Academic literature on the topic 'Electromigration-thermomigration'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electromigration-thermomigration.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electromigration-thermomigration"

1

Yang, D., Y. C. Chan, B. Y. Wu, and M. Pecht. "Electromigration and thermomigration behavior of flip chip solder joints in high current density packages." Journal of Materials Research 23, no. 9 (2008): 2333–39. http://dx.doi.org/10.1557/jmr.2008.0305.

Full text
Abstract:
The electromigration and thermomigration behavior of eutectic tin-lead flip chip solder joints, subjected to currents ranging from 1.6 to 2.0 A, at ambient temperatures above 100 °C, was experimentally and numerically studied. The temperature at the chip side was monitored using both a temperature coefficient of resistance method and a thermal infrared technique. The electron wind force and thermal gradient played the dominant role in accelerated atomic migration. The atomic flux of lead due to electromigration and thermomigration was estimated for comparison. At the current crowding region, electromigration induced a more serious void accumulation as compared with thermomigration. Also, because of different thermal dissipations, a morphological variation was detected at different cross-sectional planes of the solder joint during thermomigration.
APA, Harvard, Vancouver, ISO, and other styles
2

Abdulhamid, Mohd F., Cemal Basaran, and Yi-Shao Lai. "Thermomigration Versus Electromigration in Microelectronics Solder Joints." IEEE Transactions on Advanced Packaging 32, no. 3 (2009): 627–35. http://dx.doi.org/10.1109/tadvp.2009.2018293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shidong Li, Mohd F. Abdulhamid, and Cemal Basaran. "Simulating Damage Mechanics of Electromigration and Thermomigration." SIMULATION 84, no. 8-9 (2008): 391–401. http://dx.doi.org/10.1177/0037549708094856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yao, Wei, and Cemal Basaran. "Computational damage mechanics of electromigration and thermomigration." Journal of Applied Physics 114, no. 10 (2013): 103708. http://dx.doi.org/10.1063/1.4821015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gu, Xin, and Y. C. Chan. "Thermomigration and electromigration in Sn58Bi solder joints." Journal of Applied Physics 105, no. 9 (2009): 093537. http://dx.doi.org/10.1063/1.3125458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gu, X., K. C. Yung, Y. C. Chan, and D. Yang. "Thermomigration and electromigration in Sn8Zn3Bi solder joints." Journal of Materials Science: Materials in Electronics 22, no. 3 (2010): 217–22. http://dx.doi.org/10.1007/s10854-010-0116-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dohle, Rainer, Stefan Härter, Andreas Wirth та ін. "Electromigration Performance of Flip-Chips with Lead-Free Solder Bumps between 30 μm and 60 μm Diameter". International Symposium on Microelectronics 2012, № 1 (2012): 000891–905. http://dx.doi.org/10.4071/isom-2012-wp41.

Full text
Abstract:
As the solder bump sizes continuously decrease with scaling of the geometries, current densities within individual solder bumps will increase along with higher operation temperatures of the dies. Since electromigration of flip-chip interconnects is highly affected by these factors and therefore an increasing reliability concern, long-term characterization of new interconnect developments needs to be done regarding the electromigration performance using accelerated life tests. Furthermore, a large temperature gradient exists across the solder interconnects, leading to thermomigration. In this study, a comprehensive overlook of the long-term reliability and analysis of the achieved electromigration performance of flip-chip test specimen will be given, supplemented by an in-depth material science analysis. In addition, the challenges to a better understanding of electromigration and thermomigration in ultra fine-pitch flip-chip solder joints are discussed. For all experiments, specially designed flip-chips with a pitch of 100 μm and solder bump diameters of 30–60 μm have been used [1]. Solder spheres can be made of every lead-free alloy (in our case SAC305) and are placed on a UBM which has been realized for our test chips in an electroless nickel process [2]. For the electromigration tests within this study, multiple combinations of individual current densities and temperatures were adapted to the respective solder sphere diameters. Online measurements over a time period up to 10,000 hours with separate daisy chain connections of each test coupon provide exact lifetime data during the electromigration tests. As failure modes have been identified: UBM consumption at the chip side or depletion of the Nickel layer at the substrate side, interfacial void formation at the cathode contact interface, and - to a much lesser degree - Kirkendall-like void formation at the anode side. A comparison between calculated life time data using Weibull distribution and lognormal distribution will be given.
APA, Harvard, Vancouver, ISO, and other styles
8

Shidong Li, M. F. Abdulhamid, and C. Basaran. "Damage Mechanics of Low Temperature Electromigration and Thermomigration." IEEE Transactions on Advanced Packaging 32, no. 2 (2009): 478–85. http://dx.doi.org/10.1109/tadvp.2008.2005840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lin, Y. H., C. M. Tsai, Y. C. Hu, Y. L. Lin, J. Y. Tsai, and C. R. Kao. "Electromigration Induced Metal Dissolution in Flip-Chip Solder Joints." Materials Science Forum 475-479 (January 2005): 2655–58. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.2655.

Full text
Abstract:
The failure of flip chip solder joints through the dissolution of the Cu metallization was studied. From the location and geometry of the dissolved Cu, it can be concluded that current crowding played a critical role in the dissolution. It can also be concluded that temperature, as an experimental variable, is not less import than the current density in electromigration study. Experimentally, no evidence of mass transport due to thermomigration was observed.
APA, Harvard, Vancouver, ISO, and other styles
10

Somaiah, Nalla, and Praveen Kumar. "Tuning electromigration-thermomigration coupling in Cu/W Blech structures." Journal of Applied Physics 124, no. 18 (2018): 185102. http://dx.doi.org/10.1063/1.5045086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography