Journal articles on the topic 'Electron impact'

To see the other types of publications on this topic, follow the link: Electron impact.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Electron impact.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sharma, Kamlesh Kumar, and Sanjeev Saxena. "Electron (Positron) Impact Ionization of Xenon." Indian Journal of Applied Research 3, no. 11 (October 1, 2011): 454–55. http://dx.doi.org/10.15373/2249555x/nov2013/145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McDowell, M. R. C. "Electron Impact lonization." Physics Bulletin 37, no. 2 (February 1986): 79. http://dx.doi.org/10.1088/0031-9112/37/2/036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maier, J. P. "Electron impact ionisation." Journal of Electron Spectroscopy and Related Phenomena 36, no. 3 (January 1985): 305. http://dx.doi.org/10.1016/0368-2048(85)80027-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nefiodov, A. V., and G. Plunien. "Excitation of K-shell electrons by electron impact." Physics Letters A 371, no. 5-6 (November 2007): 432–37. http://dx.doi.org/10.1016/j.physleta.2007.06.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mikhailov, A. I., A. V. Nefiodov, and G. Plunien. "Ionization of K-shell electrons by electron impact." Physics Letters A 372, no. 24 (June 2008): 4451–61. http://dx.doi.org/10.1016/j.physleta.2008.03.062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lebedev, Yurii, and Vyasheslav Shakhatov. "Electron impact dissociation of CO2 (a review)." ADVANCES IN APPLIED PHYSICS 9, no. 5 (November 20, 2021): 365–92. http://dx.doi.org/10.51368/2307-4469-2021-9-5-365-392.

Full text
Abstract:
Based on a detailed analysis and generalization of the results of calculations of the energy spectrum of electrons using different models in gas discharges in pure carbon dioxide CO2 and in mixtures containing CO2 , the rate constant of CO2 dissociation by electron impact in a gas discharge of direct current at atmospheric pressure is found. It is shown that, at values of the reduced electric field from 55 Td to 100 Td, the predominant mechanism of decomposition of the CO2 molecule is the collision of CO2 molecules with electrons. An expression is obtained for calculating the rate constant of CO2 dissociation by electron impact as a function of the reduced electric field.
APA, Harvard, Vancouver, ISO, and other styles
7

Robicheaux, F. "Electron impact ionization of." Journal of Physics B: Atomic, Molecular and Optical Physics 29, no. 4 (February 28, 1996): 779–90. http://dx.doi.org/10.1088/0953-4075/29/4/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tayal, S. S. "Electron-impact ionization ofAr7+." Physical Review A 49, no. 4 (April 1, 1994): 2561–66. http://dx.doi.org/10.1103/physreva.49.2561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Andersen, L. H., M. J. Jensen, H. B. Pedersen, L. Vejby-Christensen, and N. Djurić. "Electron-impact detachment fromB−." Physical Review A 58, no. 4 (October 1, 1998): 2819–23. http://dx.doi.org/10.1103/physreva.58.2819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shaw, J. A., M. S. Pindzola, N. R. Badnell, and D. C. Griffin. "Electron-impact excitation ofCo2+." Physical Review A 58, no. 4 (October 1, 1998): 2920–25. http://dx.doi.org/10.1103/physreva.58.2920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Moores, D. L., and K. J. Reed. "Electron-impact ionization ofSe24+." Physical Review A 39, no. 4 (February 1, 1989): 1747–55. http://dx.doi.org/10.1103/physreva.39.1747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mitroy, J., and D. W. Norcross. "Electron-impact excitation ofAl2+." Physical Review A 39, no. 2 (January 1, 1989): 537–44. http://dx.doi.org/10.1103/physreva.39.537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Laghdas, K., R. H. G. Reid, C. J. Joachain, and P. G. Burke. "Electron-impact ionization of." Journal of Physics B: Atomic, Molecular and Optical Physics 32, no. 6 (January 1, 1999): 1439–50. http://dx.doi.org/10.1088/0953-4075/32/6/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Khare, S. P., Surekha Tomar, and M. K. Sharma. "Electron impact molecular ionization." Journal of Physics B: Atomic, Molecular and Optical Physics 33, no. 2 (January 5, 2000): L59—L61. http://dx.doi.org/10.1088/0953-4075/33/2/101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Montanari, C. C., and J. E. Miraglia. "Electron impact multiple ionization." Journal of Physics: Conference Series 488, no. 4 (April 10, 2014): 042013. http://dx.doi.org/10.1088/1742-6596/488/4/042013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mark, T. D. "Ionization by electron impact." Plasma Physics and Controlled Fusion 34, no. 13 (December 1, 1992): 2083–90. http://dx.doi.org/10.1088/0741-3335/34/13/044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hildenbrand, D. L. "Electron impact ionization energies." International Journal of Mass Spectrometry 197, no. 1-3 (February 2000): 237–42. http://dx.doi.org/10.1016/s1387-3806(99)00259-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Dünser, B., M. Lezius, P. Scheier, H. Deutsch, and T. D. Märk. "Electron Impact Ionization ofC60." Physical Review Letters 74, no. 17 (April 24, 1995): 3364–67. http://dx.doi.org/10.1103/physrevlett.74.3364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bachi, Nicolás, Sebastian Otranto, and Karoly Tőkési. "Electron-Impact Ionization of Carbon." Atoms 11, no. 2 (January 20, 2023): 16. http://dx.doi.org/10.3390/atoms11020016.

Full text
Abstract:
We present ionization cross-sections of collisions between electrons and carbon atoms using the classical trajectory Monte Carlo method. Total cross-sections are benchmarked against the reported experimental data and the predictions of numerically intensive theoretical methods as well as pioneering calculations for this collision system. At impact energies greater than about 100 eV, the present results are in very good agreement with the generalized oscillator strength formulation of the Born approximation as well as with the experimental data. Limitations inherent to a purely classical description of the electron impact ionization process at low impact energies are detected and analyzed, suggesting a clear route for future studies.
APA, Harvard, Vancouver, ISO, and other styles
20

Dogan, Mevlut, Melike Ulu, Zehra Nur Ozer, Murat Yavuz, and Gulin Bozkurt. "Double Differential Cross-Sections for Electron Impact Ionization of Atoms and Molecules." Journal of Spectroscopy 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/192917.

Full text
Abstract:
The single ionizing collision between an incident electron and an atom/molecule ends up two kinds of outgoing electrons called scattered and ejected electrons. As features of electron impact ionization, these two types of electrons are indistinguishable. Double differential cross-sections (DDCS) can be obtained by measuring the energy and angular distributions of one of the two outgoing electrons with an electron analyzer. We used He, Ar, H2, and CH4targets in order to understand the ionization mechanisms of atomic and molecular systems. We measured differential cross-sections (DCS) and double differential cross-sections at 250 eV electron impact energy. The elastic DCSs were measured for He, Ar, H2, and CH4, whereas the inelastic DCSs of He were obtained for 21P excitation level for 200 eV impact electron energy.
APA, Harvard, Vancouver, ISO, and other styles
21

Rymzhanov, R. A. "ELECTRON KINETICS OF YTTRIUM IRON GARNET AFTER SWIFT HEAVY ION IMPACT." Eurasian Physical Technical Journal 19, no. 3 (41) (September 22, 2022): 23–28. http://dx.doi.org/10.31489/2022no3/23-28.

Full text
Abstract:
The TREKIS Monte-Carlo model was applied to study the temporal electronic kinetics of yttrium iron garnet after a swift heavy ion impact. Cross sections of incident particles interaction with the target were determined within complex dielectric function-dynamic structure factor formalism. We found two modes of the spatial propagation of electronic excitation: fast delta-electrons form a front of the excitation while electrons produced due to decay of plasmons generated in a track form the second front slowly following behind the first one.Analysis of mechanisms of target lattice heating pointed to an important contribution of the potential energy released due to recombination of valence holes generated in an ion track. An increase of the excess lattice energy due to elastic scatterings of electrons and holes described with Mott cross-sections is minor. In contrast, complex dielectric function formalism demonstrates the significant contribution of these processes to the heating of the lattice.
APA, Harvard, Vancouver, ISO, and other styles
22

Shpenik, O. B., M. M. Erdevdy, P. P. Markush, J. E. Kontros, and I. V. Chernyshova. "Electron Impact Excitation and Ionization of Sulfur, Selenium, and Tellurium Vapors." Ukrainian Journal of Physics 60, no. 3 (March 2015): 217–24. http://dx.doi.org/10.15407/ujpe60.03.0217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Schwienhorst, R., A. Raeker, K. Bartschat, and K. Blum. "Electron - photon coincidences in electron impact ionization - excitation." Journal of Physics B: Atomic, Molecular and Optical Physics 29, no. 11 (June 14, 1996): 2305–14. http://dx.doi.org/10.1088/0953-4075/29/11/018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Paripás, Béla. "Auger electron peak shapes in electron impact experiments." Radiation Physics and Chemistry 68, no. 1-2 (September 2003): 33–40. http://dx.doi.org/10.1016/s0969-806x(03)00251-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Park, J. B., T. Niermann, D. Berger, A. Knauer, I. Koslow, M. Weyers, M. Kneissl, and M. Lehmann. "Impact of electron irradiation on electron holographic potentiometry." Applied Physics Letters 105, no. 9 (September 2014): 094102. http://dx.doi.org/10.1063/1.4894718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hein, J. D., S. Kidwai, P. W. Zetner, C. Bostock, D. V. Fursa, I. Bray, L. Sharma, R. Srivastava, and A. Stauffer. "Electron-impact coherence parameters for electron-impact excitation of laser-excited174Yb (…6s6p 3P1)." Journal of Physics B: Atomic, Molecular and Optical Physics 44, no. 7 (March 16, 2011): 075201. http://dx.doi.org/10.1088/0953-4075/44/7/075201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Coplan, MA, JP Doering, DH Madison, JH Moore, and AA Pinkás. "Electronic Structure Information from Electron Impact Ionisation Experiments." Australian Journal of Physics 49, no. 2 (1996): 321. http://dx.doi.org/10.1071/ph960321.

Full text
Abstract:
Electron impact ionisation with full determination of the kinematics (measurement of energies and momenta of the incident, scattered and ejected electrons) has proven to be useful for investigating both the electronic structure of atoms and molecules and the mechanism of ionisation. These experiments are, by definition, coincidence experiments since it is necessary to be sure that all the detected electrons originate from the same collision. For single-electron ionisation, (e, 2e), the emphasis has been on momentum densities and spectroscopic factors–see for example Coplan et al. (1994), McCarthy and Weigold (1976, 1988, 1991) and Leung (1991). For double ionisation, (e,3e), data are just beginning to emerge, with early results on the Auger process and direct double ionisation (Duguet and Lahmam-Bennani 1992). Both (e, 2e) and (e, 3e) experiments are technically challenging because the signals are small and there is usually a large background. In the last few years, electrostatic spectrographs and position sensitive detectors have improved the resolution and precision of (e, 2e) measurements and have made (e,3e) measurements a practical reality.
APA, Harvard, Vancouver, ISO, and other styles
28

Dilmi, S., and A. Boumali. "Estimation of Electron Impact Ionization Rates of Li Using a Non-Maxwellian Distribution Function." Ukrainian Journal of Physics 66, no. 8 (September 8, 2021): 691. http://dx.doi.org/10.15407/ujpe66.8.691.

Full text
Abstract:
We report an estimate of the cross-section and rate of electron-impact ionization of Li. The FAC code (Flexible Atomic Code) is used in order to determine the cross-section and to calculate the level of energy. We evaluate the effect of electron energy distribution functions on the measurement of the ionization rate for a non-Maxwellian energy distribution, if the fraction of hot electrons is small. In several types of plasma, it has been observed that certain (hot) electrons are governed by a non-Maxwellian energy distribution. These electrons affect the line spectra and other characteristics of plasma. By using a non-Maxwellian distribution of energies, we revealed the sensitivity of the electron-impact ionization rate of Li to types of the electron energy distribution and to the fraction of hot electrons.
APA, Harvard, Vancouver, ISO, and other styles
29

Зацарінний, О., К. Бартшат, Л. Бандуріна, С. Гедеон, and В. Лазур. "ELECTRON-IMPACT SCATTERING ON CALCIUM." Scientific Herald of Uzhhorod University.Series Physics 21 (August 5, 2007): 205–14. http://dx.doi.org/10.24144/2415-8038.2007.21.205-214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Laghdas, K., R. H. G. Reid, C. J. Joachain, and P. G. Burke. "Electron-impact ionization of Ar9+." Journal of Physics B: Atomic, Molecular and Optical Physics 28, no. 22 (November 28, 1995): 4811–22. http://dx.doi.org/10.1088/0953-4075/28/22/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bartschat, K., P. G. Burke, and M. P. Scott. "Electron impact excitation of beryllium." Journal of Physics B: Atomic, Molecular and Optical Physics 29, no. 20 (October 28, 1996): L769—L772. http://dx.doi.org/10.1088/0953-4075/29/20/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Marchalant, Pascale J., Klaus Bartschat, Keith A. Berrington, and Shinobu Nakazaki. "Electron-impact excitation of boron." Journal of Physics B: Atomic, Molecular and Optical Physics 30, no. 8 (April 28, 1997): L279—L283. http://dx.doi.org/10.1088/0953-4075/30/8/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Pindzola, M. S., C. P. Ballance, J. A. Ludlow, S. D. Loch, and D. C. Griffin. "Electron-impact ionization of Xe24 +." Journal of Physics B: Atomic, Molecular and Optical Physics 43, no. 2 (December 21, 2009): 025201. http://dx.doi.org/10.1088/0953-4075/43/2/025201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Pindzola, M. S., C. P. Ballance, J. A. Ludlow, S. D. Loch, and J. Colgan. "Electron-impact ionization of C2." Journal of Physics B: Atomic, Molecular and Optical Physics 43, no. 6 (March 2, 2010): 065201. http://dx.doi.org/10.1088/0953-4075/43/6/065201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Loch, S. D., C. P. Ballance, D. Wu, Sh A. Abdel-Naby, and M. S. Pindzola. "Electron-impact ionization of Al." Journal of Physics B: Atomic, Molecular and Optical Physics 45, no. 6 (February 29, 2012): 065201. http://dx.doi.org/10.1088/0953-4075/45/6/065201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Alna'washi, G. A., K. K. Baral, N. B. Aryal, C. M. Thomas, and R. A. Phaneuf. "Electron-impact ionization of Se3+." Journal of Physics B: Atomic, Molecular and Optical Physics 47, no. 10 (April 29, 2014): 105201. http://dx.doi.org/10.1088/0953-4075/47/10/105201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Alna'washi, G. A., N. B. Aryal, K. K. Baral, C. M. Thomas, and R. A. Phaneuf. "Electron-impact ionization of Se2+." Journal of Physics B: Atomic, Molecular and Optical Physics 47, no. 13 (June 25, 2014): 135203. http://dx.doi.org/10.1088/0953-4075/47/13/135203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Schulz, P. A., D. C. Gregory, F. W. Meyer, and R. A. Phaneuf. "Electron‐impact dissociation of H3O+." Journal of Chemical Physics 85, no. 6 (September 15, 1986): 3386–94. http://dx.doi.org/10.1063/1.450960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Eliasson, B., and U. Kogelschatz. "Electron impact dissociation in oxygen." Journal of Physics B: Atomic and Molecular Physics 19, no. 8 (April 28, 1986): 1241–47. http://dx.doi.org/10.1088/0022-3700/19/8/018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Cho, H., and S. H. Lee. "Double ionization ofO2by electron impact." Physical Review A 48, no. 3 (September 1, 1993): 2468–70. http://dx.doi.org/10.1103/physreva.48.2468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bell, E. W., N. Djurić, and G. H. Dunn. "Electron-impact ionization ofIn+andXe+." Physical Review A 48, no. 6 (December 1, 1993): 4286–91. http://dx.doi.org/10.1103/physreva.48.4286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Meneses, G. D., F. J. da Paixo, and N. T. Padial. "Electron-impact excitation of krypton." Physical Review A 32, no. 1 (July 1, 1985): 156–65. http://dx.doi.org/10.1103/physreva.32.156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Garrett, Bruce C., Lynn T. Redmon, and Michael J. Redmon. "Electron-impact dissociation of HCl." Physical Review A 33, no. 3 (March 1, 1986): 2091–92. http://dx.doi.org/10.1103/physreva.33.2091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bartschat, K., and P. G. Burke. "Electron impact ionisation of argon." Journal of Physics B: Atomic, Molecular and Optical Physics 21, no. 17 (September 14, 1988): 2969–75. http://dx.doi.org/10.1088/0953-4075/21/17/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mason, N. J., and W. R. Newell. "Electron impact dissociation of N2O." Journal of Physics B: Atomic, Molecular and Optical Physics 22, no. 14 (July 28, 1989): 2297–309. http://dx.doi.org/10.1088/0953-4075/22/14/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mason, N. J., and W. R. Newell. "Electron impact dissociation of O2." Journal of Physics B: Atomic, Molecular and Optical Physics 23, no. 24 (December 28, 1990): 4641–53. http://dx.doi.org/10.1088/0953-4075/23/24/018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Badnell, N. R., D. C. Griffin, and M. S. Pindzola. "Electron impact ionization of Ca+." Journal of Physics B: Atomic, Molecular and Optical Physics 24, no. 11 (June 14, 1991): L275—L279. http://dx.doi.org/10.1088/0953-4075/24/11/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kynienė, Aušra, Sigitas Kučas, Šarūnas Masys, and Valdas Jonauskas. "Electron-impact ionization of Fe8+." Astronomy & Astrophysics 624 (April 2019): A14. http://dx.doi.org/10.1051/0004-6361/201833762.

Full text
Abstract:
Electron-impact ionization cross sections and Maxwellian rate coefficients are presented for the Fe8+ion by considering processes from the ground and metastable levels. The lifetimes of the levels for the 3s23p53d configuration were analysed using the extended basis of interacting configurations. Convergence of the cross sections for the indirect process due to excitations to the high-nlsubshells was investigated. We demonstrate that excitations to the subshells with orbital quantum numberl = 3 with subsequent autoionization dominate up to electron energies of ∼700 eV for the ground and metastable levels. Modelling of theoretical cross sections obtained for the ground and metastable levels to produce the best fit to the measurements shows that 15% of ions reach the reaction zone in the metastable state. The obtained results contradict the previous work that showed ∼30% for the metastable fraction.
APA, Harvard, Vancouver, ISO, and other styles
49

Morillo-Candas, A. S., T. Silva, B. L. M. Klarenaar, M. Grofulović, V. Guerra, and O. Guaitella. "Electron impact dissociation of CO2." Plasma Sources Science and Technology 29, no. 1 (January 31, 2020): 01LT01. http://dx.doi.org/10.1088/1361-6595/ab6075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Boivin, R. F., and S. K. Srivastava. "Electron-impact ionization of Mg." Journal of Physics B: Atomic, Molecular and Optical Physics 31, no. 10 (May 28, 1998): 2381–94. http://dx.doi.org/10.1088/0953-4075/31/10/024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography