements concerning their light yield and resistance to radiation damage in particular. Several models of SiPMs have been characterized, demonstrating they can operate over the vast energy range necessary to address the physics case at the EIC and providing guidelines for developing their readout electronics
Dupré, Raphaël. "Quark Fragmentation and Hadron Formation in Nuclear Matter." Thesis, Lyon 1, 2011. http://www.theses.fr/2011LYO10221/document.
Full textThe hadron formation is, in the framework of the quantum chromodynamics theory (QCD), a non-perturbative process; this characteristic leads to important theoretical challenges. This is why experimental measurements of fragmentation in nuclei are a necessity in order to obtain substantial progress in our understanding of the mechanisms of hadron formation. The thesis begins with the introduction of theoretical background, followed by an overview of theoretical models. The thesis continues with the analysis of Jefferson Lab data obtained with a 5 GeV electron beam incident on various targets (2H, C, Al, Fe, Sn and Pb). The reaction products are measured with the CLAS spectrometer of Hall B. The main results are: (a) a multi-dimensional analysis of the measured observables, which permits a better confrontation with theoretical models and the extraction of temporal information on fragmentation, and (b) the observation of a non linear hadronic attenuation as a function of the target’s nuclear radius. The PyQM event generator, developed to reproduce the data from the HERMES collaboration, is also presented. The results are ambivalent, the theoretical basis used does not seem to apply to the studied case, however, some characteristics of the data are reproduced allowing to understand their origin, which is sometimes unexpected. Finally, the possibilities for future experiments, at Jefferson Lab and at an Electron-Ion Collider (EIC), are explored
Conference papers on the topic "Electron-Ion Collider (EIC)"
Guo, Jiquan. "Polarized Positron in Jefferson Lab Electron Ion Collider (JLEIC)." In 2019 EIC User Group Meeting, Paris, France, July 22, 2019. US DOE, 2019. http://dx.doi.org/10.2172/1976173.
Full textSurrow, Bernd. "Low-x Physics at a Future Electron-Ion Collider (EIC) Facility." In 15th International Workshop on Deep-Inelastic Scattering and Related Subjects. Amsterdam: Science Wise Publishing, 2007. http://dx.doi.org/10.3360/dis.2007.222.
Full textFEEGE, Nils. "The Evolution Of PHENIX Into An Electron Ion Collider (EIC) Experiment." In XXIII International Workshop on Deep-Inelastic Scattering. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.247.0223.
Full textAccardi, Alberto. "Measuring F2(n) at the EIC." In Workshop on Nuclear Chromo-Dynamic Studies with a Future Electron Ion Collider, ANL, Chicago, IL, April 7, 2010. US DOE, 2010. http://dx.doi.org/10.2172/1999217.
Full textDiefenthaler, Markus. "EIC Computing, Overview and Areas Where India Can Contribute." In QCD with Electron Ion Collider (QEIC) II, Dec 18 – 20, 2022, Indian Institute of Technology Delhi. US DOE, 2022. http://dx.doi.org/10.2172/1970745.
Full textMack, David. "EIC-related Generic Detector R&D Program." In 1st International Workshop on a 2nd Detector for the Electron-Ion Collider, May 17 – 19, 2023, Temple University, Philadelphia, Pennsylvania. US DOE, 2023. http://dx.doi.org/10.2172/2281695.
Full textLebedev, V. A. "Luminosity limitations for Electron-Ion Collider." In PHYSICS WITH AN ELECTRON POLARIZED LIGHT-ION COLLIDER: Second Workshop EPIC 2000. AIP, 2001. http://dx.doi.org/10.1063/1.1413151.
Full textCameron, J. M. "Hadronic physics with a polarized Electron-Ion Collider." In PHYSICS WITH AN ELECTRON POLARIZED LIGHT-ION COLLIDER: Second Workshop EPIC 2000. AIP, 2001. http://dx.doi.org/10.1063/1.1413142.
Full textBland, L. C., J. T. Londergan, and A. P. Szczepaniak. "Physics with a High Luminosity Polarized Electron Ion Collider." In Proceedings of the Workshop on High Energy Nuclear Physics (EPIC 99). WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789814527156.
Full textGarvey, G. T. "e-A Physics at a collider." In PHYSICS WITH AN ELECTRON POLARIZED LIGHT-ION COLLIDER: Second Workshop EPIC 2000. AIP, 2001. http://dx.doi.org/10.1063/1.1413149.
Full textReports on the topic "Electron-Ion Collider (EIC)"
Montag C. Design of an Interaction Region for the Electron-Light Ion Collider ELIC. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/1061764.
Full text