Academic literature on the topic 'Electron holes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electron holes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electron holes"
Schamel, Hans. "Electron holes, ion holes and double layers." Physics Reports 140, no. 3 (July 1986): 161–91. http://dx.doi.org/10.1016/0370-1573(86)90043-8.
Full textEliasson, B., and P. K. Shukla. "The dynamics of electron and ion holes in a collisionless plasma." Nonlinear Processes in Geophysics 12, no. 2 (February 11, 2005): 269–89. http://dx.doi.org/10.5194/npg-12-269-2005.
Full textJovanović, D., F. Califano, and F. Pegoraro. "Magnetized electron-whistler holes." Physics Letters A 303, no. 1 (October 2002): 52–60. http://dx.doi.org/10.1016/s0375-9601(02)01202-1.
Full textLuque, A., H. Schamel, and R. Fedele. "Quantum corrected electron holes." Physics Letters A 324, no. 2-3 (April 2004): 185–92. http://dx.doi.org/10.1016/j.physleta.2004.02.049.
Full textMuschietti, L., I. Roth, R. E. Ergun, and C. W. Carlson. "Analysis and simulation of BGK electron holes." Nonlinear Processes in Geophysics 6, no. 3/4 (December 31, 1999): 211–19. http://dx.doi.org/10.5194/npg-6-211-1999.
Full textTreumann, R. A., W. Baumjohann, and R. Pottelette. "Electron-cylotron maser radiation from electron holes: downward current region." Annales Geophysicae 30, no. 1 (January 13, 2012): 119–30. http://dx.doi.org/10.5194/angeo-30-119-2012.
Full textTreumann, R. A., W. Baumjohann, and R. Pottelette. "Electron-cylotron maser radiation from electron holes: upward current region." Annales Geophysicae 29, no. 10 (October 25, 2011): 1885–904. http://dx.doi.org/10.5194/angeo-29-1885-2011.
Full textHIRSCH, J. E. "WHY HOLES ARE NOT LIKE ELECTRONS III: HOW HOLES IN THE NORMAL STATE TURN INTO ELECTRONS IN THE SUPERCONDUCTING STATE." International Journal of Modern Physics B 23, no. 14 (June 10, 2009): 3035–57. http://dx.doi.org/10.1142/s0217979209052765.
Full textSteinvall, K., Yu V. Khotyaintsev, D. B. Graham, A. Vaivads, P. ‐A Lindqvist, C. T. Russell, and J. L. Burch. "Multispacecraft Analysis of Electron Holes." Geophysical Research Letters 46, no. 1 (January 11, 2019): 55–63. http://dx.doi.org/10.1029/2018gl080757.
Full textPiris, Mario, Xabier Lopez, and Jesus M. Ugalde. "Electron-pair density relaxation holes." Journal of Chemical Physics 128, no. 21 (June 7, 2008): 214105. http://dx.doi.org/10.1063/1.2937456.
Full textDissertations / Theses on the topic "Electron holes"
Ouahioune, Nedjma. "Čerenkov emission of whistler waves by electron holes." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446395.
Full textZhou, Chuteng. "Computational and theoretical study of electron phase-space holes in kinetic plasma: kinematics, stability and ion coupling." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119039.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 181-191).
In this thesis, a comprehensive study of Bernstein-Greene-Kruskal (BGK) mode electron holes in a collisionless plasma where strong kinetic effects are important is presented. Kinematic theory based on momentum conservation is derived treating the electron hole as a composite object to study the dynamics of electron holes. A novel 1-D Particle-In-Cell simulation code that can self-consistently track the electron hole motion has been developed for the purpose of this thesis work. Quantitative agreement is achieved between analytic theory and simulation observations. The thesis reports a new kind of instability for electron holes. Slow electron holes traveling slower than a few times the cold ion sound speed in the ion frame are observed to be unstable to the oscillatory velocity instability. A complete theoretical treatment for the instability is presented in this thesis. Numerical simulations yield quantitative agreement with the analytic theory in instability thresholds, frequencies and partially in instability growth rates. It is further shown that an electron hole can form a stable Coupled Hole Soliton (CHS) pair with an ion-acoustic soliton. A stable CHS travels slightly faster than the ion-acoustic velocity in the ion frame and is separated from a typical BGK mode electron hole in the velocity range by a gap, which is set by the oscillatory velocity instability. Transition between the two states is possible in both directions. A CHS exhibits a soliton-like behavior. The thesis sheds light on solving the ambiguity between an electron hole and a soliton. This thesis work also has important implications for interpreting space probes observations.
by Chuteng Zhou.
Ph. D. in Applied Plasma Physics
Reinsch, Andreas, and Andreas Reinsch. "Search for Colorful Quantum Black Holes Decaying to an Electron-Jet Final State with the ATLAS Experiment." Thesis, University of Oregon, 2012. http://hdl.handle.net/1794/12370.
Full textBause, Marlon Luis. "Plasma density characteristics of magnetic holes near the Kronian magnetosphere boundary surfaces." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414766.
Full textLokaliserade strukturer med låg magnetfältstyrkan ses ofta i interplanetära mediet och de kallas ’mag-netiska hål’ (MH) (Turner et al. 1977). Trots et antal observationer av sådana strukturer har observeratsär deras generationsmekanism ännu förstådd. Storleken av strukturerna varierar från ett fåtal till någratusen protongyroradier och även deras kännetecknande inriktningar i magnetfältet varierar. På grund avdetta har olika typer av MH förslagits. Idag klassificerar man MH som ’mirror mode’ och magnetiskaminskningar (Tsurutani et al. 2011). Många studier har undersökt de magnetiska hålens egenskaper,men tyvärr oftast baserats endast på magnetfältsdata. Detta kan bero på strukturernas storlek vid en storsolvindshastighet, där plasmainstrumenten oftast inte har tillräckligt hög tidsupplösning för mätningar,medan magnetfältsinstrumenten kan oftast tillhandahålla data i hög tidsupplösning.Cassini-rymdfarkosten kretsade runt Saturnus i nästan 17 år och erhöll stora mängder data i och näraSaturnus magnetosfär. Langmuir-sonden (LP) ombord Cassini mäter rymdfarkostens potential ochdärmed mäter den elektrontätheten i rymden. Instrumentet fungerar som en slags väderstation för rym-dplasma och möjliggör mätningen av fundamentala plasmaparametrar såsom elektrontäthet, jontäthet,elektrontemperatur och jonmassa i en tät plasmaområdet av nära Saturnus. I den yttre magnetosfären därden plasmatätheten är låg, kan LP mäta rymdfarkosts potential och plasmatätheten. Mätningen, så kallade’sweep mode’ kan skaffades var 10:e minuter. LP:en mäter också i ’kontinuerlig mode’ som möjligenkan mäta plasmatätheten i mer frekventa men den behöver allmän kalibrering. I detta projekt undersökerjag möjligheten att använda LP kontinuerlig data för att studera MH, skapa kalibraring funktion för’kontinuerlig mode’ för att uppskatta plasmatätheten i Saturnus magnetosfär, och även att undersökastorleken och karaktär av plasmatäthetenstrukturen i MH.Jag undersökte först relationen mellan LP ström vid 11V och rymdfarkostens potential i sweep mode data.De härledda funktionerna användes vidare för att uppskatta densiteten med användning av relationenmellan rymdfarkostens potential och elektrontätheten (Morooka et al. 2009). Jag upptäckte också attden kontinuerlig mode funktionen är olika beroende på LP sensors läge i förhållande till solen ochrymdfarkosten. Hur Cassini är inriktad har en stor effekt på relationen och därför beskriva jag fyra olikarelationer för olika inriktningsregioner. Med den kontinuerlig mode funktionen jag härlett, undersöktejag struktur av magnetiska hålen som har listats av Tomas Karlsson på KTH. År 2011 innehåller MH medmycket olika former och storlekar. Den mest (80%) MH identifierades som grupp och resten (20%) varsom isolerade MH i magnetosheath. Av dessa isolerande hål har ca. 30% en Gauss-form och nästan 40%av MH verkar ha en understruktur. Genom att jämföra magfältdatan med elektrontätheten bekräftadejag den allmänna antikorrelationen mellan magnetfältstyrkan och elektrontätheten i MH-strukturerna.Dessutom hittar jag en ökning av elektron β som beräknas med en temperatur av 100 eV för linjära ochroterade MH i den magnetosheath samt MH i solvinden under 2011. Storleken av de isolerade magnetiskahålen är i genomsnitt 50 s i solvinden, 75 s (roterade magnetiska hål) och 120 s (linjära magnetiska hålen)i magnetosheath:en. Därför kan Cassini LP ha tillräcklig många datapoäng för att upplösa struktur avMH i magnetosheath. I solvinden kan LP upplösa en del av relativt stora MH.Sammanfattningsvis kan LP:s kontinuerlig kalibreringen från detta projekt användas för att analyserade olika strukturerna och storlekar av MH. Med denna kalibrerade plasmatäthet data är det möjligt attidentifiera olika MH karaktär i statistiskt för det stora antalet Cassini data. Det skulle vara en stor hjälpför att förstå genereringsmekanismerna av de magnetiska hålen.
Petrov, Pavel. "Effect of Curvature Squared Corrections to Gravitational Action on Viscosity-to-Entropy Ratio of the Dual Gauge Theory." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10549.
Full textPhysics
O'Regan, Brian C. "Dye sensitized n-p heterojunctions of titanium dioxide and copper thiocyanate, a new interface for photoinduced charge separation /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8601.
Full textZeybek, Orhan. "Surface studies of magnetic thin films." Thesis, University of Liverpool, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367247.
Full textKhalal, Mehdi Abdelbaki. "Photoionisation multiple des vapeurs métalliques Multi-electron coincidence spectroscopy: Triple Auger decay of Ar 2p and 2s holes 4d -inner-shell ionization of Xe+ ions and subsequent Auger decay." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS552.
Full textThe increasing availability of modern x-ray light sources with high tunability, high brightness and narrow photon-energy bandwidth has allowed a deep understanding of the physics behind light and matter interactions. During my PhD, I investigated experimentally different process of photoexcitation and photoionization of rare gas atoms (Argon and Xenon) and alkali metals (Potassium and Rubidium) by the means of synchrotron radiation. Our experimental setup is a 2m long magnetic bottle time-of-flight spectrometer that collect in coincidence almost all the electrons emitted in the 4π solid angle. We investigate the multiple Auger decay of the potassium 2p core holes which has an electronic configuration similar to Ar with an additional 4s valence electron. We show the spectator role of this electron in the decay mechanism and the enhancement of double and triple Auger rates comparing with the Argon 2p holes decay. We also investigated the multiple Auger decay of the rubidium 3d core holes. Finally, we investigated the core valence double photoionization of Xenon atom 4d-15p-1 which is compared with the direct ionization of Xe+ ions (MAIA experiment). We showed that the core valence double photoionization process will populate the same states that the ones populated by the photoionization of the ions. One should note that this process is very weak compared to the 4d inner shell ionization of Xe atom but thanks to the coincidence technique we are able to clearly separate and disentangle each ionization process. Our experiment confirmed the results of MAIA and allowed us to extract the Auger spectra associated with the decay of these Xe+ ions, when ionized in the 4d shell
Shao, Fangwei Dougherty Dennis A. "DNA-mediated hole and electron transport /." Diss., Pasadena, Calif. : California Institute of Technology, 2008. http://resolver.caltech.edu/CaltechETD:etd-06282007-105808.
Full textRoyo, Valls Miquel. "Theoretical modelling of electrons and holes in semiconductor nanostructures." Doctoral thesis, Universitat Jaume I, 2010. http://hdl.handle.net/10803/669140.
Full textBooks on the topic "Electron holes"
Dobrovolʹskiĭ, V. N. Perenos ėlektronov i dyrok u poverkhnosti poluprovodnikov. Kiev: Nauk. dumka, 1985.
Find full textGupta, Atam D. The electron-positron theory of the nucleus and the constructive role of black holes and of the neutrino and the antineutrino. [Georgia?]: A.D. Gupta, 1994.
Find full textWim, Schoenmaker, ed. Quantum transport in submicron devices: A theoretical introduction. Berlin: Springer, 2002.
Find full textNorbury, John W. Symmetry considerations in the scattering of identical composite bodies. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Find full textBetrayal of popular hopes: Report on the general election in Zanzibar, October 30, 2005. Zanzibar, Tanzania: Office of the Secretary General, Party Headquarters, Civic United Front, 2005.
Find full textCasati, Roberto. Holes and other superficialities. Cambridge, Mass: MIT Press, 1994.
Find full textIsihara, Akira. Electron liquids. New York: Springer-Verlag, 1993.
Find full textIsihara, Akira. Electron liquids. 2nd ed. Berlin: Springer, 1998.
Find full textIsihara, A. Electron liquids. London: Springer-Verlag, 1993.
Find full textIsihara, A. Electron liquids. 2nd ed. New York: Springer, 1998.
Find full textBook chapters on the topic "Electron holes"
Ko, Y. K., and C. P. T. Groth. "On the Electron Temperature and Coronal Heating in the Fast Solar Wind Constrained by In-Situ Observations." In Coronal Holes and Solar Wind Acceleration, 227–31. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9167-6_33.
Full textCancio, Antonio C., C. Y. Fong, and J. S. Nelson. "A Quantum Monte Carlo Study of the Exchange-Correlation Hole in Silicon Atom and System-Averaged Correlation Holes of Second Row Atoms." In Electron Correlations and Materials Properties, 509–18. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4715-0_32.
Full textDeschamps-Sonsino, Alexandra. "Everything Electric." In Smarter Homes, 1–16. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3363-4_1.
Full textIsihara, Akira. "Electron-Hole Liquids." In Electron Liquids, 71–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80392-5_5.
Full textIsihara, Akira. "Electron—Hole Liquids." In Electron Liquids, 73–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-97303-1_5.
Full textDugaev, Vitalii K., and Vladimir I. Litvinov. "Nonequilibrium Electrons and Holes." In Modern Semiconductor Physics and Device Applications, 259–73. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429285929-13.
Full textBechstedt, Friedhelm. "Electron-Hole Problem." In Springer Series in Solid-State Sciences, 439–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44593-8_19.
Full textOlafsen, Jeffrey. "Electrons and Holes in Semiconductors." In Sturge’s Statistical and Thermal Physics, 227–43. Second edition. | Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9781315156958-14.
Full textde Cogan, Donard. "Electrons and Holes in Semiconductors." In Solid State Devices — A Quantum Physics Approach, 77–92. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4684-0621-4_5.
Full textde Cogan, Donard. "Electrons and Holes in Semiconductors." In Solid State Devices, 77–92. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-18658-7_5.
Full textConference papers on the topic "Electron holes"
Siutsou, I. A., A. G. Aksenov, and G. V. Vereshchagin. "On thermalization of electron-positron-photon plasma." In THE SECOND ICRANET CÉSAR LATTES MEETING: Supernovae, Neutron Stars and Black Holes. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4937220.
Full textRuzicka, Brian A., Lalani K. Werake, Hui Zhao, Matt Mover, and G. Vignale. "Spin-Polarized Electron Transport in GaAs: Role of Holes." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.jwa117.
Full textWang, Q. S., M. A. Thompson, W. Schultz, and T. R. Lundquist. "Modeling Secondary Electron Emission from High Aspect Ratio Holes." In ISTFA 2003. ASM International, 2003. http://dx.doi.org/10.31399/asm.cp.istfa2003p0343.
Full textLatham, R. V. "The role of electron pin-holes in surface flashover." In IEE Colloquium on Surface Phenomena Affecting Insulator Performance. IEE, 1998. http://dx.doi.org/10.1049/ic:19980217.
Full textZASLAVSKII, O. B. "QUASI-BLACK HOLES AND LORENTZ-ABRAHAM ELECTRON IN GENERAL RELATIVITY." In Proceedings of the Ninth Conference. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814289931_0050.
Full textGorbatsievich, Alexander K. "ON ONE-ELECTRON ATOM IN THE NEIGHBORHOOD OF BLACK HOLES." In Collection of Works Dedicated to 65th Anniversary of the Department of Theoretical Physics of Belarusian State University. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702296_0005.
Full textTazawa, Leon, Anderson, Abe, Saito, Yoshii, and Scharfetter. "3-D topography simulation of via holes using generalized solid modeling." In Proceedings of IEEE International Electron Devices Meeting. IEEE, 1992. http://dx.doi.org/10.1109/iedm.1992.307335.
Full textKim, Jisoo, and Hyung Wook Park. "Deburring of the Holes on CFRP using the Electron Beam Irradiation." In WCMNM 2018 World Congress on Micro and Nano Manufacturing. Singapore: Research Publishing Services, 2018. http://dx.doi.org/10.3850/978-981-11-2728-1_19.
Full textvan Putten, Maurice H. P. M. "Electron-positron outflow from black holes and the formation of winds." In The first KIAS astrophysics workshop: Explosive phenomena in astrophysical compact objects. AIP, 2001. http://dx.doi.org/10.1063/1.1368259.
Full textSanpei, Akio. "Characteristics and generation mechanism of holes in an extended electron vortex." In NON-NEUTRAL PLASMA PHYSICS IV: Workshop on Non-Neutral Plasmas. AIP, 2002. http://dx.doi.org/10.1063/1.1454320.
Full textReports on the topic "Electron holes"
Richards, Robin. The Effect of Non-partisan Elections and Decentralisation on Local Government Performance. Institute of Development Studies (IDS), January 2021. http://dx.doi.org/10.19088/k4d.2021.014.
Full textGossard, Arthur C., and Herbert Kroemer. Nanostructures for Enhanced Electron/Hole Conversion. Fort Belvoir, VA: Defense Technical Information Center, March 2009. http://dx.doi.org/10.21236/ada495101.
Full textReiss, Howard. Chemical-Like Behavior of Electrons and Holes in Polymeric Conductors. Fort Belvoir, VA: Defense Technical Information Center, September 1989. http://dx.doi.org/10.21236/ada214496.
Full textYates, John T., and Jr. Do Electrons or Holes Activate Molecular O2 on TiO2 Surfaces? Fort Belvoir, VA: Defense Technical Information Center, November 2000. http://dx.doi.org/10.21236/ada391269.
Full textNordquist, Christopher Daniel, Michael Joseph Cich, Gregory Allen Vawter, Mark Steven Derzon, and Marino John Martinez. Novel detection methods for radiation-induced electron-hole pairs. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1008121.
Full textChen, X. M., and J. J. Quinn. Spatially Separated Electron-Hole Layers in Strong Magnetic Fields. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada264818.
Full textLyo, Sungkwun Kenneth, Roberto G. Dunn, Michael Patrick Lilly, D. R. Tibbetts-Russell, Larry L. Stephenson, John Andrew Seamons, John Louis Reno, Edward Salvador Bielejec, Wes Edmund Baca, and Jerry Alvon Simmons. LDRD final report on engineered superconductivity in electron-hole bilayers. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/921602.
Full textDavis, James C. Atomic scale studies of doped-hole distributions, self-organized electronic nano-domains, and electron-boson coupling in high Tc-cuprates. Office of Scientific and Technical Information (OSTI), May 2014. http://dx.doi.org/10.2172/1131043.
Full textNewton, M. D., and R. J. Cave. Molecular control of electron and hole transfer processes: Theory and applications. Office of Scientific and Technical Information (OSTI), February 1996. http://dx.doi.org/10.2172/188546.
Full textBocian, David F. Fundamental studies of energy-and hole/electron- transfer in hydroporphyrin architectures. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1150022.
Full text