Academic literature on the topic 'Electron acoustic waves'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electron acoustic waves.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electron acoustic waves"

1

Lakhina, G. S., S. V. Singh, A. P. Kakad, F. Verheest, and R. Bharuthram. "Study of nonlinear ion- and electron-acoustic waves in multi-component space plasmas." Nonlinear Processes in Geophysics 15, no. 6 (November 27, 2008): 903–13. http://dx.doi.org/10.5194/npg-15-903-2008.

Full text
Abstract:
Abstract. Large amplitude ion-acoustic and electron-acoustic waves in an unmagnetized multi-component plasma system consisting of cold background electrons and ions, a hot electron beam and a hot ion beam are studied using Sagdeev pseudo-potential technique. Three types of solitary waves, namely, slow ion-acoustic, ion-acoustic and electron-acoustic solitons are found provided the Mach numbers exceed the critical values. The slow ion-acoustic solitons have the smallest critical Mach numbers, whereas the electron-acoustic solitons have the largest critical Mach numbers. For the plasma parameters considered here, both type of ion-acoustic solitons have positive potential whereas the electron-acoustic solitons can have either positive or negative potential depending on the fractional number density of the cold electrons relative to that of the ions (or total electrons) number density. For a fixed Mach number, increases in the beam speeds of either hot electrons or hot ions can lead to reduction in the amplitudes of the ion-and electron-acoustic solitons. However, the presence of hot electron and hot ion beams have no effect on the amplitudes of slow ion-acoustic modes. Possible application of this model to the electrostatic solitary waves (ESWs) observed in the plasma sheet boundary layer is discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Saleem, H., and G. Murtaza. "Nonlinear excitation of electron-acoustic waves." Journal of Plasma Physics 36, no. 2 (October 1986): 295–99. http://dx.doi.org/10.1017/s0022377800011764.

Full text
Abstract:
It is shown that for a plasma with ion temperature greater than electron temperature, an extraordinary electro-magnetic pump wave can parametrically decay into upper-hybrid and electron-acoustic oscillations. The threshold power flux and the growth rate of the instability are obtained. Comparison of our investigation with an earlier work and its possible application to a mirror machine is pointed out.
APA, Harvard, Vancouver, ISO, and other styles
3

Sonner, Maximilian M., Farhad Khosravi, Lisa Janker, Daniel Rudolph, Gregor Koblmüller, Zubin Jacob, and Hubert J. Krenner. "Ultrafast electron cycloids driven by the transverse spin of a surface acoustic wave." Science Advances 7, no. 31 (July 2021): eabf7414. http://dx.doi.org/10.1126/sciadv.abf7414.

Full text
Abstract:
Spin-momentum locking is a universal wave phenomenon promising for applications in electronics and photonics. In acoustics, Lord Rayleigh showed that surface acoustic waves exhibit a characteristic elliptical particle motion strikingly similar to spin-momentum locking. Although these waves have become one of the few phononic technologies of industrial relevance, the observation of their transverse spin remained an open challenge. Here, we observe the full spin dynamics by detecting ultrafast electron cycloids driven by the gyrating electric field produced by a surface acoustic wave propagating on a slab of lithium niobate. A tubular quantum well wrapped around a nanowire serves as an ultrafast sensor tracking the full cyclic motion of electrons. Our acousto-optoelectrical approach opens previously unknown directions in the merged fields of nanoacoustics, nanophotonics, and nanoelectronics for future exploration.
APA, Harvard, Vancouver, ISO, and other styles
4

Hafez, M. G., M. R. Talukder, and M. Hossain Ali. "Two-Dimensional Nonlinear Propagation of Ion Acoustic Waves through KPB and KP Equations in Weakly Relativistic Plasmas." Advances in Mathematical Physics 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/9352148.

Full text
Abstract:
Two-dimensional three-component plasma system consisting of nonextensive electrons, positrons, and relativistic thermal ions is considered. The well-known Kadomtsev-Petviashvili-Burgers and Kadomtsev-Petviashvili equations are derived to study the basic characteristics of small but finite amplitude ion acoustic waves of the plasmas by using the reductive perturbation method. The influences of positron concentration, electron-positron and ion-electron temperature ratios, strength of electron and positrons nonextensivity, and relativistic streaming factor on the propagation of ion acoustic waves in the plasmas are investigated. It is revealed that the electrostatic compressive and rarefactive ion acoustic waves are obtained for superthermal electrons and positrons, but only compressive ion acoustic waves are found and the potential profiles become steeper in case of subthermal positrons and electrons.
APA, Harvard, Vancouver, ISO, and other styles
5

Andreev, Pavel A. "Spin-electron-acoustic waves and solitons in high-density degenerate relativistic plasmas." Physics of Plasmas 29, no. 12 (December 2022): 122102. http://dx.doi.org/10.1063/5.0114914.

Full text
Abstract:
Spin-electron-acoustic waves (sometimes called spin-plasmons) can be found in degenerate electron gases if spin-up electrons and spin-down electrons move relatively each other. Here, we suggest relativistic hydrodynamics with separate spin evolution, which allows us to study linear and nonlinear spin-electron-acoustic waves, including the spin-electron-acoustic solitons. The presented hydrodynamic model is the corresponding generalization of the relativistic hydrodynamic model with the average reverse gamma factor evolution, which consists of equations for evolution of the following functions: the partial concentrations (for spin-up electrons and spin-down electrons), the partial velocity fields, the partial average reverse relativistic gamma factors, and the partial flux of the reverse relativistic gamma factors. We find that the relativistic effects decrease the phase velocity of spin-electron-acoustic waves. Numerical analysis of the changes of dispersion curves of the Langmuir wave, spin-electron-acoustic wave, and ion-acoustic wave under the change of the spin polarization of electrons is presented. It is demonstrated that dispersion curves of the Langmuir wave and spin-electron-acoustic wave get closer to each other in the relativistic limit. Spin dependence of the amplitude and width of the relativistic spin-electron-acoustic soliton is demonstrated as well. Reformation of the bright soliton of potential of the electric field into the dark soliton under the influence of the relativistic effects is found.
APA, Harvard, Vancouver, ISO, and other styles
6

Nejoh, YN. "Positron-acoustic Waves in an Electron - Positron Plasma with an Electron Beam." Australian Journal of Physics 49, no. 5 (1996): 967. http://dx.doi.org/10.1071/ph960967.

Full text
Abstract:
The nonlinear wave structures of large-amplitude positron-acoustic waves are studied in an electron–positron plasma with an electron beam. We present the region where positron-acoustic waves exist by analysing the structure of the pseudopotential. The region depends sensitively on the positron density, the positron temperature and the electron beam temperature. It is shown that the maximum amplitude of the wave decreases as the positron temperature increases, and the region of positron-acoustic waves spreads as the positron . Temperature increases. The present theory is applicable to analysing hirge-amplitude positron-acoustic waves associated with positrons which may occur in interplanetary space.
APA, Harvard, Vancouver, ISO, and other styles
7

Shukla, P. K., M. A. Hellberg, and L. Stenflo. "Modulation of electron-acoustic waves." Journal of Atmospheric and Solar-Terrestrial Physics 65, no. 3 (February 2003): 355–58. http://dx.doi.org/10.1016/s1364-6826(02)00334-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sahu, Biswajit, and Mouloud Tribeche. "Nonplanar electron acoustic shock waves." Advances in Space Research 51, no. 12 (June 2013): 2353–57. http://dx.doi.org/10.1016/j.asr.2013.01.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Singh, S. V., and G. S. Lakhina. "Electron acoustic solitary waves with non-thermal distribution of electrons." Nonlinear Processes in Geophysics 11, no. 2 (April 14, 2004): 275–79. http://dx.doi.org/10.5194/npg-11-275-2004.

Full text
Abstract:
Abstract. Electron-acoustic solitary waves are studied in an unmagnetized plasma consisting of non-thermally distributed electrons, fluid cold electrons and ions. The Sagdeev pseudo-potential technique is used to carry out the analysis. The presence of non-thermal electrons modifies the parametric region where electron acoustic solitons can exist. For parameters representative of auroral zone field lines, the electron acoustic solitons do not exist when either α > 0.225 or Tc/Th > 0.142, where α is the fractional non-thermal electron density, and Tc (Th) represents the temperature of cold (hot) electrons. Further, for these parameters, the simple model predicts negatively charged potential structures. Inclusion of an electron beam in the model may provide the positive potential solitary structures.
APA, Harvard, Vancouver, ISO, and other styles
10

Treumann, R. A., and W. Baumjohann. "Plasma wave mediated attractive potentials: a prerequisite for electron compound formation." Annales Geophysicae 32, no. 8 (August 22, 2014): 975–89. http://dx.doi.org/10.5194/angeo-32-975-2014.

Full text
Abstract:
Abstract. Coagulation of electrons to form macro-electrons or compounds in high temperature plasma is not generally expected to occur. Here we investigate, based on earlier work, the possibility for such electron compound formation (non-quantum "pairing") mediated in the presence of various kinds of plasma waves via the generation of attractive electrostatic potentials, the necessary condition for coagulation. We confirm the possibility of production of attractive potential forces in ion- and electron-acoustic waves, pointing out the importance of the former and expected consequences. While electron-acoustic waves presumably do not play any role, ion-acoustic waves may potentially contribute to formation of heavy electron compounds. Lower-hybrid waves also mediate compound formation but under different conditions. Buneman modes which evolve from strong currents may also potentially cause non-quantum "pairing" among cavity-/hole-trapped electrons constituting a heavy electron component that populates electron holes. The number densities are, however, expected to be very small and thus not viable for justification of macro-particles. All these processes are found to potentially generate cold compound populations. If such electron compounds are produced by the attractive forces, the forces provide a mechanism of cooling a small group of resonant electrons, loosely spoken, corresponding to classical condensation.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Electron acoustic waves"

1

Son, Seok-Kyun. "Electron transport by surface acoustic waves in an undoped system." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McEnaney, Kevin Bernard. "Magneto-absorption of surface acoustic waves by a 2-dimensional electron gas." Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hou, Hangtian. "Low-dimensional electron transport and surface acoustic waves in GaAs and ZnO heterostructures." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288235.

Full text
Abstract:
A surface acoustic wave (SAW) is a combination of a mechanical wave and a potential wave propagating on the surface of a piezoelectric substrate at the speed of sound. Such waves are widely applied in not only the communication industry, but also in quantum physics research, such as nanoelectronics, spintronics, quantum optics, and even quantum information processing. Here, I focus on low-dimensional electron transport and SAWs in GaAs and ZnO semiconductor heterostructures. The ability to pattern quantum nanostructures using gates has stimulated intense interest in research into mesoscopic physics. We have performed a series of simulations of gate structures, and having with the optimised boundary conditions and we find them to match experimental results, such as the pinch-off voltage of one-dimensional channels and SAW charge transport in induced n-i-n and n-i-p junctions. Using the improved boundary conditions, it is straightforward to model quantum devices quite accurately using standard software. With the calculated potential, we have modelled the process how a dynamic quantum dot is driven by a SAW and have analysed error mechanisms in SAW-driven quantisation (I=Nef, where N is the number of electrons in each SAW minimum, and f is the SAW resonant frequency). From energy spectroscopy measurements, we probe the electron energy inside a SAW-driven dynamic quantum dot and find that the small addition energy, which is around 3meV, is the main limitation for the SAW quantisation. To increase the confinement of SAW-driven quantum dots, we deposit a thin ZnO film, with a better piezoelectric coupling than GaAs, on a GaAs/AlGaAs heterostructure using high-target-utilisation sputtering (an Al2O3 buffer layer is deposited to protect the 2DEG during sputtering). With the ZnO, the SAW amplitude is greatly improved to 100 meV and the RF power required for pumping electrons using a SAW is greatly reduced. Finally, we have studied low-dimensional electron transport in a MgZnO/ZnO heterostructure. We have developed a technique for patterning gates using a parylene insulator, and used these to create one-dimensional quantum wires and observe electron ballistic transport with conductance quantised in units of 2e2/h The increasing electron effective mass as the 1D electron density decreases indicate that the electron-electron interaction in this MgZnO/ZnO heterostructure is strong. Because of these strong interactions, the 0.7 anomaly is observed just below each quantised plateau, and are much stronger than in GaAs quantum wires. Furthermore, we have also calculated the SAW-modulated spontaneous and piezoelectric polarisation in the ZnO heterostructure, and have observed a sign of this SAW-modulation in 2DEG density, which is different from the classical SAW-pumping mechanism. Our results show that a ZnO heterostructure should provide a good alternative to conventional III-V semiconductors for spintronics and quantum computing as they have less nuclear spins. This paves the way for the development of qubits benefiting from the low scattering of an undoped heterostructure together with potentially long spin lifetimes.
APA, Harvard, Vancouver, ISO, and other styles
4

Edlbauer, Hermann. "Electron-quantum-optics experiments at the single particle level." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY027/document.

Full text
Abstract:
Au cours des 25 dernières années, il n'y a eu que quelques rapports sur des expériences de type optique quantique avec des électrons.Les progrès réalisés dans ce récent domaine de recherche ont permis de mettre au point des techniques originales pour piéger, déplacer et manipuler les électrons dans des dispositifs à l'état solide.Ces progrès ouvrent de nouvelles perspectives pour l'étude de phénomènes quantiques fascinants tels que l'effect tunnel ou l'intrication avec les électrons.En raison de la contrôlabilité exigée dans les implémentations possibles de circuits logiques quantiques, il est maintenant particulièrement intéressant de réaliser des expériences d'optique quantique électronique avec des électrons volants uniques.Dans cette thèse, nous abordons deux expériences liées, mais conceptuellement différentes, d'optique quantique électronique au niveau de la particule unique.Toutes les expériences menées dans le cadre de cette thèse ont été réalisées à des températures cryogéniques avec des dispositifs définis par Schottky-gates dans des hétérostructures AlGaAs/GaAs.Tout d'abord, nous effectuons une expérience d'interférence d'électrons de type Mach-Zehnder dans le régime de transport balistique.En formant un grand point quantique dans l'une des branches de l'interféromètre, nous étudions le déphasage de la fonction d'onde d'un électron transmis de façon résonnante.Au cours de nos mesures, nous trouvons des signatures d'un comportement de transmission qui reflète les symétries internes des états propres des boîtes quantiques.Nos résultats mettent en lumière la question de longue date d'un comportement de phase de transmission universelle dans des boîtes quantiques en grand taille.Nous avons ainsi posé un jalon important vers une compréhension globale de la transmission par résonance d'électrons volants simples par des boîtes quantiques.Dans une deuxième expérience, nous allons au-delà du régime de transport balistique.Nous utilisons des ondes acoustiques de surface pour transporter un seul électron entre les boîtes quantiques définies par la grille de surface dans un circuit couplé par l'effect tunnel.Nous développons deux blocs de base essentiels pour partitionner et coupler les électrons volants simples dans un tel circuit piloté par le son.En dépassant une efficacité de transfert simple de 99 %, nous montrons qu'un circuit électronique quantique piloté par le son est réalisable à grande échelle.Nos résultats ouvrent la voie à des opérations de logique quantique avec des qubits d'électrons volants qui surfent sur une onde acoustique
In the last 25 years there were several reports on quantum-optics-like experiments that were performed with electrons.The progress is this young field of research brought up original techniques to trap, displace and manipulate electrons in solid-state devices.These advances opened up new prospects to study fascinating quantum mechanical phenomena such as tunneling or entanglement with electrons.Due to the controllability that is demanded in possible implementations of quantum logic circuits, it is now a particularly appealing idea to perform electron quantum optics experiments with single flying electrons.In this thesis we address two related, but conceptually different, electron-quantum-optics experiments at the single-particle level.All of the experiments that were conducted in the course of this thesis were performed at cryogenic temperatures with Schottky-gate defined devices in AlGaAs/GaAs heterostructures.In a first experiment, we perform a Mach--Zehnder type electron interference experiment in the ballistic transport regime.Forming a large quantum dot in one of the interferometer branches, we study the phase shift in the wave function of a resonantly transmitted electron.In the course of our experimental investigations, we find signatures of a transmission behaviour which reflect the internal symmetries of the quantum dot eigenstates.Our measurements shed light on the long-standing question about a universal transmission phase behaviour in large quantum dots.We thus set an important milestone towards a comprehensive understanding of resonant transmission of single flying electrons through quantum dots.In a second experiment, we go beyond the ballistic transport regime.We employ surface acoustic waves to transport a single electron between surface-gate defined quantum dots of a tunnel-coupled circuit of transport channels.In this course, we develop two essential building blocks to partition and couple single flying electrons in such a sound-driven circuit.By exceeding a single-shot transfer efficiency of 99 %, we show that a sound-driven quantum electronic circuit is feasible on a large scale.Our results pave the way for the implementation of quantum logic operations with flying electron qubits that are surfing on a sound wave
APA, Harvard, Vancouver, ISO, and other styles
5

Bertrand, Benoit. "Long-range transfer of spin information using individual electrons." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAY020/document.

Full text
Abstract:
L'usage du spin des électrons pour le traitement de l'information est devenu un vaste sujet de recherche aujourd'hui, notamment grâce aux nombreuses possibilités qui en découlent. Les recherches actuelles s'étendent de la génération de courants polarisés en spin à la manipulation cohérente de spin d'électrons uniques dans des boîtes quantiques, avec des applications en électronique de spin ou en information quantique. L'objectif de cette thèse est d'étendre le développement de l'électronique de spin à l'échelle de l'électron unique. Pour cela, nous cherchons à accomplir le transport cohérent d'un spin d'électron entre deux boites quantiques. Cela constituerait un moyen prometteur d'interconnecter les différents nœuds d'un nanoprocesseur quantique. Le principe utilisé repose sur l'emploi d'ondes acoustiques de surface qui, grâce aux propriétés piézoélectriques du matériau, permettent la génération de boites quantiques en mouvement. Tout d'abord, une étude de l'injection d'un électron dans une de ces boites quantiques en mouvement a été effectuée. Le contrôle à la nanoseconde de ce processus a été démontré grâce à l'application de pulses de tension modifiant pendant un bref instant le potentiel qui confine l'électron. Dans un deuxième temps, la préparation d'une superposition cohérente d'états de spin a été réalisée à l'aide d'une double boite quantique isolée, dans une position compatible avec le transport par onde acoustique de surface. Enfin, le transport d'information de spin, codée sur un unique ou sur deux électrons, a été accompli avec une fidélité atteignant 30%
Recently a growing interest emerged towards the use of electron spins for information processing. The current developments range from the generation of spin polarized currents to the coherent manipulation of single electron spins in quantum dots, with applications in spintronics and quantum information processing respectively. The main objective of this thesis was to develop the equivalent of spintronics at the single electron level. For that purpose, we try to achieve the coherent transport of a single electron spin between distant quantum dots. This could be a promising means of interconnecting different nodes of a quantum nanoprocessor. The electron transfer is ensured by a surface acoustic wave (SAW) that induces dynamical quantum dots thanks to the material piezoelectricity. First, the injection of a single electron from a static to a dynamical quantum dot has been studied. It enables the control of single electron transfer with unity probability down to the nanosecond timescale, thanks to a fast engineering of the static confining potential. Next, we demonstrate the possibility to prepare a coherent spin superposition, using an isolated double quantum dot in a metastable position that is compatible with SAW-assisted electron transfer. This type of isolated dot systems offers more liberty in terms of control. Taking advantage of this feature, a new scheme for coherent spin manipulations has been implemented and proved to have reduced noise sensitivity. Finally, transfer of spin information encoded in one or two electrons has been achieved, with fidelities reaching 30%
APA, Harvard, Vancouver, ISO, and other styles
6

Thorn, Adam Leslie. "Electron dynamics in surface acoustic wave devices." Thesis, University of Cambridge, 2009. https://www.repository.cam.ac.uk/handle/1810/224176.

Full text
Abstract:
Gallium arsenide is piezoelectric, so it is possible to generate coupled mechanical and electrical surface acoustic waves (SAWs) by applying a high-frequency voltage to a transducer on the surface of GaAs. By combining SAWs with existing low-dimensional nanostructures one can create a series of dynamic quantum dots corresponding to the minima of the travelling electric wave, and each dot carries a single electron at the SAW velocity (~ 2800 m/s). These devices may be of use in developing future quantum information processors, and also offer an ideal environment for probing the quantum mechanical behaviour of single electrons. This thesis describes a numerical and theoretical study of the dynamics ofan electron in a range of geometries. The numerical techniques for solving thetime-dependent Schrödinger equation with an arbitrary time-dependent potential will be described in Chapter 2, and then applied in Chapter 3 to calculate the transmission of an electron through an Aharonov-Bohm (AB) ring. It will be seen that an important property of the techniques used in this thesis is that they can be easily adapted to study realistic geometries, and we will see features in the AB oscillations which do not arise in simplified analytic descriptions. In Chapter 4, we will then study a device consisting of two parallel SAW channels separated by a controllable tunnelling barrier. We will use numerical simulations to investigate the effect of electric and magnetic fields upon the electron dynamics, and develop an analytic model to explain the simulation results. From the model, it will be apparent that it is possible to use this device to rotatethe state of the electron to an arbitrary superposition of the first two eigenstates. We then introduce coherent and squeezed states in Chapter 5, which are ex-cited states of the quantum harmonic oscillator. Coherent and squeezed electronicstates may be of use in quantum information processing, and could also arise dueto unwanted perturbations in a SAW device. We will discuss how these statescan be controllably generated in a SAW device, and also discuss how they couldthen be detected. In Chapter 6 we describe how to use the motion of a SAW to create a rapidly-changing potential in the frame of the electron, leading to a nonadiabatic excita-tion. The nonadiabatically-excited state oscillates from side to side within a 1Dchannel on a few-picosecond timescale, and this motion can be probed by placing a tunnelling barrier at one side of the channel. Numerical simulations will beperformed to show how this motion can be controlled, and the simulation resultswill be seen to be in good agreement with recent experimental work performed by colleagues. Finally, we will show that this device can be used to measure the initial state of an electron which is an arbitrary superposition of the first twoeigenstates.
APA, Harvard, Vancouver, ISO, and other styles
7

McNeil, Robert Peter Gordon. "Surface acoustic wave quantum electronic devices." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nash, Geoffrey Richard. "Surface acoustic wave investigations of low dimensional electron systems." Thesis, University of Bath, 1996. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schneble, Robert Jeffery. "Control of electrons for quantum information processing using surface acoustic waves." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Giavaras, Georgios. "Electron interactions and quantum entanglement in surface acoustic wave structures." Thesis, Lancaster University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.441115.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Electron acoustic waves"

1

A, Kaner Ė. Izbrannye trudy. Kiev: Nauk. dumka, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

P, Silin V., ed. Teorii͡a︡ ėlektronnoĭ zhidkosti normalʹnykh metallov. Moskva: "Nauka", 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Janeliauskas, Artūras. Akustoelektroniniai įtaisai: Projektavimas ir taikymas : monografija. Kaunas: Technologija, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Winter School on Wave and Quantum Acoustics (34th 2005 Ustroń, Poland). 34th Winter School on Wave and Quantum Acoustics: Ustroń, Poland, 28 February-4 March, 2005. Les Ulis, France: EDP Sciences, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gevorgian, Spartak Sh. Tuneable Film Bulk Acoustic Wave Resonators. London: Springer London, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ken-ya, Hashimoto, ed. RF Bulk acoustic wave filters for communications. Norwood, Mass: Artech House, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Acoustic wave and electromechanical resonators: Concept to key applications. Norwood, MA: Artech House, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hashimoto, Ken-ya. Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

R, Bálek, and Merhaut Josef, eds. Povrchové akustické vlny. Praha: Academia, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Winter School on Wave and Quantum Acoustics (35th 2006 Ustroń, Poland). 35th Winter School on Wave Acoustics and Quantum Acoustics, W&QA, Ustroń, Poland, 27 February-3 March, 2006. Les Ulis, France: EDP Sciences, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electron acoustic waves"

1

Jones, W. D., H. J. Doucet, and J. M. Buzzi. "Ion-Acoustic Waves with Ion-Neutral and Electron-Neutral Collisions." In An Introduction to the Linear Theories and Methods of Electrostatic Waves in Plasmas, 89–101. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-0211-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sharma, G., K. Deka, R. Paul, S. Adhikari, R. Moulick, S. S. Kausik, and B. K. Saikia. "Study of Ion-Acoustic Waves in Two-Electron Temperature Plasma." In Springer Proceedings in Physics, 355–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5141-0_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wixforth, Achim. "Interaction of Surface Acoustic Waves with Two-Dimensional Electron Systems in GaAs / AlGaAs Heterojunctions." In NATO ASI Series, 499–516. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4757-6565-6_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dörfler, Willy, Marlis Hochbruck, Jonas Köhler, Andreas Rieder, Roland Schnaubelt, and Christian Wieners. "Modeling of Acoustic, Elastic, and Electro-Magnetic Waves." In Oberwolfach Seminars, 3–18. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05793-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aggelis, Dimitrios G., Markus G. R. Sause, Pawel Packo, Rhys Pullin, Steve Grigg, Tomaž Kek, and Yu-Kun Lai. "Acoustic Emission." In Structural Health Monitoring Damage Detection Systems for Aerospace, 175–217. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72192-3_7.

Full text
Abstract:
AbstractAcoustic emission (AE) is one of the most promising methods for structural health monitoring (SHM) of materials and structures. Because of its passive and non-invasive nature, it can be used during the operation of a structure and supply information that cannot be collected in real time through other techniques. It is based on the recording and study of the elastic waves that are excited by irreversible processes, such as crack nucleation and propagation. These signals are sensed by transducers and are transformed into electric waveforms that offer information on the location and the type of the source. This chapter intends to present the basic principles, the equipment, and the recent trends and applications in aeronautics, highlighting the role of AE in modern non-destructive testing and SHM. The literature in the field is vast; therefore, although the included references provide an idea of the basics and the contemporary interest and level of research and practice, they are just a fraction of the total possible list of worthy studies published in the recent years.
APA, Harvard, Vancouver, ISO, and other styles
6

Nieuwenhuizen, M. S., and A. J. Nederlof. "Silicon Based Surface Acoustic Wave Gas Sensors." In Sensors and Sensory Systems for an Electronic Nose, 131–45. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-7985-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maev, R. Gr, and S. A. Titov. "Measurements of Parameters of Leaky Waves Using Ultrasonic Material Characterization System With Electronic Scanning." In Acoustical Imaging, 361–66. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/1-4020-5721-0_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maev, R. Gr, and S. A. Titov. "Measurements of Parameters of Leaky Waves Using Ultrasonic Material Characterization System with Electronic Scanning." In Acoustical Imaging, 43–48. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/1-4020-5721-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Biryukov, Sergey V., Yuri V. Gulyaev, Victor V. Krylov, and Victor P. Plessky. "Interaction of Surface Acoustic Waves with Electrons and Influence of Substrate Environment on Wave Propagation." In Springer Series on Wave Phenomena, 18–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57767-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Reeder, Thomas M. "Excitation of Surface-Acoustic Waves by Use of Interdigital Electrode Transducers." In Springer Series in Electronics and Photonics, 91–115. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75225-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electron acoustic waves"

1

Kaur, R., G. Slathia, S. Singla, M. Kaur, and N. S. Saini. "Electron Acoustic Cnoidal Waves in an Electron Beam Plasma." In 2022 URSI Regional Conference on Radio Science (USRI-RCRS). IEEE, 2022. http://dx.doi.org/10.23919/ursi-rcrs56822.2022.10118479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kabantsev, Andrey A., F. Valentini, and C. Fred Driscoll. "Experimental Investigation of Electron-Acoustic Waves in Electron Plasmas." In NON-NEUTRAL PLASMA PHYSICS VI: Workshop on Non-Neutral Plasmas 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2387902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kaur, Rajneet, and N. S. Saini. "Electron Acoustic Solitary Waves in the Presence of Electron Beam and Superthermal Electrons." In 2021 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2021. http://dx.doi.org/10.1109/icops36761.2021.9588407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anderegg, Francois, C. Fred Driscoll, Daniel H. E. Dubin, Thomas M. O’Neil, James R. Danielson, and Thomas Sunn Pedersen. "Electron Acoustic Waves in Pure Ion Plasmas." In NON-NEUTRAL PLASMA PHYSICS VII: Workshop on Non-Neutral Plasmas 2008. AIP, 2009. http://dx.doi.org/10.1063/1.3122297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Valentini, Francesco, Thomas M. O’Neil, and Daniel H. E. Dubin. "Excitation and Decay of Electron Acoustic Waves." In NON-NEUTRAL PLASMA PHYSICS VI: Workshop on Non-Neutral Plasmas 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2387901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Driscoll, C. F., F. Anderegg, D. H. E. Dubin, T. M. O’Neil, Bengt Eliasson, and Padma K. Shukla. "Trapping and Frequency Variability in Electron Acoustic Waves." In NEW DEVELOPMENTS IN NONLINEAR PLASMA PHYSICS: Proceedings of the 2009 ICTP Summer College on Plasma Physics and International Symposium on Cutting Edge Plasma Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3266805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sanna, Simone. "Bound electron polarons in lithium niobate." In 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). IEEE, 2015. http://dx.doi.org/10.1109/spawda.2015.7364545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Faria, Roberto T., Iglika Spassovska, Padma K. Shukla, and Paulo H. Sakanaka. "Electron-acoustic and dispersive Alfvén waves coupling in nonuniform magnetoplasmas." In PLASMA PHYSICS: IX Latin American Workshop. AIP, 2001. http://dx.doi.org/10.1063/1.1374894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Suchkov, S. G., V. A. Nikolaevtsev, S. V. Komkov, A. A. Pilovets, S. S. Yankin, A. N. Litvinenko, and D. S. Suchkov. "Anticollision multiband RFID tag on surface acoustic waves." In 2016 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE, 2016. http://dx.doi.org/10.1109/apede.2016.7878910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Saini, N. S., S. Sultana, I. Kourakis, Vladimir Yu Nosenko, Padma K. Shukla, Markus H. Thoma, and Hubertus M. Thomas. "Modulational Instability Of Dust Electron Acoustic Waves In Superthermal Dusty Plasmas." In DUSTY∕COMPLEX PLASMAS: BASIC AND INTERDISCIPLINARY RESEARCH: Sixth International Conference on the Physics of Dusty Plasmas. AIP, 2011. http://dx.doi.org/10.1063/1.3659840.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Electron acoustic waves"

1

Arnold, Joshua. DTPH56-16-T-00004 EMAT Guided Wave Technology for Inline Inspections of Unpiggable Natural Gas Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2018. http://dx.doi.org/10.55274/r0012048.

Full text
Abstract:
This project developed compact, lightweight, prototype Electro-Magnetic Acoustic Transducers (EMATs) and studied guided waves for defect detection, classification, and characterization in cast iron and steel pipes. Through lab testing, design, and Finite Element Analysis (FEA), guided wave propagation and defect interactions were evaluated, and the results were employed to optimize the prototype EMATs through successive design and testing iterations. The goal of developing EMATs for robotic inspection of unpiggable pipe was successfully achieved and demonstrated not only through prototype fabrication and testing but also through conceptual design modifications to ULC's CIRRIS XITM robot that incorporated EMATs onto the robot.
APA, Harvard, Vancouver, ISO, and other styles
2

Haven, Victor E., and Jr. Epitaxial (100) GaAs Thin Films on Sapphire for Surface Acoustic Wave/Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, December 1985. http://dx.doi.org/10.21236/ada164252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shore, Robert A., and Arthur D. Yaghjian. Traveling Waves on Two- and Three-Dimensional Periodic Arrays of Lossless Acoustic Monopoles, Electric Dipoles, and Magnetodielectric Spheres. Fort Belvoir, VA: Defense Technical Information Center, November 2006. http://dx.doi.org/10.21236/ada458358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pandey, R. K. Growth of Device Quality Bulk Single Crystal of Pb-K-Niobate (PKN) for SAW (Surface Acoustic Wave)-Devices and Electro-Optical Applications. Fort Belvoir, VA: Defense Technical Information Center, December 1985. http://dx.doi.org/10.21236/ada179716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Decroux, Agnes, Kassem Kalo, and Keith Swinden. PR-393-205100-R01 IRIS X-Ray CT Qualification for Flexible Pipe Inspection (Phase 1). Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2021. http://dx.doi.org/10.55274/r0012068.

Full text
Abstract:
There are several techniques available to inspect single wall carbon steel pipelines including; Magnetic flux leakage (MFL), ultrasonic testing (UT), Electro-Magnetic Acoustic Transducer (EMAT), Phased Array, guide wave testing (GWT), etc. However, for more complex structures such as flexible pipelines the technology available to inspect them is far more limited. PRCI commissioned a program (SPIM 2-1) under the Subsea TC (2017-2020) to evaluate all known and suspected technologies that could be used to provide a detailed subsea inspection of a flexible riser. PRCI produced four samples of flexible pipe containing pre-manufactured cracks and corrosion defects which were located in; the outer armour layer, inner armour layer, pressure vault and carcass. The samples were used for blind testing of all identified inspection technologies. On conclusion of the SPIM 2-1 program, HR-XCT was identified as the technology showing the most promise and a follow-on program (SPIM 2-2) was commissioned to further explore the capabilities. This report will show the way in which high resolution image clarity and image manipulation was extracted from the HR-XCT system when used on the PRCI flexible pipe samples. The XCT results from SPIM 2-2 will be presented to show the initial setup of the experiment and 2D and 3D high resolution sectioned images from the testing. These images clearly identify and characterize 100% of the pre-manufactured defects introduced into the samples in all layers.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography