Academic literature on the topic 'Electron-beam lithography'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electron-beam lithography.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electron-beam lithography"
SUZUKI, KAZUAKI. "Electron Beam Lithography." Journal of the Institute of Electrical Engineers of Japan 120, no. 6 (2000): 348–51. http://dx.doi.org/10.1541/ieejjournal.120.348.
Full textHarrlott, Lloyd, and Alexander Liddle. "Electron-beam lithography." Physics World 10, no. 4 (April 1997): 41–46. http://dx.doi.org/10.1088/2058-7058/10/4/27.
Full textTsarik, K. A. "Focused Ion Beam Exposure of Ultrathin Electron-Beam Resist for Nanoscale Field-Effect Transistor Contacts Formation." Proceedings of Universities. Electronics 26, no. 5 (2021): 353–62. http://dx.doi.org/10.24151/1561-5405-2021-26-5-353-362.
Full textSHIBATA, YUKINOBU. "Electron beam lithography system." Journal of the Japan Society of Precision Engineering 51, no. 12 (1985): 2190–95. http://dx.doi.org/10.2493/jjspe1933.51.2190.
Full textChang, T. H. P., Marian Mankos, Kim Y. Lee, and Larry P. Muray. "Multiple electron-beam lithography." Microelectronic Engineering 57-58 (September 2001): 117–35. http://dx.doi.org/10.1016/s0167-9317(01)00528-7.
Full textVoznyuk G. V., Grigorenko I. N., Mitrofanov M. I., Nikolaev V. V., and Evtikhiev V. P. "Subwave textured surfaces for the radiation coupling from the waveguide." Technical Physics Letters 48, no. 3 (2022): 76. http://dx.doi.org/10.21883/tpl.2022.03.52896.19103.
Full textLiu, Fan, Guo Dong Gu, Chun Hong Zeng, Hai Jun Li, Wei Wang, Bao Shun Zhang, and Jin She Yuan. "Fabrication of 50nm T-Gate on GaN Substrate." Advanced Materials Research 482-484 (February 2012): 2341–44. http://dx.doi.org/10.4028/www.scientific.net/amr.482-484.2341.
Full textSHIMAZU, Nobuo, and Haruo TSUYUZAKI. "High speed electron beam lithography." Journal of the Japan Society for Precision Engineering 53, no. 11 (1987): 1682–86. http://dx.doi.org/10.2493/jjspe.53.1682.
Full textHohn, F. J. "Electron beam lithography: Its applications." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 7, no. 6 (November 1989): 1405. http://dx.doi.org/10.1116/1.584546.
Full textPeterson, P. A. "Low-voltage electron beam lithography." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 10, no. 6 (November 1992): 3088. http://dx.doi.org/10.1116/1.585934.
Full textDissertations / Theses on the topic "Electron-beam lithography"
Rius, Suñé Gemma. "Electron beam lithography for Nanofabrication." Doctoral thesis, Universitat Autònoma de Barcelona, 2008. http://hdl.handle.net/10803/3404.
Full textLa EBL se basa en la definición de motivos submicrónicos mediante el rastreo de un haz energético de electrones sobre una resina. La naturaleza de los electrones y el desarrollo the haces extremadamente finos y su control preciso establecen la plataforma ideal para los requerimientos de la Nanofabricación. El uso de la EBL para el desarrollo de un gran número de nanoestructuras, nanodispositivos y nanosistemas ha sido, y continúa siendo, crucial para las aplicaciones de producción de máscaras, prototipaje o dispositivos discretos para la investigación fundamental. Su éxito radica en la alta resolución, flexibilidad y compatibilidad de la EBL con otros procesos de fabricación convencionales.
El objetivo de esta tesis es el avance en el conocimiento, desarrollo y aplicación de la EBL en las areas de los micro/nanosistemas y la nanoelectrónica. El presente documento refleja parte del trabajo realizado en el Laboratorio de Nanofabricación del Instituto de Microelectrónica de Barcelona IMB-CNM-CSIC durante los últimos cinco años. Debido a la falta de experiencia previa en el IMB en la utilización de la EBL, ha sido necesario el desarrollo y consolidación de una serie de procesos, lo que ha condicionado parcialmente la investigación, tal y como recoge la memoria.
Entre los aspectos relevantes compilados en esta tesis, en cuanto a innovación tecnológica, cabe destacar diversos avances en procesos tecnológicos basados en la EBL. Una nueva resina de tono negativo ha sido caracterizada y disponible para su uso en nanofabricación. La optimización de la EBL se ha llevado a cabo mediante métodos de corrección del efecto de proximidad. Se ha establecido el proceso de integración de estructuras nanomecánicas en circuitos CMOS, así como la fabricación de dispositivos basados en nanotubos de carbono. En concreto, el primer FET basado en un sólo nanotubo de carbono fabricado en España. Finalmente, la compatibilidad y viabilidad de los métodos de fabricación basados en haces de partículas se ha estudiado mediante el análisis del efecto de los haces de partículas cargadas sobre dispositivos. Por otro lado, esta memoria no sólo contiene la descripción de los principales resultados obtenidos, sinó que pretende aportar información general sobre procesos de nanofabricación basados en haces de electrones para ser utilizados en futuras investigaciones de este area.
Electron beam lithography (EBL) has consolidated as one of the most common techniques for patterning at the nanoscale meter range. It has enabled the nanofabrication of structures and devices within the research field of nanotechnology and nanoscience.
EBL is based on the definition of submicronic features by the scanning of a focused energetic beam of electrons on a resist. The nature of electrons and the development of extremely fine beams and its flexible control provide the platform to satisfy the requirements of Nanofabrication. Use of EBL for the development of a wide range of nanostructures, nanodevices and nanosystems has been, and continues to be, crucial for the applications of mask production, prototyping and discrete devices for fundamental research and it relies on its high resolution, flexibility and compatibility with other conventional fabrication processes.
The purpose of this thesis is to advance in the knowledge, development and application of electron beam lithography in the areas of micro/nano systems and nanoelectronics. In this direction, this memory reflects part of the work performed at the Nanofabrication Laboratory of the IMB-CNM. Since there was no previous experience on EBL at CNM, the need for developing a set of processes has determined partially the work.
The variety of topics that concern to nanoscience and nanotechnology is enormous. Chapter 1 briefly sintetizes nanoscale related aspects. This section aims to frame the contents of this thesis, coherently. Also for completeness, it is intended to address the specific subjects under discussion or contained in the following chapters and it is based or oriented to the experimental results that will be presented.
Chapter 2 is a general overview of the EBL technique from the point of view of the system and the physical interaction of the process. In particular, the characteristics of the SEM and specifications of the lithographic capabilities of the system that is used are presented.
In chapter 3, irradiation effect on resists is studied. The chemical behaviour of different polymeric materials is correlated with theoretical simulations for two types of resists: methacrylic based positive resists and epoxy based negative resists. The first is used for validation of the modelization and to describe the general performance of EBL on different conditions. The second covers the experiments oriented to establish the performance parameters of a new resist and comparison with another existing negative electron beam resist. Proximity effect correction concludes with the correlation of theory and experimental results for both types of resists, positive and negative.
Chapter 4 is an example of the fabrication and optimization of a micro/nanosystem for sensing at the nanoscale. In particular, nanoresonators are developed with two approaches (EBL and FIB) and enhanced response is achieved by their integration on CMOS circuitry.
Chapter 5 presents carbon nanotube (CNT) based devices that are realized and implemented for applications in nanoelectronics and sensing. First, different fabrication approaches for contacting CNTs are discussed. Then, the results of electrical characterization of the devices are presented. Finally, technology development for the use of these devices for sensing is established.
The last chapter embraces all the previous sections and pays attention to the effect of electron beam on the devices. In particular, electron induced effect is studied on nanomechanical structures integrated in circuits and CNT based devices, in order to evaluate EBL based fabrication, SEM characterization or more fundamental aspects. Advanced characterization techniques are used together with simulations, both assessing a deeper understanding of the results. Electrical measurements and AFM based techniques are used to characterise the effect of the electron irradiation by changes in their performance characteristics, charging, surface potential imaging, etc.
Main results and solved challenges are summarized in the conclusive chapter 7 that finishes with this document.
Yang, Yugu. "Feedback Control for Electron Beam Lithography." UKnowledge, 2012. http://uknowledge.uky.edu/ece_etds/9.
Full textLeonard, S. "Negative polymeric resists for electron beam lithography." Thesis, University of Liverpool, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234905.
Full textFerrera, Juan (Ferrera Uranga). "Nanometer-scale placement in electron-beam lithography." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9117.
Full textIncludes bibliographical references (p. 259-268).
Electron-beam lithography is capable of high-resolution lithographic pattern generation (down to 10 nm or below). However, for conventional e-beam lithography, pattern-placement accuracy is inferior to resolution. Despite significant efforts to improve pattern placement, a limit is being approached. The placement capability of conventional e-beam tools is insufficient to fabricate narrow-band optical filters and lasers, which require sub-micrometer-pitch gratings with a high degree of spatial coherence. Moreover, it is widely recognized that placement accuracy will not be sufficient for future semiconductor device generations, with minimum feature sizes below 100 nm. In electron-beam lithography, an electromagnetic deflection system is used in conjunction with a laser-interferometer-controlled stage to generate high-resolution patterns over large areas. Placement errors arise because the laser interferometer monitors the stage position, but the e-beam can independently drift relative to the stage. Moreover, the laser interferometer can itself drift during exposure. To overcome this fundamental limitation, the method of spatial phase-locked electron-beam lithography has been proposed. The beam position is referenced to a high-fidelity grid, exposed by interference lithography, on the substrate surface. In this method, pattern-placement performance depends upon the accuracy of the reference grid and the precision with which patterns can be locked to the grid. The grid must be well characterized to serve as a reliable fiducial. This document describes work done to characterize grids generated by interference lithography. A theoretical model was developed to describe the spatial-phase progression of interferometric gratings and grids. The accuracy of the interference lithography apparatus was found to be limited by substrate mounting errors and uncertainty in setting the geometrical parameters that determine the angle of interference. Experimental measurements were performed, which agreed well with the theoretical predictions. A segmented-grid spatial-phase locking system was implemented on a vector-scan e-beam tool to correct field placement errors, in order to fabricate high-quality Bragg reflectors for optical filters and distributed-feedback lasers. Before this work, Bragg reflectors of adequate fidelity had not been fabricated by e-beam lithography. The phase coherence of the gratings fabricated with the segmented-grid method was characterized by measuring the displacement between adjacent fields. From these measurements, field-placement errors of ~ 20 nm (mean + 3 sigma) were estimated. The segmented grid method was used to pattern Bragg gratings, which were used in the fabrication of integrated optical filters. The devices demonstrated excellent performance.
by Juan Ferrera.
Ph.D.
Konkola, Paul Thomas 1973. "Magnetic bearing stages for electron beam lithography." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/9315.
Full textChen, Zhong Wei. "Nanometer-scale electron beam lithography over large areas." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317706.
Full textZhang, Feng 1973. "Real-time spatial-phase-locked electron-beam lithography." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/34460.
Full textIncludes bibliographical references (p. 131-139).
The ability of electron-beam lithography (EBL) to create sub-10-nm features with arbitrary geometry makes it a critical tool in many important applications in nanoscale science and technology. The conventional EBL system is limited by its poor absolute-placement accuracy, often worse than its resolution. Spatial-phase-locked electron-Beam lithography (SPLEBL) improves the placement accuracy of EBL tools to the nanometer level by directly referencing the beam position via a global-fiducial grid placed on the substrate, and providing feedback corrections to the beam position. SPLEBL has several different modes of operation, and it can be applied to both scanning electron-beam lithography (SEBL) and variable-shaped-beam lithography. This research focuses primarily on implementing real-time SPLEBL in SEBL systems. Real-time SPLEBL consists of three major components: a fiducial-reference grid, a beam-position detection algorithm and a partial-beam blanker. Several types of fiducial grids and their fabrication processes were developed and evaluated for their signal-to-noise ratio and ease of usage. An algorithm for detecting the beam position based on Fourier techniques was implemented, and -1 nm placement accuracy achieved. Finally, various approaches to partial-beam blanking were examined, and one based on an electrostatic quadrupole lens was shown to provide the best performance.
by Feng Zhang.
Sc.D.
Taslimi, Shahrzad. "Fabrication of diffractive optical elements by electron beam lithography." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96963.
Full textÉléments d'optiques diffractives (EODs) composent une partie essentielle dans le succès de microsystèmes optiques. Lithographie à faisceau d'électrons est un élément clé pour la fabrication des structures avec des dimensions critiques submicroniques. Cette thèse présente le travail fait sur le développement d'un processus pour la fabrication des optiques diffractives en utilisant cette méthode. Ce projet étudie des divers défis impliqués dans ce processus, traite des problèmes qui pourrait surgir et propose des solutions pour les résoudre. Les sources d'erreur possible dans la création et le transfert des modèles sont identifiées et des méthodes de les éliminer ou les minimiser sont présentées. Certaines des erreurs sont attribuées à l'accumulation d'électrons et aux problèmes d'alignement lors de la lithographie.
Docherty, Kevin Edward. "Improvements to the alignment process in electron-beam lithography." Thesis, University of Glasgow, 2010. http://theses.gla.ac.uk/1663/.
Full textCheong, Lin Lee. "Low-voltage spatial-phase-locked scanning-electron-beam lithography." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/60159.
Full textIncludes bibliographical references (p. 63-64).
Spatial-phase-locked electron-beam lithography (SPLEBL) is a method that tracks and corrects the position of an electron-beam in real-time by using a reference grid placed above the electron-beam resist. In this thesis, the feasibility of spatial-phase-locked lowvoltage electron-beam lithography is investigated. First, the feasibility of low-voltage electron-beam lithography (LVEBL) is experimentally verified using the resists hydrogen silsesquioxane (HSQ) and polymethyl methacrylate (PMMA). Unlike electronbeam lithography at higher voltages, LVEBL has minimal proximity effects and is not resolution-limited by these effects. The fabrication of ultra-thin photoresist grids is investigated and the secondary electron signal levels of these grids are measured.
by Lin Lee Cheong.
S.M.
Books on the topic "Electron-beam lithography"
Hahmann, Peter. Electron-beam lithography contributions from Jena. Jena: Verlag Vopelius, 2014.
Find full textInternational Symposium on Electron, Ion, and Photon Beams (2nd 1984 Tarrytown, N.Y.). Proceedings of the 1984 International Symposium on Electron, Ion, and Photon Beams, 29 May-1 June, 1984, Westchester Marriott Hotel, Tarrytown, New York. Edited by Kelly J, American Vacuum Society, and American Institute of Physics. New York: Published for the American Vacuum Society by the American Institute of Physics, 1985.
Find full textPopov, V. K. Raschet i proektirovanie ustroĭstv ėlektronnoĭ i ionnoĭ litografii. Moskva: "Radio i svi͡a︡zʹ", 1985.
Find full textGu, Wenqi. Dian zi shu bao guang wei na jia gong ji shu. Beijing: Beijing gong ye da xue chu ban she, 2004.
Find full textInternational Symposium on Nanometer Structure Electronics (1984 Toyonaka, Osaka University). Nanometer structure electronics: An investigation of the future of micro-electronics : proceedings of the International Symposium on Nanometer Structure Electronics, April 16-18, 1984 Osaka University, Toyonaka, Japan. Tokyo, Japan: Ohm, 1985.
Find full textLiebmann, Lars W. Design technology co-optimization in the era of sub-resolution IC scaling. Bellingham, Washington: SPIE, 2016.
Find full textJ, Resnick Douglas, and Society of Photo-optical Instrumentation Engineers., eds. Electron-beam, X-ray, and ion-beam technology: Submicrometer lithographies IX : 7-8 March 1990, San Jose, California. Bellingham, Wash., USA: SPIE--the International Society for Optical Engineering, 1990.
Find full textD, Blais Phillip, and International Society for Hybrid Microelectronics., eds. Electron-beam, X-ray, & ion-beam techniques for submicrometer lithographies V: 11-12 March, 1986, Santa Clara, California. Bellinham, Wash., USA: SPIE--the International Society for Optical Engineering, 1986.
Find full text1946-, Peckerar Martin Charles, and Society of Photo-optical Instrumentation Engineers., eds. Electon-beam, X-ray, and ion-beam submicrometer lithographies for manufacturing: 6-7 March 1991, San Jose, California. Bellingham, Wash: SPIE, 1991.
Find full textO, Patterson David, Society of Photo-optical Instrumentation Engineers., and Semiconductor Equipment and Materials International., eds. Electron-beam, X-ray, and ion-beam submicrometer lithographies for manufacturing IV: 28 February-1 March 1994, San Jose, California. Bellingham, Wash: SPIE, 1994.
Find full textBook chapters on the topic "Electron-beam lithography"
Constancias, Christophe, Stefan Landis, Serdar Manakli, Luc Martin, Laurent Pain, and David Rio. "Electron Beam Lithography." In Lithography, 101–82. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557662.ch3.
Full textHohn, Fritz J. "Electron Beam Lithography." In The Handbook of Surface Imaging and Visualization, 115–29. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780367811815-10.
Full textTarui, Yasuo. "Electron Beam Lithography." In VLSI Technology, 8–120. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-69192-8_2.
Full textCui, Zheng. "Electron Beam Lithography." In Nanofabrication, 83–139. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-62546-6_3.
Full textPala, Nezih, and Mustafa Karabiyik. "Electron Beam Lithography (EBL)." In Encyclopedia of Nanotechnology, 1033–57. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_344.
Full textAuffan, Mélanie, Catherine Santaella, Alain Thiéry, Christine Paillès, Jérôme Rose, Wafa Achouak, Antoine Thill, et al. "Electron Beam Lithography (EBL)." In Encyclopedia of Nanotechnology, 718–40. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_344.
Full textBohlen, Harald, and Werner Kulcke. "Micropositioning for Submicron Electron Beam Lithography." In Progress in Precision Engineering, 174–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84494-2_18.
Full textFriedman, Avner. "Mathematical problems in electron beam lithography." In The IMA Volumes in Mathematics and Its Applications, 79–87. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4615-7402-6_9.
Full textFerry, D. K., G. Bernstein, and Wen-Ping Liu. "Electron-Beam Lithography of Ultra-Submicron Devices." In Physics and Technology of Submicron Structures, 37–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83431-8_4.
Full textWilkinson, C. D. W. "Applications of Electron Beam Lithography to Integrated Optics." In Springer Series in Optical Sciences, 30–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-540-39452-5_8.
Full textConference papers on the topic "Electron-beam lithography"
Lennon, D. M., S. J. Spector, T. H. Fedynyshyn, T. M. Lyszczarz, M. Rothschild, J. Thackeray, and K. Spear-Alfonso. "Hybrid optical: electron-beam resists." In Advanced Lithography, edited by Qinghuang Lin. SPIE, 2007. http://dx.doi.org/10.1117/12.714370.
Full textKingsborough, Richard P., Russell B. Goodman, David Astolfi, and Theodore H. Fedynyshyn. "Electron-beam directed materials assembly." In SPIE Advanced Lithography, edited by Daniel J. C. Herr. SPIE, 2010. http://dx.doi.org/10.1117/12.846000.
Full textSaitou, Norio, Teruo Iwasaki, and Fumio Murai. "Multiple scattered electron-beam effect in electron-beam lithography." In Micro - DL tentative, edited by Martin C. Peckerar. SPIE, 1991. http://dx.doi.org/10.1117/12.47355.
Full textFeinerman, Alan D., David A. Crewe, Dung-Ching Perng, S. E. Shoaf, and Albert V. Crewe. "High-throughput electron-beam lithography." In Optical Engineering Midwest 1992, edited by Robert J. Heaston. SPIE, 1992. http://dx.doi.org/10.1117/12.130961.
Full textSaitou, Norio, and Yoshio Sakitani. "Cell projection electron-beam lithography." In SPIE's 1994 Symposium on Microlithography, edited by David O. Patterson. SPIE, 1994. http://dx.doi.org/10.1117/12.175811.
Full textPetric, Paul, Chris Bevis, Alan Brodie, Allen Carroll, Anthony Cheung, Luca Grella, Mark McCord, Henry Percy, Keith Standiford, and Marek Zywno. "REBL nanowriter: Reflective Electron Beam Lithography." In SPIE Advanced Lithography, edited by Frank M. Schellenberg and Bruno M. La Fontaine. SPIE, 2009. http://dx.doi.org/10.1117/12.817319.
Full textKojima, Yoshinori, Yasushi Takahashi, Shuzo Ohshio, Shinji Sugatani, and Junichi Kon. "Practical study on the electron-beam-only alignment strategy for the electron beam direct writing technology." In SPIE Advanced Lithography, edited by William M. Tong and Douglas J. Resnick. SPIE, 2013. http://dx.doi.org/10.1117/12.2011628.
Full textLin, Luke, Jia-Yun Chen, Wen-Yi Wong, Mark McCord, Alex Tsai, Steven Oestreich, Indranil De, Jan Lauber, and Andrew Kang. "Etch process monitoring by electron beam wafer inspection." In Advanced Lithography, edited by Chas N. Archie. SPIE, 2007. http://dx.doi.org/10.1117/12.712386.
Full textIsotalo, Tero J., and Tapio Niemi. "Dots-on-the-fly electron beam lithography." In SPIE Advanced Lithography, edited by Christopher Bencher and Joy Y. Cheng. SPIE, 2016. http://dx.doi.org/10.1117/12.2219136.
Full textJamieson, Andrew, Bennett Olson, Maiying Lu, and Nathan Wilcox. "Advanced electron beam resist requirements and challenges." In SPIE Advanced Lithography, edited by Mark H. Somervell. SPIE, 2013. http://dx.doi.org/10.1117/12.2014527.
Full textReports on the topic "Electron-beam lithography"
Browning, R., and R. F. Pease. Low Voltage Electron Beam Lithography. Fort Belvoir, VA: Defense Technical Information Center, April 1994. http://dx.doi.org/10.21236/ada281046.
Full textNAVAL RESEARCH LAB WASHINGTON DC. Low Voltage Electron Beam Lithography. Fort Belvoir, VA: Defense Technical Information Center, March 1995. http://dx.doi.org/10.21236/ada293396.
Full textLiu, Weidong. Low Voltage Electron Beam Lithography. Fort Belvoir, VA: Defense Technical Information Center, June 1995. http://dx.doi.org/10.21236/ada296625.
Full textBrowning, R., and R. F. Pease. Low Voltage Electron Beam Lithography. Fort Belvoir, VA: Defense Technical Information Center, October 1992. http://dx.doi.org/10.21236/ada263360.
Full textBrowning, R., and R. F. Pease. Low Voltage Electron Beam Lithography. Fort Belvoir, VA: Defense Technical Information Center, February 1993. http://dx.doi.org/10.21236/ada265358.
Full textSmith, Henry I. Spatial-Phase-Locked Electron-Beam Lithography. Fort Belvoir, VA: Defense Technical Information Center, December 1999. http://dx.doi.org/10.21236/ada379019.
Full textLiu, Weidong. Electron Specimen Interaction in Low Voltage Electron Beam Lithography,. Fort Belvoir, VA: Defense Technical Information Center, July 1995. http://dx.doi.org/10.21236/ada327202.
Full textLee, Sing H. Establishment of an Electron Beam Lithography Facility. Fort Belvoir, VA: Defense Technical Information Center, February 1989. http://dx.doi.org/10.21236/ada206215.
Full textFulton, R. D., J. Abdallah, J. C. Goldstein, M. E. Jones, D. P. Kilcrease, J. M. Kinross-Wright, S. H. Kong, and D. C. Nguyen. A debris free, electron beam driven, lithography source at 130 {angstrom}. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/10113361.
Full textFulton, Robert Douglas, and Alan Todd. RF Electron-Beam-Driven Plasma Radiation Source for EUV Lithography and High Resolution Radiography of Containment Vessels. Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/770485.
Full text