Academic literature on the topic 'Electron Conduction - Disordered System'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electron Conduction - Disordered System.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electron Conduction - Disordered System"

1

Xu, Hui, Yi-pu Song, and Xin-mei Li. "Conduction mechanism studies on electron transfer of disordered system." Journal of Central South University of Technology 9, no. 2 (2002): 134–37. http://dx.doi.org/10.1007/s11771-002-0058-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Efros, A. L., and B. I. Shklovskii. "Influence of electron-electron interaction on hopping conduction of disordered systems." Journal of Non-Crystalline Solids 97-98 (December 1987): 31–38. http://dx.doi.org/10.1016/0022-3093(87)90010-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maiti, Santanu K. "Quantum Transport in Bridge Systems." Solid State Phenomena 155 (May 2009): 71–85. http://dx.doi.org/10.4028/www.scientific.net/ssp.155.71.

Full text
Abstract:
We study electron transport properties of some molecular wires and a unconventional disordered thin film within the tight-binding framework using Green's function technique. We show that electron transport is significantly affected by quantum interference of electronic wave functions, molecule-to-electrode coupling strengths, length of the molecular wire and disorder strength. Our model calculations provide a physical insight to the behavior of electron conduction across a bridge system.
APA, Harvard, Vancouver, ISO, and other styles
4

HWANG, J. R., M. F. TAI, H. C. KU, W. N. WANG, and K. H. LII. "TRANSPORT PROPERTIES OF THE RARE EARTH DISORDERED SYSTEMS (R1−xYbx)Ba2Cu3O7 (R = Y, Sm)." International Journal of Modern Physics B 02, no. 06 (1988): 1395–98. http://dx.doi.org/10.1142/s0217979288001219.

Full text
Abstract:
Electrical and magnetic measurements have been carried out for the rare earth disordered superconducting copper oxide systems ( Y 1−x Yb x) Ba 2 Cu 3 O 7 (substitution with large rare earth mass difference) and ( Sm 1−x Yb x) Ba 2 Cu 3 O 7 (substitution with large rare earth ionic size difference). Effect of compositional variation upon room temperature electrical resistivity shows no disorder scattering contribution from the randomly distributed rare earth ions located on the (1/2, 1/2, 1/2) site of the space group Pmmm. This result indicates very low conduction electron density of states surrounding rare earth ions. On the contrary, negative deviation of electrical resistivity from the linear Vegard law was observed. This reduced conduction electron scattering was discussed through the variation of packing density, grain size and/or twin structure.
APA, Harvard, Vancouver, ISO, and other styles
5

Rezania, Hamed. "Electronic properties of disordered zigzag carbon nanotubes." International Journal of Modern Physics B 29, no. 05 (2015): 1550020. http://dx.doi.org/10.1142/s0217979215500204.

Full text
Abstract:
We study the density of states of zigzag carbon nanotube (CNT) doped with both Boron and nitrogen atoms as donor and acceptor impurities, respectively. The effect of scattering of the electrons on the electronic spectrum of the system can be obtained via adding random on-site energy term to the tight binding model Hamiltonian which describes the clean system. Green's function approach has been implemented to find the behavior of electronic density. Due to Boron (Nitrogen) doping, Fermi surface tends to the valence (conduction) band of semiconductor CNT so that the energy gap width reduces. Furthermore the density of states of disordered metallic zigzag CNTs includes a peak near the Fermi energy.
APA, Harvard, Vancouver, ISO, and other styles
6

Hoon Lee, Chang, Dong Keun Oh, and Cheol Eui Lee. "Electron Paramagnetic Resonance Observation of Critical Behaviors in a Disordered Conducting Polymer System." Journal of the Physical Society of Japan 72, no. 7 (2003): 1812–13. http://dx.doi.org/10.1143/jpsj.72.1812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bergmann, Gerd. "WEAK LOCALIZATION AND ITS APPLICATIONS AS AN EXPERIMENTAL TOOL." International Journal of Modern Physics B 24, no. 12n13 (2010): 2015–52. http://dx.doi.org/10.1142/s021797921006468x.

Full text
Abstract:
The resistance of two-dimensional electron systems such as thin disordered films shows deviations from Boltzmann theory, which are caused by quantum corrections and are called weak localization. The theoretical origin of weak localization is the Langer–Neal graph in Kubo formalism. It represents an interference experiment with conduction electrons split into pairs of waves interfering in the back-scattering direction. The intensity of the interference (integrated over the time) can easily be measured by the resistance of the film. The application of a magnetic field B destroys the phase coherence after a time which is proportional to 1/B. For a field of 1 T this time is of the order of 1 ps. Therefore with a dc experiment, one can measure characteristic times of the electron system in the range of picoseconds. Weak localization has been applied to measure dephasing, spin-orbit scattering, tunneling times, etc. One important field of application is the investigation of magnetic systems and magnetic impurities by measuring the magnetic dephasing time and its temperature dependence. Here the Kondo maximum of spin-flip scattering, spin-fluctuations, Fermi liquid behavior and magnetic d-resonances have been investigated. Another field is the detection of magnetic moments for very dilute alloys and surface impurities. This article given a brief survey of different applications of weak localization with a focus on magnetic impurities.
APA, Harvard, Vancouver, ISO, and other styles
8

RAVOT, D., O. GOROCHOV, and A. MAUGER. "METAL-INSULATOR TRANSITION IN Yb1–x Gdx Te." International Journal of Modern Physics B 07, no. 01n03 (1993): 814–17. http://dx.doi.org/10.1142/s0217979293001724.

Full text
Abstract:
The metal-insulator transition of Yb1−xGdxTe has been studied by tuning x, since Gd3+ions act as donors. Transport and magnetic properties have been measured for 0<x<1 and T≥4.2K. For x>0.5, the material is a metallic antiferromagnet with a Néel temperature decreasing with x. An outstanding T–1 behavior of the resistivity is observed in a broad temperature range, which we attribute to electron-electron scattering in 3D dimension disordered systems. This behavior is observed in the metallic side, for x in the range 0.2<x≤0.5, and it can be regarded as a pretransition effect to the weak localization regime. This feature gives evidence that localization occurs because random fluctuations are enhanced by the magnetic interaction of the conduction electrons with Gd3+ ions favoring the formation of magnetic polarons. Only for x=0.2 can we observe an activated regime of the resistivity curve with a small activation energy ( ≈ 60K) typical of a thermal activation of the carriers above a mobility edge.
APA, Harvard, Vancouver, ISO, and other styles
9

Lau, Lik Nguong, Kean Pah Lim, Amirah Natasha Ishak, et al. "The Physical Properties of Submicron and Nano-Grained La0.7Sr0.3MnO3 and Nd0.7Sr0.3MnO3 Synthesised by Sol–Gel and Solid-State Reaction Methods." Coatings 11, no. 3 (2021): 361. http://dx.doi.org/10.3390/coatings11030361.

Full text
Abstract:
La0.7Sr0.3MnO3 (LSMO) and Nd0.7Sr0.3MnO3 (NSMO) possess excellent colossal magnetoresistance (CMR). However, research work on the neodymium-based system is limited to date. A comparative study between LSMO and NSMO prepared by sol–gel and solid-state reaction methods was undertaken to assess their structural, microstructural, magnetic, electrical, and magneto-transport properties. X-ray diffraction and structure refinement showed the formation of a single-phase composition. Sol–gel-synthesised NSMO was revealed to be a sample with single crystallite grains and exhibited intriguing magnetic and electrical transport behaviours. Magnetic characterisation highlighted that Curie temperature (TC) decreases with the grain size. Strong suppression of the metal–insulator transition temperature (TMI) was observed and attributed to the magnetically disordered grain surface and distortion of the MnO6 octahedra. The electrical resistivity in the metallic region was fitted with theoretical models, and the conduction mechanism could be explained by the grain/domain boundary, electron–electron, and electron–magnon scattering process. The increase in the scattering process was ascribed to the morphology changes. Enhancement of low-field magnetoresistance (LFMR) was observed in nano-grained samples. The obtained results show that the grain size and its distribution, as well as the crystallite formation, strongly affect the physical properties of hole-doped manganites.
APA, Harvard, Vancouver, ISO, and other styles
10

Luo, Yongkang, F. Ronning, N. Wakeham та ін. "Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi2−δAs2". Proceedings of the National Academy of Sciences 112, № 44 (2015): 13520–24. http://dx.doi.org/10.1073/pnas.1509581112.

Full text
Abstract:
The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi2−δAs2 (δ ≈ 0.28) as its antiferromagnetic order is tuned by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of ∼0.032 e−/formular unit in CeNi2−δAs2 leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo-lattice state with decreasing temperature. The small carrier density and associated semimetallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raises the specter of the Nozières exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography