Dissertations / Theses on the topic 'Electromechanical harvesting'

To see the other types of publications on this topic, follow the link: Electromechanical harvesting.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 30 dissertations / theses for your research on the topic 'Electromechanical harvesting.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Nagode, Clement Michel Jean. "Electromechanical Suspension-based Energy Harvesting Systems for Railroad Applications." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/50611.

Full text
Abstract:
Currently, in the railroad industry, the lack of electrical sources in freight cars is a problem that has yet to find practical solutions. Although the locomotive generates electricity to power the traction motors and all the equipment required to operate the train, the electrical power cannot, in a practical manner, be carried out along the length of the train, leaving freight cars unpowered. While this has not been a major issue in the past, there is a strong interest in equipping modern cars with a myriad of devices intended to improve safety, operational efficiency, or health monitoring, using devices such as GPS, active RFID tags, and accelerometers. The implementation of such devices, however, is hindered by the unavailability of electricity. Although ideas such as Timken\'s generator roller bearing or solar panels exist, the railroads have been slow in adopting them for different reasons, including cost, difficulty of implementation, or limited capabilities.

The focus of this research is on the development of vibration-based electromechanical energy harvesting systems that would provide electrical power in a freight car. With size and shape similar to conventional shock absorbers, these devices are designed to be placed in parallel with the suspension elements, possibly inside the coil spring, thereby maximizing unutilized space. When the train is in motion, the suspension will accommodate the imperfections of the track, and its relative velocity is used as the input for the harvester, which converts the mechanical energy to useful electrical energy.

Beyond developing energy harvesters for freight railcar primary suspensions, this study explores track wayside and miniature systems that can be deployed for applications other than railcars. The trackside systems can be used in places where electrical energy is not readily available, but where, however, there is a need for it. The miniature systems are useful for applications such as bicycle energy.

Beyond the design and development of the harvesters, an extensive amount of laboratory testing was conducted to evaluate both the amount of electrical power that can be obtained and the reliability of the components when subjected to repeated vibration cycles. Laboratory tests, totaling more than two million cycles, proved that all the components of the harvester can satisfactorily survive the conditions to which they are subjected in the field. The test results also indicate that the harvesters are capable of generating up to 50 Watts at 22 Vrms, using a 10-Ohm resistor with sine wave inputs, and over 30 Watts at peak with replicated suspension displacements, making them suitable to directly power onboard instruments or to trickle charge a battery.

Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
2

Erturk, Alper. "Electromechanical Modeling of Piezoelectric Energy Harvesters." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/29927.

Full text
Abstract:
Vibration-based energy harvesting has been investigated by several researchers over the last decade. The ultimate goal in this research field is to power small electronic components (such as wireless sensors) by using the vibration energy available in their environment. Among the basic transduction mechanisms that can be used for vibration-to-electricity conversion, piezoelectric transduction has received the most attention in the literature. Piezoelectric materials are preferred in energy harvesting due to their large power densities and ease of application. Typically, piezoelectric energy harvesters are cantilevered structures with piezoceramic layers that generate alternating voltage output due to base excitation. This work presents distributed-parameter electromechanical models that can accurately predict the coupled dynamics of piezoelectric energy harvesters. First the issues in the existing models are addressed and the lumped-parameter electromechanical formulation is corrected by introducing a dimensionless correction factor derived from the electromechanically uncoupled distributed-parameter solution. Then the electromechanically coupled closed-form analytical solution is obtained based on the thin-beam theory since piezoelectric energy harvesters are typically thin structures. The multi-mode electromechanical frequency response expressions obtained from the analytical solution are reduced to single-mode expressions for modal vibrations. The analytical solutions for the electromechanically coupled voltage response and vibration response are validated experimentally for various cases. The single-mode analytical equations are then used for deriving closed-form relations for parameter identification and optimization. Asymptotic analyses of the electromechanical frequency response functions are given along with expressions for the short-circuit and the open-circuit resonance frequencies. A simple experimental technique is presented to identify the optimum load resistance using only a single resistor and an open-circuit voltage measurement. A case study is given to compare the power generation performances of commonly used monolithic piezoceramics and novel single crystals with a focus on the effects of plane-stress material constants and mechanical damping. The effects of strain nodes and electrode configuration on piezoelectric energy harvesting are discussed theoretically and demonstrated experimentally. An approximate electromechanical solution using the assumed-modes method is presented and it can be used for modeling of asymmetric and moderately thick energy harvester configurations. Finally, a piezo-magneto-elastic energy harvester is introduced as a non-conventional broadband energy harvester.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
3

VILLA, SARA MOON. "SOFT POLYMERIC NANOCOMPOSITES FOR ELECTROMECHANICAL CONVERSION." Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/933149.

Full text
Abstract:
Soft electro-mechanical transducers are receiving a widespread interest for both sensing and energy harvesting applications. In the last decade the research on novel nanocomposites based on polymeric nanocomposites has been very active, and many materials with diverse and innovative compositions and architectures have been fabricated and reported. Nevertheless, there are still some critical aspects that affect this research field, in particular for what regards their characterization. Despite the widespread interest that these smart materials are attracting, the methods commonly used to characterize them are frequently qualitative and unreliable. Moreover, the description of the testing conditions is often incomplete, so that the data cannot be reproduced by other researchers, and the performances of the various materials cannot be compared. The knowledge of these properties is necessary for a complete understanding of the material working principle, for the prediction of its effective properties aimed at optimization purposes, and for the selection of the right material in device applications. In this framework the development of a quantitative and reliable measurement technique is crucial in order to to assess these materials figure of merit, their reliability and reproducibility. This thesis work is focused on the fabrication and characterization of materials with electro-mechanical conversion capabilities, for applications in both energy harvesting and pressure and strain sensing. Four different kinds of materials were developed and tested, three active materials based on piezoelectric BaTiO3 nanoparticles on different polymeric matrixes, that can be applied both as sensors and as energy harvesters, and a passive material based on a piezoresistive polymer/metal nanocomposite, which can be applied as a strain sensor. For the characterization of such nanocomposites, a custom experimental set-up to measure the piezoelectric coefficients in a wide frequency range was developed and validated.
APA, Harvard, Vancouver, ISO, and other styles
4

Mateu, Sáez Maria Loreto. "Energy harvesting from human passive power." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/48637.

Full text
Abstract:
Las tendencias en la tecnología actual permiten la reducción tanto en tamaño como en potencia consumida de los sistemas digitales complejos. Esta disminución en el tamaño y el consumo da lugar al concepto de dispositivos portátiles que se integren en la vida pertenencias personales y cotidianas como ropa, relojes, gafas, etc. La fuente de alimentación es un factor limitante en la movilidad de los dispositivos portátiles que se ve reducida por la duración de la batería. Además, debido a los costos y difícil accesibilidad, la sustitución o recarga de las baterías a menudo no es viable para los dispositivos portátiles integrados en ropa inteligente. Los dispositivos vestibles están distribuidos en las pertenencias personales y, por tanto, la recolección de energía del usuario es una alternativa para su alimentación. Dispositivos vestibles pueden crear, al igual que los sensores de una red de sensores inalámbricos (WSN), una red de área corporal. El principal objetivo de esta tesis es el estudio de generadores piezoeléctricos, inductivos y termoeléctricos que recolectan energía del cuerpo humano de forma pasiva. El principio físico de un transductor es el mismo independientemente de si la fuente proviene del entorno o del cuerpo humano. Sin embargo, las limitaciones relacionadas con la baja tensión, corriente y niveles de frecuencia conllevan nuevos requerimientos que no están presentes en el caso de la utilización de las fuentes que ofrece el entorno y que suponen el principal desafío de esta tesis. El tipo de energía entrada y transductor a utilizar forman un tándem donde la elección de uno impone el otro. Es importante que las mediciones se realicen diferentes partes del cuerpo humano, mientras se realizan diferentes actividades físicas para localizar las posiciones y las actividades que producen más energía. El acoplamiento mecánico entre transductor y cuerpo humano depende de la ubicación del transductor y la actividad que se realiza. Un diseño específico, teniendo esto en cuenta puede aumentar más de un 200% la eficiencia del transductor como se ha demostrado con láminas piezoeléctricas situadas en plantillas de zapatos. Se han realizado mediciones de aceleraciones en diferentes partes del cuerpo y diferentes actividades para cuantificar la cantidad de energía disponible en actividades cotidianas. Se ha realizado una simulación a nivel de sistema, modelando los elementos de un sistema de energía autoalimentado. El transductor se ha modelado usando las ecuaciones físicas que lo describen con el objetivo de incluir la parte mecánica del sistema. Se han utilizado modelos eléctricos y de comportamiento para el resto de los componentes. De esta manera, el proceso de diseño de la aplicación en su conjunto (incluyendo la carga y un elemento de almacenamiento de energía cuando es necesario) se simplifica a la hora de lograr los requisitos planteados. Obviamente, la carga debe ser un dispositivo de bajo consumo como por ejemplo un transmisor RF. En este caso, es preferible alimentar la carga de forma discontinua, sin una batería, como se deduce de los resultados obtenidos mediante simulación. Sin embargo, la evolución de los transmisores RF de baja potencia puede cambiar esta conclusión en función sobre todo de la evolución del consumo de energía en stand-by y el tiempo de configuración para la operación de transmisión. Se ha deducido a partir del análisis de los generadores inductivos que el análisis en el dominio temporal permite calcular algunas magnitudes que no están disponibles en el dominio frecuencial. Por ejemplo, la potencia máxima se puede calcular en el dominio frecuencial, pero para aplicaciones de recolección de energía es más interesante saber el valor de la energía recuperada durante un cierto tiempo o la potencia media ya que la potencia generada por las actividades humanas pueden ser muy discontinua. Se ha demostrado que los transductores recolectores de energía son capaces de suministrar alimentación a dispositivos electrónicos de baja potencia, como quedó demostrado con un transmisor RF alimentado por una termogenerador que emplea el gradiente de temperatura existente entre el cuerpo humano y el entorno (3-5 K) y que es capaz de realizar medidas y transmitirlas una vez cada segundo
The trends in technology allow the decrease in both size and power consumption of complex digital systems. This decrease in size and power gives rise to the concept of wearable devices which are integrated in everyday personal belongings like clothes, watch, glasses, et cetera. Power supply is a limiting factor in the mobility of the wearable device which gets restricted to the lifetime of the battery. Furthermore, due to the costs and inaccessible locations, the replacement or recharging of batteries is often not feasible for wearable devices integrated in smart clothes. Wearable devices are devices distributed in personal belongings and thus, an alternative for powering them is to harvest energy from the user. Therefore, the energy can be harvested, distributed and supplied over the human body. Wearable devices can create, like the sensors of a Wireless Sensor Network (WSN), a Body Area Network. A study of piezoelectric, inductive and thermoelectric generators that harvest passive human power is the main objective of this thesis. The physical principle of an energy harvesting generator is obviously the same no matter whether it is employed with an environmental or human body source. Nevertheless, the limitations related to low voltage, current and frequency levels obtained from human body sources bring new requirements to the energy harvesting topic that were not present in the case of the environment sources. This analysis is the motivation for this thesis. The type of input energy and transducer form a tandem since the election of one imposes the other. It is important that measurements are done in different parts of the human body while doing different physical activities to locate which positions and activities produce more energy. The mechanical coupling between the transducer and the human body depends on the location of the transducer and the activity that is done. A specific design taking this into account can increase more than a 200% the efficiency of the transducer as has been demonstrated with piezoelectric films located in the insoles of shoes. Acceleration measurements have been performed in different body locations and different physical activities, in order to quantify the amount of available energy associated with usual human movements. A system-level simulation has been implemented modeling the elements of an energy self-powered system. Physical equations have been used for the transducer in order to include the mechanical part of the system and electrical and behavioral models for the rest of the components. In this way, the process of the design of the complete application (including the load and an energy storage element when it is necessary) is simplified to achieve the expected requirements. Obviously, the load must be a low power consumption device as for example a RF transmitter. In this case, it is preferable to operate it in a discontinuous way without a battery as it is deduced from simulation results obtained. However, the evolution in low power transmission modules can change this conclusion depending mostly on the evolution of the power consumption in stand-by mode and the configuration time in transmission operation. It has been deduced from the analysis of inductive generators that time-domain analysis allows to calculate some magnitudes that are not available in frequency domain. For example, the maximum power can be calculated in frequency domain, but for energy harvesting applications it is more interesting to know the value of the recovered energy during a certain time, or the average power since the power generated by human activities can be highly discontinuous. It has been demonstrated that energy harvesting transducers are able to supply power to present-day low power electronic devices as was demonstrated with a RF transmitter powered by a thermogenerator that employs the temperature gradient between human body and the environment (3-5 K) and that it is able to sense and transmit data once every second.
APA, Harvard, Vancouver, ISO, and other styles
5

ASKARI, MAHMOUD. "Electromechanical Modelling and Analysis of Piezoelectric Smart Structures: Energy Harvesting, Static and Dynamic Problems." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2964794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gater, Brittany L. "The Hydrodynamics and Energetics of Bioinspired Swimming with Undulatory Electromechanical Fins." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78377.

Full text
Abstract:
Biological systems offer novel and efficient solutions to many engineering applications, including marine propulsion. It is of interest to determine how fish interact with the water around them, and how best to utilize the potential their methods offer. A stingray-like fin was chosen for analysis due to the maneuverability and versatility of stingrays. The stingray fin was modeled in 2D as a sinusoidal wave with an amplitude increasing from zero at the leading edge to a maximum at the trailing edge. Using this model, a parametric study was performed to examine the effects of the fin on surrounding water in computational fluid dynamics (CFD) simulations. The results were analyzed both qualitatively, in terms of the pressure contours on the fin and vorticity in the trailing wake, and quantitatively, in terms of the resultant forces and the mechanical power requirements to actuate the desired fin motion. The average thrust was shown to depend primarily on the relationship between the swimming speed and the frequency and wavelength (which both are directly proportional to the wavespeed of the fin), although amplitude can be used to augment thrust production as well. However, acceleration was shown to significantly correlate with a large variation in lift and moment, as well as with greater power losses. Using results from the parametric study, the potential for power regeneration was also examined. Relationships between frequency, velocity, drag, and power input were determined using nonlinear regression that explained more than 99.8% of the data. The actuator for a fin was modeled as a single DC motor-shaft system, allowing the combination of the energetic effects of the motor with the fin-fluid system. When combined, even a non-ideal fin model was able to regenerate more power at a given flow speed than was required to swim at the same speed. Even in a more realistic setting, this high proportion of regenerative power suggests that regeneration and energy harvesting could be both feasible and useful in a mission setting.
Master of Science
Animals interact with the world much differently than engineered systems, and can offer new and efficient ways to solve engineering problems, including underwater vehicles. To learn how to move an underwater vehicle in an environmentally conscious way, it is useful to study how a fish’s movements affect the manner in which it moves through the water. Through careful study, the principles involved can be implemented for an efficient, low-disturbance underwater vehicle. The particular fish chosen for in-depth study was the stingray, due to its maneuverability and ability to travel close to the seafloor without disturbing the sediment and creatures around it. In this work, computational analysis was performed on a model of a single stingray fin to determine how the motion of the fin affects the water around it, and how the water affects the fin in turn. The results were analyzed both in terms of the wake behind the fin and in terms of how much power was required to make the fin move in a particular way. The speed of the fin motion was found to have the strongest effect in controlling swimming speed, although the lateral motion of the fin also helped with accelerating faster. Additionally, the potential for a robotic stingray fin to harness power from the water around it was examined. Based on results from simulations of the fin, a mathematical model was formulated to relate energy harvesting with the flow speed past the fin. This model was used to determine how worthwhile it was to use energy harvesting. Analysis of the model showed that harvesting energy from the water was quite efficient, and would likely be a worthwhile investment for an exploration mission.
APA, Harvard, Vancouver, ISO, and other styles
7

Abdelkefi, Abdessattar. "Global Nonlinear Analysis of Piezoelectric Energy Harvesting from Ambient and Aeroelastic Vibrations." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/28761.

Full text
Abstract:
Converting vibrations to a usable form of energy has been the topic of many recent investigations. The ultimate goal is to convert ambient or aeroelastic vibrations to operate low-power consumption devices, such as microelectromechanical systems, heath monitoring sensors, wireless sensors or replacing small batteries that have a nite life span or would require hard and expensive maintenance. The transduction mechanisms used for transforming vibrations to electric power include: electromagnetic, electrostatic, and piezoelectric mechanisms. Because it can be used to harvest energy over a wide range of frequencies and because of its ease of application, the piezoelectric option has attracted significant interest. In this work, we investigate the performance of different types of piezoelectric energy harvesters. The objective is to design and enhance the performance of these harvesters. To this end, distributed-parameter and phenomenological models of these harvesters are developed. Global analysis of these models is then performed using modern methods of nonlinear dynamics. In the first part of this Dissertation, global nonlinear distributed-parameter models for piezoelectric energy harvesters under direct and parametric excitations are developed. The method of multiple scales is then used to derive nonlinear forms of the governing equations and associated boundary conditions, which are used to evaluate their performance and determine the effects of the nonlinear piezoelectric coefficients on their behavior in terms of softening or hardening. In the second part, we assess the influence of the linear and nonlinear parameters on the dynamic behavior of a wing-based piezoaeroelastic energy harvester. The system is composed of a rigid airfoil that is constrained to pitch and plunge and supported by linear and nonlinear torsional and flexural springs with a piezoelectric coupling attached to the plunge degree of freedom. Linear analysis is performed to determine the effects of the linear spring coefficients and electrical load resistance on the flutter speed. Then, the normal form of the Hopf bifurcation (flutter) is derived to characterize the type of instability and determine the effects of the aerodynamic nonlinearities and the nonlinear coefficients of the springs on the system's stability near the bifurcation. This is useful to characterize the effects of different parameters on the system's output and ensure that subcritical or "catastrophic" bifurcation does not take place. Both linear and nonlinear analyses are then used to design and enhance the performance of these harvesters. In the last part, the concept of energy harvesting from vortex-induced vibrations of a circular cylinder is investigated. The power levels that can be generated from these vibrations and the variations of these levels with the freestream velocity are determined. A mathematical model that accounts for the coupled lift force, cylinder motion and generated voltage is presented. Linear analysis of the electromechanical model is performed to determine the effects of the electrical load resistance on the natural frequency of the rigid cylinder and the onset of the synchronization region. The impacts of the nonlinearities on the cylinder's response and energy harvesting are then investigated.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
8

Forester, Sean M. "Energy harvesting for self-powered, ultra-low power microsystems with a focus on vibration-based electromechanical conversion." Thesis, Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Sep/09Sep%5FForester.pdf.

Full text
Abstract:
Thesis (M.S. in Computer Science)--Naval Postgraduate School, September 2009.
Thesis Advisor(s): Singh, Gurminder ; Gibson, John. "September 2009." Description based on title screen as viewed on November 6, 2009. Author(s) subject terms: Microelectromechanical systems, photovoltaic, piezoelectric, thermocouple, power harvesting, energy scavenging, thermoelectric. Includes bibliographical references (p. 59-65). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
9

Maiorca, Felice. "Innovative Electromechanical Transduction Mechanisms for Piezoelectric Energy harvesting from Vibration: Toward Micro and Nano Electro-Mechanical Systems." Doctoral thesis, Università di Catania, 2015. http://hdl.handle.net/10761/3949.

Full text
Abstract:
Vibration energy harvesting is one the hottest topics addressed by a big part of the scientific community. A lot of transduction mechanisms have been investigated and designed, based mechanical systems and transduction principles in order to recover energy coming from environmental vibrations. In this work, innovative transduction mechanisms will be described, suitable to harvesting energy from weak random vibrations, to rectifying and multiplying voltages avoiding the use of classic solutions based on diodes. Innovative devices will be introduced, based on nonlinear mechanical systems and piezoelectric transducers; analytical models will be provided and simulation results will be shown. Laboratory prototypes and experiments will be also described. Comparisons between simulations and experiments results will be provided in order to demonstrate the goodness of the proposed approaches. Finally, MEMS technologies suitable with piezoelectric energy harvesting, together with a very simple micro scale prototype, will be introduced as encouraging elements for future miniaturization of the devices.
APA, Harvard, Vancouver, ISO, and other styles
10

Hinchet, Ronan. "Electromechanical study of semiconductor piezoelectric nanowires. Application to mechanical sensors and energy harvesters." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT013/document.

Full text
Abstract:
Les systèmes intelligents sont le résultat combiné de différentes avancées en microélectronique et en particulier de l’augmentation des puissances de calcul, la diminution des consommations d’énergie, l'ajout de nouvelles fonctionnalités et de moyens de communication et en particulier à son intégration et application dans notre vie quotidienne. L'évolution du domaine des systèmes intelligents est prometteuse, et les attentes sont élevées dans de nombreux domaines : pour la surveillance dans l'industrie, les transports, les infrastructures et l'environnement, ainsi que dans le logement, l'électronique grand public et les services de soins de santé, mais aussi dans les applications pour la défense et l’aérospatial. Aujourd’hui, l'intégration de plus en plus de fonctions dans les systèmes intelligents les conduisent vers un problème énergétique où l'autonomie devient le principal problème. Par conséquent, il existe un besoin croissant en capteurs autonomes et sources d'alimentation. Le développement de dispositifs de récupération d’énergie et de capteurs autoalimentés est une façon de répondre à ce problème énergétique. Parmi les technologies étudiées, la piézoélectricité a l'avantage d'être compatible avec l'industrie des MEMS. De plus elle génère des tensions élevées et elle possède un fort couplage direct entre les physiques mécaniques et électriques. Parmi les matériaux piézoélectriques, les nanofils (NFs) semi-conducteurs piézoélectriques pourraient être une option prometteuse car ils présentent des propriétés piézoélectriques plus importantes et une plus grande gamme de flexion.Parmi les différents NFs piézoélectriques, les NFs de ZnO et de GaN sont les plus étudiés. A l'échelle nanométrique leurs propriétés piézoélectriques sont plus que doublées. Ils ont l'avantage d'être compatible avec l’industrie microélectronique et raisonnablement synthétisable par des approches top-down et bottom-up. En particulier, nous avons étudié la croissance par voie chimique de NFs de ZnO. Pour les utiliser correctement, nous avons étudié le comportement des NFs de ZnO. Nous avons effectué une étude analytique et des simulations par éléments finis (FEM) d'un NF de ZnO en flexion. Ces études décrivent la distribution du potentiel piézoélectrique en fonction de la force et permettent d’établir les règles d'échelle et de dimensionnement. Ensuite, nous avons développé la caractérisation mécanique par AFM du module de Young de NFs de ZnO et de GaN, puis nous avons effectué des caractérisations piézoélectriques par AFM de ces NFs pour vérifier leur comportement sous des contraintes mécaniques de type flexion. Une fois leur comportement physique compris, nous discutons des limites de notre modèle de NFs piézoélectriques en flexion et nous développons un modèle plus réaliste et plus proche des configurations expérimentales. En utilisant ce nouveau modèle, nous avons évalué le potentiel des NFs de ZnO pour les capteurs de force et de déplacement en mesurant le potentiel généré sous une contrainte, puis, sur la base d’expériences, nous avons évalué l'utilisation de NFs de GaN pour les capteurs de force en mesurant le courant au travers des NFs contraints. De même, nous avons évalué le potentiel de ces NFs pour les applications de récupération d'énergie liées aux capteurs autonomes. Pour bien comprendre la problématique, nous avons étudié l’état de l’art des nano générateurs (NG) et leurs architectures potentielles. Nous analysons leurs avantages et inconvénients, afin de définir une structure de NG de référence. Après une brève étude analytique de cette structure pour comprendre son fonctionnement et les défis, nous avons effectué plusieurs simulations FEM pour définir des voies d'optimisation pour les NG utilisé en mode de compression ou de flexion. Enfin la fabrication de prototypes et leurs caractérisations préliminaires sont présentées
Smart systems are the combined result of different advances in microelectronics leading to an increase in computing power, lower energy consumption, the addition of new features, means of communication and especially its integration and application into our daily lives. The evolution of the field of smart systems is promising, and the expectations are high in many fields: Industry, transport, infrastructure and environment monitoring as well as housing, consumer electronics, health care services but also defense and space applications. Nowadays, the integration of more and more functions in smart systems is leading to a looming energy issue where the autonomy of such smart systems is beginning to be the main issue. Therefore there is a growing need for autonomous sensors and power sources. Developing energy harvesters and self-powered sensors is one way to address this energy issue. Among the technologies studied, piezoelectricity has the advantage to be compatible with the MEMS industry, it generates high voltages and it has a high direct coupling between the mechanic and electric physics. Among the piezoelectric materials, semiconductor piezoelectric nanowires (NWs) could be a promising option as they exhibit improved piezoelectric properties and higher maximum flexion.Among the different piezoelectric NWs, ZnO and GaN NWs are the most studied, their piezoelectric properties are more than doubled at the nanoscale. They have the advantage of being IC compatible and reasonably synthesizable by top-down and bottom-up approaches. Especially we studied the hydrothermal growth of ZnO NWs. In order to use them we studied the behavior of ZnO NWs. We performed analytical study and FEM simulations of a ZnO NW under bending. This study explains the piezoelectric potential distribution as a function of the force and is used to extract the scaling rules. We have also developed mechanical AFM characterization of the young modulus of ZnO and GaN NWs. Following we perform piezoelectric AFM characterization of these NWs, verifying the behavior under bending stresses. Once physics understood, we discuss limitation of our piezoelectric NWs models and a more realistic model is developed, closer to the experimental configurations. Using this model we evaluated the use of ZnO NW for force and displacement sensors by measuring the potential generated, and from experiments, the use of GaN NW for force sensor by measuring the current through the NW. But energy harvesting is also necessary to address the energy issue and we deeper investigate this solution. To fully understand the problematic we study the state of the art of nanogenerator (NG) and their potential architectures. We analyze their advantages and disadvantages in order to define a reference NG structure. After analytical study of this structure giving the basis for a deeper understanding of its operation and challenges, FEM simulations are used to define optimization routes for a NG working in compression or in bending. The fabrication of prototypes and theirs preliminary characterization is finally presented
APA, Harvard, Vancouver, ISO, and other styles
11

CIRCOSTA, SALVATORE. "Rotary electromechanical shock absorbers for automotive and motorcycle applications." Doctoral thesis, Politecnico di Torino, 2022. https://hdl.handle.net/11583/2971316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Calavalle, Francesco. "Electrospun polymer nanofibers for electromechanical transduction investigated by scanning probe microscopy." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13504/.

Full text
Abstract:
Negli ultimi anni, il copolimero ferroelettrico P(VDF-TrFE), ha suscitato un grande interesse nella ricerca scientifica per le potenziali applicazioni elettroniche come ad esempio l’energy harvesting per la produzione di dispositivi indossabili e autoalimentabili, sensori biocompatibili e memorie non volatili. Molti sforzi si sono concentrati nello sviluppo di procedure di fabbricazione che possano migliorare le performance elettromeccaniche di questi materiali. Una delle soluzioni proposte è un processo chiamato elettrofilatura, una tecnica efficiente e a basso costo che sarebbe in grado di realizzare nanofibre polimeriche già polarizzate e pronte per l’integrazione nei dispositivi. Dalle analisi microscopiche svolte in questa tesi, utilizzando tecniche di microscopia a scansione di sonda, è stato scoperto che in realtà l’elettrofilatura non provoca polarizzazione nelle fibre, bensì induce un processo di iniezione di cariche all’interno del materiale che, se testato a livello macroscopico, mostra un’apparente risposta ferroelettrica dovuta però alle cariche intrappolate, come in un elettrete. Nonostante ciò, dopo la dissipazione delle cariche spaziali, ho potuto dimostrare, grazie al’implementazione della Switching Spectroscopy PFM ad alto potenziale, che le nanofibre elettrofilate possono essere polarizzate e mostrano proprietà piezoelettriche simili a quelle del film sottile. Quindi, inducendo la completa polarizzazione del network dopo la deposizione, è auspicabile un miglioramento delle proprietà elettromeccaniche dei dispositivi basati su nano-fibre elettrofilate.
APA, Harvard, Vancouver, ISO, and other styles
13

Smilek, Jan. "Energy Harvesting Power Supply for MEMS Applications." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-386765.

Full text
Abstract:
Tato práce se zabývá vývojem nezávislého elektrického zdroje pro moderní nízkopříkonové elektrické aplikace. Protože tradiční řešení napájení drobných spotřebičů s využitím baterií či akumulátorů snižuje uživatelský komfort kvůli potřebě pravidelné údržby, navrhovaný zdroj využívá principu energy harvesting. Tento princip spočívá v získávání energie přímo z okolního prostředí napájené aplikace a její přeměně na energii elektrickou, která je dále využita pro na-pájení moderních MEMS (mikroelektromechanických) zařízení. Potenciální aplikací vyvíjeného zdroje je především moderní nositelná elektronika a biomedicínské senzory. Tato oblast využití ovšem klade zvýšené nároky na parametry generátoru, který musí zajistit dostatečný generovaný výkon z energie, dostupné v okolí lidského těla, a to při zachování prakticky využitelné velikosti a hmotnosti. Po stanovení předběžných požadavků a provedení analýz vhodnosti dostupných zdrojů energie ke konverzi byla k využití vybrána kinetická energie lidských aktivit. Byla provedena série měření zrychlení na lidském těle, především v místě předpokládaného umístění generátoru, aby bylo možno analyzovat a generalizovat hodnoty energie dostupné ke konverzi v daném umístění. V návaznosti na tato měření a analýzy byl vyvinut inovativní kinetický energy harvester, který byl následně vyroben jako funkční vzorek. Tento vzorek byl pak testován v reálných podmínkách pro verifikaci simulačního modelu a vyhodnocení reálné použitelnosti takového zařízení. Kromě samotného vývoje generátoru je v práci popsán i originální způsob zvýšení generovaného výkonu pro kinetické energy harvestery a jsou prezentována statistická data a modely pro predikci využitelnosti kinetických harvesterů pro získávání energie z lidské aktivity.
APA, Harvard, Vancouver, ISO, and other styles
14

MANCA, NICOLO'. "Functional modelling and prototyping of electronic integrated kinetic energy harvesters." Doctoral thesis, Politecnico di Torino, 2017. http://hdl.handle.net/11583/2675157.

Full text
Abstract:
The aim of developing infinite-life autonomous wireless electronics, powered by the energy of the surrounding environment, drives the research efforts in the field of Energy Harvesting. Electromagnetic and piezoelectric techniques are deemed to be the most attractive technologies for vibrational devices. In the thesis, both these technologies are investigated taking into account the entire energy conversion chain. In the context of the collaboration with the STMicroelectronics, the project of a self-powered Bluetooth step counter embedded in a training shoe has been carried out. A cylindrical device 27 × 16mm including the transducer, the interface circuit, the step-counter electronics and the protective shell, has been developed. Environmental energy extraction occurs exploiting the vibration of a permanent magnet in response to the impact of the shoe on the ground. A self-powered electrical interface performs maximum power transfer through optimal resistive load emulation and load decoupling. The device provides 360 μJ to the load, the 90% of the maximum recoverable energy. The energy requirement is four time less than the provided and the effectiveness of the proposed device is demonstrated also considering the foot-steps variability and the performance spread due to prototypes manufacturing. In the context of the collaboration with the G2Elab of Grenoble and STMicroelectronics, the project of a piezoelectric energy arvester has been carried out. With the aim of exploiting environmental vibrations, an uni-morph piezoelectric cantilever beam 60×25×0.5mm with a proof mass at the free-end has been designed. Numerical results show that electrical interfaces based on SECE and sSSHI techniques allows increasing performance up to the 125% and the 115% of that in case of STD interface. Due to the better performance in terms of harvested power and in terms of electric load decoupling, a self-powered SECE interface has been prototyped. In response to 2 m/s2 56,2 Hz sinusoidal input, experimental power recovery of 0.56mW is achieved demonstrating that the device is compliant with standard low-power electronics requirements.
APA, Harvard, Vancouver, ISO, and other styles
15

Eddiai, Adil. "Caractérisation et modélisation des polymères électro-actifs : Application à la récupération d’énergie." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0029/document.

Full text
Abstract:
Le concept de la récupération d'énergie se rapporte généralement au processus d'utilisation de l'énergie ambiante, qui est converti, principalement (mais pas exclusivement) en énergie électrique pour faire fonctionner des dispositifs électroniques petites et autonomes. Les tendances récentes à la fois dans l'industrie et au domaine de la recherche ont mis l'accent sur les polymères électro-actifs pour la conversion d'énergie électromécanique. Cet intérêt s'explique par de nombreux avantages tels que la productivité élevée, la grande flexibilité, et la facilité de traitement. Le but de ce travail de recherche est d’explorer la potentialité des polymères électro-actifs pour une application de récupération d’énergie mécanique ambiante. Dans la première partie, une synthèse des composites à base de polyuréthane (PU) et de P(VDF-TrFE-CFE) a été réalisée, suivie d’une caractérisation électrique et mécanique de ces polymères et composites afin d’évaluer leurs paramètres intrinsèques. La seconde partie de ce travail de thèse concerne la caractérisation électromécanique de ces polymères. Un modèle analytique électromécanique est mise en place afin de déterminer finement le comportement physique des polymères électrostrictifs ainsi que les variations de leurs paramètres intrinsèques. Ce modèle analytique est validé par une série de tests à travers un banc d’essai. La dernière partie de ce travail consiste à évaluer les performances électromécaniques des polymères électrostrictifs pour la récupération d’énergie mécanique. Deux nouvelles techniques sont testées afin de maximiser la densité d’énergie récupérée. Ainsi qu’une comparaison avec les méthodes classiques a été réalisée. Un excellent potentiel de ces techniques pour la récupération d'énergie a été démontré. Le deuxième point porte sur l’étude de l’efficacité de la conversion électromécanique pour la récupération d’énergie mécanique en utilisant l'analyse spectrale FFT. Il a été montré que cette méthode permet de prévoir le rendement énergétique de nos polymères en accord avec les prédictions théoriques. Le dernier point se focalise sur l’amélioration de cette efficacité de conversion électromécanique en utilisant des électrets de polypropylène cellulaire, afin d’assurer un meilleur rendement énergétique
The concept of energy harvesting generally relates to the process of using ambient energy, which is converted, primarily (but not exclusively) into electrical energy in order to power small and autonomous electronic devices. Recent trends in both industrial and research fields have focused on electro-active polymers for electromechanical energy conversion. This interest is explained by many advantages such as high productivity, high flexibility, and processability. The purpose of this research work is to explore the potential of electro-active polymers for application of mechanical energy harvesting. At first, a synthesis of the composite based on polyurethane (PU) and P (VDF-TrFE-CFE) was performed, followed by electrical and mechanical characterization of these polymers and composites in order to evaluate their intrinsic parameters. The second part of this thesis concerns electromechanical characterization of these polymers. An electromechanical analytic modeling is detailed in order to determine the physical behavior of electrostrictive polymers and the variations of intrinsic parameters. This modeling is validated by a series of tests using a test bench. The last part of this work consists to evaluate the electromechanical performance of electrostrictive polymers for the mechanical energy harvesting. Two new techniques are tested in order to maximize the density of energy recovered. As well as a comparison against those classic has been performed. Excellent potential of these techniques for energy harvesting has been demonstrated. The second point is about the study of the electromechanical conversion efficiency for scavenging mechanical energy using spectral analysis FFT. It was shown that this method allows predicting the energy efficiency of our polymers, in accordance with the results predicted by the model. The last point focuses on improving the efficiency of electromechanical conversion by using cellular polypropylene electrets to ensure better energy efficiency
APA, Harvard, Vancouver, ISO, and other styles
16

Ahmed-Seddik, Bouhadjar. "Systèmes de récupération d'énergie vibratoire large bande." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENT057/document.

Full text
Abstract:
Dans ce travail de thèse nous nous sommes intéressés principalement à la récupération de l'énergie mécanique et plus particulièrement l'énergie vibratoire. Cette technologie repose sur l'utilisation des transducteurs résonants, ces dispositifs permettent d'amplifier l'amplitude de vibration et donc de stocker d'avantage d'énergie mécanique dans le convertisseur à la résonance. La quantité de l'énergie en sortie du convertisseur chute lorsque la fréquence de vibration n'est plus égale à la fréquence de résonance, il est donc nécessaire d'assurer un asservissement de la fréquence de résonance de la structure de récupération d'énergie vibratoire sur la fréquence de vibration, si possible sur tout le spectre fréquentiel que couvre la source de vibration. L'objectif de la thèse est de proposer des solutions, à basse consommation, permettant d'assurer un ajustement dynamique en temps réel de la fréquence de résonance en fonction de la fréquence de vibration. Les travaux de cette thèse s'articulent autour de trois solutions : 1) Ajustement de la fréquence de résonance par application d'un champ électrique dans un matériau piézoélectrique 2) Ajustement de la fréquence de résonance par adaptation de la charge électrique d'un matériau piézoélectrique 3) Amplification du mouvement vibratoire par technique de rebond Une modélisation et optimisation à la fois de la plage de fréquence de fonctionnement et de la conversion mécano-électrique ont été réalisées. Trois structures ont été développées et testées et permettent de valider chacune des trois approches. Enfin, une électronique très basse consommation a été mise au point pour asservir en temps réel la fréquence de résonance sur la fréquence de la source de vibration et optimiser le taux d'énergie électrique extraite du système (pour maintenir un facteur de qualité de la structure optimum)
The work of this thesis is focused on the mechanical energy harvesting. This technology is generally based on the use of resonant transducers. Such systems work efficiently when their resonant frequency is equal to the vibration one. Otherwise, the output power from the harvester drops dramatically. Hence, it's necessary to ensure a continuous control of the resonant frequency of the harvester in order to avoid a possible shift between the resonant frequency and the vibration one, and doing this over the frequency spectrum covered by the vibration source. The main goal of this thesis is to develop new efficient solutions able to control in real time and tune the resonant frequency, these solutions should be low power consumption. During this thesis, three solutions have been developed: 1) adjustement of the resonant frequency by applying an electric field on the piezoelectric material; 2) adjustement of the resonant by adapting the electrical load; 3) the amplification of the structure relative displacement using a rebound technique. Modelling and optimization of both the frequency adjustment techniques and the mechanical-to-electrical conversion were performed. Three structures have been developed, tested and used to validate the three approaches. Finally, a very low power consumption electronic has been developed for a real time control of the resonant frequency, by regarding the vibration frequency, and also to optimize the extracted electrical energy from the harvester by maintaining an optimum quality factor
APA, Harvard, Vancouver, ISO, and other styles
17

Esu, Ozak O. "Vibration-based condition monitoring of wind turbine blades." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/21679.

Full text
Abstract:
Significant advances in wind turbine technology have increased the need for maintenance through condition monitoring. Indeed condition monitoring techniques exist and are deployed on wind turbines across Europe and America but are limited in scope. The sensors and monitoring devices used can be very expensive to deploy, further increasing costs within the wind industry. The work outlined in this thesis primarily investigates potential low-cost alternatives in the laboratory environment using vibration-based and modal testing techniques that could be used to monitor the condition of wind turbine blades. The main contributions of this thesis are: (1) the review of vibration-based condition monitoring for changing natural frequency identification; (2) the application of low-cost piezoelectric sounders with proof mass for sensing and measuring vibrations which provide information on structural health; (3) the application of low-cost miniature Micro-Electro-Mechanical Systems (MEMS) accelerometers for detecting and measuring defects in micro wind turbine blades in laboratory experiments; (4) development of an in-service calibration technique for arbitrarily positioned MEMS accelerometers on a medium-sized wind turbine blade. This allowed for easier aligning of coordinate systems and setting the accelerometer calibration values using samples taken over a period of time; (5) laboratory validation of low-cost modal analysis techniques on a medium-sized wind turbine blade; (6) mimicked ice-loading and laboratory measurement of vibration characteristics using MEMS accelerometers on a real wind turbine blade and (7) conceptualisation and systems design of a novel embedded monitoring system that can be installed at manufacture, is self-powered, has signal processing capability and can operate remotely. By applying the conclusions of this work, which demonstrates that low-cost consumer electronics specifically MEMS accelerometers can measure the vibration characteristics of wind turbine blades, the implementation and deployment of these devices can contribute towards reducing the rising costs of condition monitoring within the wind industry.
APA, Harvard, Vancouver, ISO, and other styles
18

Sijková, Simona. "Návrh testovacího přípravku piezoelektrických vlastností PVDF vrstvy." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417737.

Full text
Abstract:
The diploma thesis deals with a design of a tester device, a selection and verification of a suitable method for comparing the piezoelectric properties of tested PVDF samples. In the introduction, a basic overview of the theory is important to understand the issue and the various branches of use of PVDF in the field of energy harvesting. The tester device includes a unimorph piezoelectric cantilever beam with tip mass, whose properties are described by three models: a model with N degrees of freedom reduced to one degree of freedom (NDOF), a single degree of freedom model (SDOF), both created in Matlab and a model for verifying results in FEM ANSYS Workbench program. The voltage time response and the voltage frequency response of the models is compared with each other. For two different PVDF samples, the voltage response to harmonic excitation is measured using a tester device, and the piezoelectric properties of one of them are determined using the NDOF and SDOF models.
APA, Harvard, Vancouver, ISO, and other styles
19

Belhora, Fouad. "Couplage multiphysique à l’aide d’électret application à la récupération d’énergie." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0141/document.

Full text
Abstract:
Les matériaux actifs, tels que les matériaux piézoélectriques et électrostrictifs, sont couramment utilisés dans la conception de dispositifs exploitant leurs propriétés respectives. La propriété principale de ces matériaux réside dans le fort couplage entre les comportements électrique et mécanique (piézoélectricité). Dans la majorité des cas, ces matériaux sont utilisés séparément. L’utilisation combinée de ces matériaux permet la réalisation de dispositifs innovants basés sur l’effet électrostrictifs: l’apparition d’une polarisation électrique induite par une contrainte mécanique et réciproquement l’apparition d’une déformation mécanique sous l’action d’un champ électrique. Les applications « support » concernent les capteurs et les actionneurs. L’étude de ce couplage passe par la caractérisation de ces matériaux, puis par la mise en place de modèles décrivant finement leurs comportements et enfin par le développement d’outils pour la conception. L’objectif de la thèse est de remplacer le matériau céramique, rigide et à faible déformation, par un film polymère nanocomposite électroactifs, présentant des grandes déformations et forces d'actionnement sous champ électrique modéré grâce à l'incorporation dans la matrice polymère de micro et nano-objets (charge) conducteurs ou semi-conducteurs. De plus, pour des applications plus spécifiques de la récupération d’énergie, la charge du film polymère par des micro et nano-objets conducteurs sera également étudiée. Idéalement, il serait très intéressant de réaliser un matériau multifonctionnel, sensible à la fois à une stimulation mécanique (propriétés de détection et/ou de récupération d’énergie par couplage électromécanique)
In the last decades, direct energy conversion devices for medium and low grades waste heat have received significant attention due to the necessity to develop more energy efficient engineering systems. A great deal of research has in recent years been carried out on harvesting energy using piezoelectric, electrostatic, electromagnetic , and thermoelectric ,transduction, with the aim of harvesting enough energy to enable data transmission. For this purpose, piezoelectric elements have been extensively used in the past; however they present high rigidity and limited mechanical strain abilities as well as delicate manufacturing process for complex shapes, making them unsuitable in many applications. Thus, recent trends in both industrial and research fields have focused on electrostrictive polymers for electromechanical energy conversion. This interest is explained by many advantages such as high productivity, flexibility, and processability. Hence, electrostrictive polymer films are much more suitable for energy harvesting devices requiring high flexibilities, such as systems in smart textiles and mobile or autonomous devices. Electrostrictive polymers can also be obtained in many different shapes and over large surfaces. . In the last years, electrostrictive polymers have been investigated as electroactive materials for energy harvesting. However for scavenging energy a static field is necessary, since this material is isotope, there is no permanent polarization compare to piezoelectric material. A solution for avoid this problem; concern the hybridization of electrostrictive polymer with electret. Finally, the implementation of electrostrictive materials is much simpler for small-scale systems (MEMS). Hence, several studies have analyzed the energy conversion performance of electrostrictive polymers, both in terms of actuation and energy harvesting
APA, Harvard, Vancouver, ISO, and other styles
20

Maaroufi, Seifeddine. "Conception et réalisation d’un banc pour l’étude de fiabilité des micros dispositifs piézoélectriques de récupération d’énergie dédiés aux implants cardiaques." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS187/document.

Full text
Abstract:
Dans le cadre de cette thèse de doctorat, nous présentons la conception et la réalisation d’un banc dédié à l’étude de la fiabilité de structures piézoélectriques et plus précisément des micro-dispositifs de récupération d'énergie destinés aux implants médicaux autonomes actifs (stimulateurs cardiaques de nouvelle génération). Les structure étudiées se présentent sous la forme d’un bimorphe piézoélectrique encastré-libre comportant une masse sismique à leur extrémité. Une bonne compréhension du vieillissement des matériaux et des modes de défaillance mécanique et électrique est essentielle pour ce type de système où la vie du patient au sein duquel est implanté le dispositif est directement mise en jeu. Pour étudier la fiabilité et la durabilité de la partie active du récupérateur, nous proposons d'établir une nouvelle méthodologie de vieillissement accélérée via un banc d'essai dédié où l'environnement et les stimuli peuvent être contrôlés avec précision sur une large période de temps. Une caractérisation électromécanique des structures est périodiquement réalisée via l’extraction d’une série d’indicateurs (force de blocage, raideur, tension en régime harmonique) au sein même du banc tout au long du vieillissement. Il est donc ainsi possible d'identifier les différents modes de défaillance potentiels et d’étudier leurs impacts sur le bon fonctionnement du système
Within the framework of this PhD we present the design and realization of a bench dedicated to the study of the reliability of piezoelectric structures and more precisely micro-devices of energy harvesting for the new generation of active and autonomous medical implants. The structures studied are in the form of a free-clamped piezoelectric bimorph having a seismic mass at their tip. A good understanding of the aging of the materials and of the mechanical and electrical failure modes is essential for this type of system where the life of the patient implanted by this device is directly involved. To study the reliability and durability of the active part of the harvester, we propose to establish a new accelerated aging methodology via a dedicated test bench where the environment and stimuli can be controlled accurately over a large period of time. An electromechanical characterization of the structures is periodically carried out by the extraction of a series of indicators (blocking force, stiffness, tension in harmonic regime) within the bench throughout the aging process. Therefore it is possible to identify the different potential failure modes and to study their impact on the proper functioning of the system
APA, Harvard, Vancouver, ISO, and other styles
21

Vidal, João Vasco Silvestre. "Magnetoelectric effect in composites based on single crystalline piezoelectrics." Doctoral thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/18005.

Full text
Abstract:
Doutoramento em Engenharia Física
Este trabalho expõe um estudo teórico e experimental das propriedades anisotrópicas magnetoelétricas (ME) em diferentes compósitos contendo monocristais piezoelétricos (PE), maioritariamente sem chumbo na sua composição, com vista a diversas aplicações multifuncionais. Uma descrição linear do efeito ME em termos de campos elétricos, magnéticos e elásticos e constantes materiais é apresentada. Um modelo fenomenológico quasi-estático é usado para ilustrar a relação entre as constantes materiais, sua anisotropia e os coeficientes MEs transversais de tensão e carga. Subsequentemente, este modelo é empregue para estimar o máximo coeficiente ME direto de tensão expectável numa série de compósitos tri-camadas de Metglas/Piezocristal/Metglas em função da orientação do cristal PE. Demonstra-se assim como os efeitos MEs são fortemente dependentes da orientação cristalina, o que suporta a possibilidade de se gerarem coeficientes MEs de tensão elevados em compósitos contendo monocristais PEs sem chumbo como o niobato de lítio (LiNbO3; LNO), tantalato de lítio (LiTaO3), ortofosfato de gálio (GaPO4; GPO), quartzo (SiO2), langatato (La3Ga5.5Ta0.5O14) e langasite (La3Ga5SiO14) através da otimização da orientação cristalina. Uma técnica experimental dinâmica de lock-in para a medição da impedância e efeito ME direto é exposta. O formalismo descritivo desta técnica, assim como um arranjo experimental desenvolvido para o efeito são apresentados. O esquema e características deste, assim como diferentes formas de reduzir o ruído e a indesejável indução mútua são exploradas. Um estudo comparativo do efeito ME direto em compósitos tri-camadas de Metglas e monocristais de LNO e PMN-PT conectados de forma simples é exposto. Embora o PMN-PT possua piezocoeficientes de carga muito superiores aos do LNO, o coeficiente ME direto de tensão demonstrou-se comparável entre ambos os compósitos devido a uma muito menor permitividade dielétrica do LNO. Cálculos teóricos indicam aínda que as propriedades MEs poderão ser significativamente melhoradas (até 500 V/(cm.Oe)) através da otimização do ângulo de corte do LNO, espessura relativa entre camadas ferroelétrica/ferromagnética e uma melhor colagem entre o Metglas e o LNO. Vantagens da utilização do material ferroelétrico LNO em compósitos MEs são discutidas. Num estudo subsequente, as propriedades dinâmicas anisotrópicas de impedância e MEs em compósitos tri-camadas de Metglas e monocristais PEs sem chumbo de LNO e GPO são exploradas. Medições foram realizadas em função do corte de cristal, magnitude e orientação do campo magnético de polarização e frequência do campo de modulação. Coeficientes MEs altamente intensos em certos modos de ressonância são explorados, e a sua relação com as propriedades materiais dos cristais e geometria dos compósitos é investigada. Um coeficiente ME de até 249 V/(cm.Oe) foi aqui observado num compósito com um cristal de LNO com corte 41ºY a 323.1 kHz. Mostramos assim que compósitos multicamadas contendo cristais sem chumbo de LNO e GPO podem exibir efeitos MEs anisotrópicos relativamente elevados. Demonstramos também que o controlo da orientação dos cristais PEs pode em princípio ser usado na obtenção de propriedades MEs anisotrópicas desejáveis para qualquer aplicação. Características únicas como elevada estabilidade química, piezoeletricidade linear e robusteza térmica abrem verdadeiras perspetivas para a utilização de compósitos baseados no LNO e GPO em diversas aplicações. Eventualmente, compósitos bi-camadas contendo lâminas PEs com bidomínios de LNO com corte 127ºY foram estudados tanto teoricamente como experimentalmente. Estas lâminas de LNO possuem uma estrutura de bidomínios com vetores de polarização espontânea opostos ao longo da direção da sua espessura (i.e. uma estrutura de macrodomínios ferroelétricos “head-to-head” ou “tail-to-tail”) Medições de impedância, efeito ME e densidade de ruido magnético equivalente foram realizadas nos compósitos operando sob condições quasi-estáticas e de ressonância. Coeficientes MEs de até 578 V/(cm.Oe) foram obtidos a ca. 30 kHz sob ressonâncias de dobramento usando cristais PEs com 0.5 mm de espessura. Medições de densidade de ruído magnético equivalente demosntraram valores de até 153 pT/Hz1/2 a 1 kHz (modo quasi-estático) e 524 fT/Hz1/2 sob condições de ressonância. É de esperar que uma otimização adicional das técnicas de fabrico, geometria dos compósitos e circuitos de detenção possa permitir reduzir estes valores até pelo menos 10 pT/Hz1/2 e 250 fT/Hz1/2, respetivamente, e a frequência de ressonância em pelo menos duas ordens de grandeza. Estes sistemas poderão assim no futuro ser usados em sensores vetoriais de campo magnético simples e sensíveis, passivos e estáveis e operáveis a elevadas temperaturas.
This work presents a theoretical and experimental study of the anisotropic magnetoelectric (ME) properties of differently structured composites featuring piezoelectric (PE) single-crystals, mainly lead-free, for diverse multifunctional applications. A linear description of the ME effects in terms of electric, magnetic and elastic fields and material constants is offered. An averaging quasi-static phenomenological model is used to illustrate the relation between the material constants, their anisotropy and the transversal direct ME voltage and charge coefficients. Subsequently, the aforementioned model is employed in the calculation of the maximum expected direct ME voltage coefficient for a series of tri-layered Metglas/Piezocrystal/Metglas composites as a function of the PE crystal orientation. The ME effects are shown to be strongly dependent on the crystal orientation, which supports the possibility of inducing large ME voltage coefficients in composites comprising lead-free PE single crystals such as lithium niobate (LiNbO3; LNO), lithium tantalate LiTaO3, gallium phosphate (GaPO4; GPO), quartz (SiO2), langatate (La3Ga5.5Ta0.5O14) and langasite (La3Ga5SiO14) through the optimization of the crystal orientation. An experimental dynamic lock-in technique for the measurement of the impedance and direct ME effect is presented. The formalism describing this technique and an implemented custom-made setup are introduced. The scheme and characteristics of the latter as well as ways to reduce the noise and the undesirable mutual induction are explored. A comparative study of the direct ME effect in simply bonded tri-layered laminates of Metglas and LNO and PMN-PT crystals is exposed. Though PMN-PT has much larger charge piezocoefficients than LNO, the direct magnetoelectric voltage coefficient is found to be comparable in both trilayers due to the much lower dielectric permittivity of LNO. Calculations show that the ME properties can be significantly improved (up to 500 V/(cm·Oe)) via an optimization of the cut angle of LNO, relative thickness ratio of the ferroelectric/ferromagnetic layers and a better bonding between Metglas and LNO. Advantages of using the LNO ferroelectric in ME composites are discussed. In a subsequent study, the dynamic impedance and ME anisotropic properties of tri-layered composites of Metglas and single-crystalline lead-free PE of LNO and GPO are explored. Measurements have been performed as a function of the crystal-cut, magnitude and orientation of the magnetic bias field and frequency of the modulated field. Greatly enhanced ME coefficients in certain resonance modes are explored, and their relation to the material properties of the crystals and the geometry of the composites is investigated. The largest ME coefficient of up to 249 V/(cm·Oe) was observed for a composite with a 41ºY-cut LNO crystal at 323.1 kHz. We thus show that multilayers comprising lead-free LNO and GPO crystals can exhibit relatively large anisotropic ME effects. We also demonstrate that the control of the PE crystal’s orientation can in principle be used to obtain almost any desired quasi-static and resonant anisotropic ME properties for any given application. Such unique features as chemical stability, linear piezoelectricity and thermal robustness open up a real perspective of using lead-free LNO and GPO based ME tri-layers in various applications. Eventually, bi-layered composites comprising PE bidomain plates of 127ºY-cut LNO were studied both theoretically and experimentally. The LNO plates possessed an engineered bidomain structure with opposite spontaneous polarization vectors along the thickness direction (i.e. a “head-to-head” or “tail-to-tail” ferroelectric macrodomain structure). Impedance, ME effect and equivalent magnetic noise density measurements have been performed on the composites operating under quasi-static and resonant conditions. ME coefficients of up to 578 V/(cm·Oe) were obtained at ca. 30 kHz at the bending resonance using 0.5 mm thick piezoelectric crystals. Equivalent magnetic noise density measurements yielded values down to 153 pT/Hz1/2 at 1 kHz (quasi-static mode) and 524 fT/Hz1/2 under resonant conditions. A further optimization of the fabrication techniques, laminate geometry and detection circuit is expected to allow reducing these values down to at least 10 pT/Hz1/2 and 250 fT/Hz1/2, respectively, and the resonance frequency by at least two orders of magnitude. Such systems may in future thus find use in simple and sensitive, passive and stable, low-frequency and high-temperature vector magnetic field sensors.
APA, Harvard, Vancouver, ISO, and other styles
22

Tao, Ran. "Piezoelectric generators based on semiconducting nanowires : simulation and experiments." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT094/document.

Full text
Abstract:
L’alimentation en énergie des réseaux de capteurs miniaturisés pose une question fondamentale, dans la mesure où leur autonomie est un critère de qualité de plus en plus important pour l’utilisateur. C’est même une question cruciale lorsque ces réseaux visent à assurer une surveillance d’infrastructure (avionique, machines, bâtiments…) ou une surveillance médicale ou environnementale. Les matériaux piézoélectriques permettent d’exploiter l’énergie mécanique inutilisée présente en abondance dans l’environnement (vibrations, déformations liées à des mouvements ou à des flux d’air…). Ils peuvent ainsi contribuer à rendre ces capteurs autonomes en énergie. Sous la forme de nanofils (NF), les matériaux piézoélectriques offrent une sensibilité qui permet d’exploiter des sollicitations mécaniques très faibles. Ils sont également intégrables, éventuellement sur substrat souple.Dans cette thèse nous nous intéressons au potentiel des nanofils de matériaux semi-conducteurs piézoélectriques, tels que ZnO ou les composés III-V, pour la conversion d’énergie mécanique en énergie électrique. Depuis peu, ceux-ci ont fait l’objet d’études relativement nombreuses, avec la réalisation de nanogénérateurs (NG) prometteurs. De nombreuses questions subsistent toutefois avec, par exemple, des contradictions notables entre prédictions théoriques et observations expérimentales.Notre objectif est d’approfondir la compréhension des mécanismes physiques qui définissent la réponse piézoélectrique des NF semi-conducteurs et des NG associés. Le travail expérimental s’appuie sur la fabrication de générateurs de type VING (Vertical Integrated Nano Generators) et sur leur caractérisation. Pour cela, un système de caractérisation électromécanique a été construit pour évaluer les performances des NG réalisés et les effets thermiques sous une force compressive contrôlée. Le module d’Young et les coefficients piézoélectriques effectifs de NF de GaN; GaAs et ZnO et de NF à structure cœur/coquille à base de ZnO ont été évalués également dans un microscope à force atomique (AFM). Les nanofils de ZnO sont obtenus par croissance chimique en milieu liquide sur des substrats rigides (Si) ou flexibles (inox) puis sont intégrés pour former un générateur. La conception du dispositif VING s’est appuyée sur des simulations négligeant l’influence des porteurs libres, comme dans la plupart des études publiées. Nous avons ensuite approfondi le travail théorique en simulant le couplage complet entre les effets mécaniques, piézoélectriques et semi-conducteurs, et en tenant compte cette fois des porteurs libres. La prise en compte du piégeage du niveau de Fermi en surface nous permet de réconcilier observations théoriques et expérimentales. Nous proposons notamment une explication au fait que des effets de taille apparaissent expérimentalement pour des diamètres au moins 10 fois plus grands que les valeurs prévues par simulation ab-initio ou au fait que la réponse du VING est dissymétrique selon que le substrat sur lequel il est intégré est en flexion convexe ou concave
Energy autonomy in small sensors networks is one of the key quality parameter for end-users. It’s even critical when addressing applications in structures health monitoring (avionics, machines, building…), or in medical or environmental monitoring applications. Piezoelectric materials make it possible to exploit the otherwise wasted mechanical energy which is abundant in our environment (e. g. from vibrations, deformations related to movements or air fluxes). Thus, they can contribute to the energy autonomy of those small sensors. In the form of nanowires (NWs), piezoelectric materials offer a high sensibility allowing very small mechanical deformations to be exploited. They are also easy to integrate, even on flexible substrates.In this PhD thesis, we studied the potential of semiconducting piezoelectric NWs, of ZnO or III-V compounds, for the conversion from mechanical to electrical energy. An increasing number of publications have recently bloomed about these nanostructures and promising nanogenerators (NGs) have been reported. However, many questions are still open with, for instance, contradictions that remain between theoretical predictions and experimental observations.Our objective is to better understand the physical mechanisms which rule the piezoelectric response of semiconducting NWs and of the associated NGs. The experimental work was based on the fabrication of VING (Vertical Integrated Nano Generators) devices and their characterization. An electromechanical characterization set-up was built to evaluate the performance and thermal effects of the fabricated NGs under controlled compressive forces. Atomic Force Microscopy (AFM) was also used to evaluate the Young modulus and the effective piezoelectric coefficients of GaN, GaAs and ZnO NWs, as well as of ZnO-based core/shell NWs. Among them, ZnO NWs were grown using chemical bath deposition over rigid (Si) or flexible (stainless steel) substrates and further integrated to build VING piezoelectric generators. The VING design was based on simulations which neglected the effect of free carriers, as done in most publications to date. This theoretical work was further improved by considering the complete coupling between mechanical, piezoelectric and semiconducting effects, including free carriers. By taking into account the surface Fermi level pinning, we were able to reconcile theoretical and experimental observations. In particular, we propose an explanation to the fact that size effects are experimentally observed for NWs with diameters 10 times higher than expected from ab-initio simulations, or the fact that VING response is non-symmetrical according to whether the substrate on which it is integrated is actuated with a convex or concave bending
APA, Harvard, Vancouver, ISO, and other styles
23

Wang, Liuqing. "Etude et développement de nouveaux matériaux et structures électroactifs pour la récupération d'énergie." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0083/document.

Full text
Abstract:
La croissance formidable des dispositifs sans fils et autonomes (réseaux de capteurs, objets connectés…) voit actuellement son développement limité par les batteries qui présente une durée de vie limitée et ainsi soulève des problèmes de maintenance. Afin de palier à cette limitation, l’utilisation de l’énergie directement disponible dans l’environnement immédiat du dispositif, conduisant au concept de « récupération d’énergie », est une voie fortement explorée depuis une dizaine d’années. Ainsi, l’objectif de cette thèse a été de développer de nouvelles techniques et/ou d’utiliser de nouveaux principes de conversion afin de proposer des alternatives aux techniques de récupération d’énergie classiques. Dans un premier temps, l’optimisation de récupérateurs électrostatiques a été étudiée. Les performances de ces systèmes étant fortement liées à la variation de capacité, une structure fractale, permettant un accroissement important des surfaces en regard entre deux électrodes (et donc de la capacité) lorsque ces dernières sont proches, a été proposée et modélisée. Il est ainsi montrer un accroissement significatif des possibilités de récupération d’énergie ; ces dernières étant étroitement liées à l’amplitude de vibration du système. Le second axe de recherche de cette thèse s’est attelé à développer un modèle haut niveau simple mais précis pour les structure utilisant des polymères électrostrictifs fonctionnant en flexion. Une analyse énergétique a permis de mettre en place un modèle électromécanique masse-ressort-amortisseur couplé avec une source de courant contrôlée par les excitations mécaniques et électriques du système, permettant ainsi une conception plus aisée du microgénérateur. Enfin, la dernière partie de cette thèse s’est intéressée à la conversion d’énergie thermique utilisant la variation de perméabilité des matériaux ferromagnétiques, ouvrant de nouvelles possibilités de conversion de l’énergie. En particulier, une technique simple et autonome consiste à créer un champ magnétique de polarisation à l’aide d’un aimant, permettant une variation du flux magnétique lors d’un changement de température, qui peut être converti sous forme électrique à l’aide d’un bobinage
This thesis has been devoted to electrostatic mechanical energy harvesting based on capacitors inspired by fractal geometry, to mechanical energy harvesting based on beams with electrostrictive polymers, and to thermal energy harvesting based on ferromagnetic materials. For electrostatic energy harvesting without electrets, interdigitated capacitors are usually applied as in-plane overlap varying and in-plane gap closing electrostatic generators. In consideration of the limit of aspect ratio for fingers in the capacitor, we would like to improve the capacitor configuration by taking advantage of self-similarity patterns. The concept is to gradually add fingers of smaller widths between original ones to form a mountain-shape capacitor. According to the different width ranges of capacitors, they are classified as of different orders whose performances vary with the vibration amplitude. Harvested energy over one cycle for capacitors of order 1, 2 and 3 has been demonstrated by theoretical and FEM results. In application, the order of capacitor needs to be properly chosen to maximize the harvested energy. Electrostrictive polymer (polyurethane) has been utilized along with a beam to perform mechanical energy harvesting. Two models have been analyzed: clamped-free beam with a polymer film attached at the clamped end, clamped-free bimorph beam. The simple model for electrostrictive devices under flexural solicitation is set up on the base of analysis of energy conversion and it shows that the electrostrictive system can be reduced to a simple spring-mass-damper system with a quadratic dependence with the applied voltage on the mechanical side and to a current source controlled by the applied voltage with a capacitive internal impedance on the electrical side. Experiments based on the clamped-free beam with a polymer film attached to the clamped end have been carried out to evaluate the mechanical to electrical conversion. The thermal energy generator is based on a ferromagnetic material, a magnet and a coil. As the magnetic permeability of ferromagnetic materials encounters drastic variation around the Curie temperature, the concept of the generator is to take advantage of the permeability variation caused by temperature decrease to generate sharp variation in magnetic flux which induces a current in the coil. According to theoretical results, the generated current is closely related to the temperature variation and the variation velocity. Experiments have been carried out on Ni30Fe of which the Curie temperature is 55 ºC. When the temperature decreases from 20.5 ºC to -42.4 ºC, the maximum power is about 4×10^(-7)W with the load to be 2 Ω
APA, Harvard, Vancouver, ISO, and other styles
24

Hsieh, Meng-Jung, and 謝孟融. "A Study on Electromechanical Materials for Ship Vibration Energy Harvesting." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/a64au8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

ELAHI, HASSAN. "Piezoelectric energy harvesting by aeroelastic means." Doctoral thesis, 2020. http://hdl.handle.net/11573/1364130.

Full text
Abstract:
For the last few decades, piezoelectric (PZT) materials have been widely used in the field of micro/nano-electromechanical systems. One of the most important applications of the PZT material is energy harvesting by absorbing ambient energy from the operational conditions and converting it into electrical energy. This energy can be used to operate sensors and actuators. Moreover, it can be stored in batteries for later tasks. In this thesis, the harvester absorbs energy from the airflow, thanks fluid-structure interaction (FSI), and converts it into useful electrical energy. To analyze FSI, it is important to consider the whole dynamics of the system formed by the structure and the flow i.e., the aeroelastic system rather than considering them as two different systems. This coupling, from the mathematical point of view, occurs because the natural boundary condition of the structure is defined by the flow pressure which is mutually influenced by the structure. This leads to a very complex phenomenon that is intrinsically non-stationary and it is no longer possible to study it by considering the structure and the flow separately. The aeroelastic system remains stable up to a critical velocity of the flow known as flutter velocity which depends on the following media and the mechanical properties of the surrounding system. After this particular velocity, the aeroelastic system is no longer stable in its unperturbed condition. The system can no longer be considered as linear and stable oscillations arise, the so-called Limit Cycle. Indeed, the interaction of the fluid in the form of airflow with structure i.e., airfoil will transfer oscillations to the PZT which will result in energy harvesting. In the present work, the possibility of extracting energy by means of PZT transduction from an aeroelastic behavior, known as the Limit Cycle Oscillation (LCO), is investigated analytically, numerically and experimentally. A suitably designed aeroelastic device which is based on the use of PZT components is presented thanks to the flag-flutter phenomenon. The presented harvester is studied from the analytical, numerical and experimental points of view. A nonlinear piezoelectric aeroelastic energy harvester (PAEH) is modeled based on the FSI that represents an important area of research for the development of innovative energy harvesting solutions. This PAEH operates on LCOs that arise after the flutter velocity. The aim of this research is to study and design a nonlinear aeroelastic energy harvester. The PZT transduction from the Limit Cycle is investigated. Particular emphasis is placed on demonstrating a correct model of unsteadiness of aerodynamics. The unsteady aerodynamic model is a critical ingredient for a sound prediction of the nonlinear behavior of an aeroelastic system. Thus, it plays a vital role in the correct evaluation of the performance of an energy harvester based on the flutter phenomenon. Moreover, it is shown that if the unsteady nature of aerodynamics is not taken into account, the evaluation of the system stability margins is totally incorrect, even if a quasi-steady hypothesis is considered. Therefore, it is emphasized that the determination of the aerodynamic model is necessary for the correct prediction of PAEH performance. Indeed, harvesting performances, flutter boundaries, aeroelastic modes, and LCOs amplitude predicted by different models, are compared with the experimental data provided by wind tunnel tests. The present harvester has various applications in the field of aerospace engineering. As a result, it is shown that the overall system is suitable for energy harvesting and can be utilized to drive microelectronics i.e., wireless sensors in sub-orbital missions, launchers, space vehicles and in various aerospace applications.
APA, Harvard, Vancouver, ISO, and other styles
26

Cheng, YaLun, and 鄭雅倫. "Electromechanical efficiency improvement of electrode design in series piezoceramic bimorph for energy harvesting." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/37505683755369490325.

Full text
Abstract:
碩士
國立臺灣科技大學
機械工程系
104
The energy harvesting systems of piezoelectric material are investigated on the electromechanical coupling coefficient by segmented electrode in this study. The piezoceramic plate and bimorphs are used to perform the vibration characteristics by experimental measurements and finite element method (FEM). Thereafter, the dynamic characteristics and the electromechanical coupling efficiency of the piezoelectric energy harvesting system are studied by the electrode design method for single-layer piezceramic plate and for piezoelectric bimorphs in series-electrically connection. This study thoroughly analyzed vibration dynamic characteristics of piezoelectric materials by experimental measurements and numerical calculations. Several experimental techniques are used to measure the dynamic characteristics of piezoelectric materials. First, the full-filed optical technique, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), can measure simultaneously the resonant frequencies and mode shapes for out-of-plane and in-plane vibrations. Second, the pointwise measurement system, laser Doppler vibrometer (LDV), can obtain resonant frequencies by dynamic signal swept-sine analysis. Third, the correspondent in-plane resonant frequencies and anti-resonant frequencies are obtained by impedance analysis. The experimental results of vibration characteristics are verified with numerical calculations. After the dynamic characteristics of piezoelectric materials are analyzed in converse piezoelectric effect, the piezoelectric materials are excited by shaker to generate the electric voltage and applied on the stimulation of LED. It has excellent consistence between resonant frequencies and mode shapes on the vibration characteristics by experimental measurements and finite element numerical calculations. In this study, the Electrical Potential Gradient(EPG)and Electrical flux vector and magnitude (EFLX ) calculated by FEM is proposed to evaluate the electromechanical coupling efficiency of piezoceramic plate on the specific vibration mode. The correspondent electrode configuration, which is designed by EPG and EFLX, can produce the best electromechanical transfer both in direct and converse piezoelectric effects. Finally, the series piezoelectric bimorphs in series connection can use electrode design method to find the best electromechanical transfer efficiency of each resonant frequencies. It is concluded that the vibration characteristics of piezoelectric materials in electrode design have excellent consistence determined by experimental measurements and FEM.
APA, Harvard, Vancouver, ISO, and other styles
27

Chen, Kuan-Ting, and 陳冠廷. "A Study of Electromechanical Behavior of Piezoelectric Energy-Harvesting System Using Finite Element Method." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/29135551772977378470.

Full text
Abstract:
碩士
國立臺灣大學
應用力學研究所
99
The research of energy harvesting from environmental resources has received increasing attention due to the decreasing supply of fossil energy. With the advances of MEMS technology and the reduction of power requirement in electronic devices, harvesting energy from vibration sources becomes achievable. This thesis studies the vibration-based piezoelectric energy harvesting based on the finite element simulation. First, the mathematical model is established using the force balance principle and the piezoelectric governing equations. Second, the finite simulation is validated by a series of experiment. The main result is the investigation of the frequency response of the piezoelectric cantilever beam endowed with the standard interface. As the current commercial finite element codes are not able to be integrated with the circuit simulators, we propose an “Equivalent Impedance” method to resolve this difficulty. The results are consistent with the theoretical predictions and agree well with experimental observations. The effect of geometry of cantilever configurations on harvested power is also studied.
APA, Harvard, Vancouver, ISO, and other styles
28

CHERAGHI, BIDSORKHI HOSSEIN. "Large Scale Production of Porous and Non-Porous PVDF/GNPs Nanocomposites for Electrical and Electromechanical Applications." Doctoral thesis, 2018. http://hdl.handle.net/11573/1544693.

Full text
Abstract:
In this thesis work, PVDF/GNP nanocomposites have been investigated, focusing on electrical, electromechanical, and electromagnetic applications. PVDF/GNP nanocomposites comprise a new generation of multifunctional materials that combine the properties of PVDF and of GNPs. In particular, different nanocomposites made of PVDF filled with different weight concentrations of GNPs were fabricated, without any chemical modification or functionalization, either on GNPs or on polymer chains. Thus, this work can open new perspectives in the use of graphene-based nanofillers in polymer composites, since no chemical modification or functionalization of graphene is needed. Furthermore, the effect of GNPs on morphology, electrical, electromagnetic, mechanical, and electromechanical properties of PVDF/GNP nanocomposites have been studied. This thesis is organized into two parts. The first one consists of five chapters and deals with the PVDF/GNP nanocomposite film production and characterization. In the first Chapter, short overviews of GNPs and PVDF are provided, focusing on their structure, main properties, and synthesis techniques. In Chapter 2 the best time-temperature combination in the PVDF-film preparation process is discussed. This combination is very important for the PVDF film structure. Then, GNP/PVDF nanocomposites were fabricated via the solution mixing method. It was found that the addition of GNP in PVDF has a strong effect on the conductivity of the nanocomposite. In particular, when 2wt % GNP is added in the PVDF polymer matrix, the electrical conductivity of nanocomposites is around 16 orders of magnitude greater than the one of pure PVDF. In Chapter 3, the nucleation effect of unmodified GNPs on PVDF/GNP composite films was investigated. To the best of our knowledge, this is the first study focused on the use of GNPs without any chemical modification or functionalization as nucleation agents for β-phase formation enhancement. Furthermore, the morphological, electrical, mechanical and electromechanical properties of film nanocomposites were significantly affected by the nucleation effect of GNPs on polymer chains. Chapter 4 deals with the evaluation of the piezo-resistive properties of PVDF composite films filled with GNPs. The samples have thickness in the range of 20-30 µm and they are characterized by high flexibility and stability, and by remarkable chemical and physical resistances. The piezo-resistive behavior of the PVDF/GNP composite films filled at 1.5% and 2% wt has been studied under quasi static and cyclic flexural loadings. In both cases, the produced films show a stable and repeatable response to the applied flexural strain. In particular, the computed sensitivity at a strain of 1.5% is nearly 15 for the PVDF/GNP film loaded at 1.5% wt. On the other hand, Chapter 5 deals with the piezoelectric response, measured through the piezoresponse force microscopy (PFM). PFM investigations have been adopted to assess the piezoelectric properties of the PVDF/GNP nanocomposites at the nanoscale. The piezoelectric responses of the different samples were compared: neat PVDF, PVDF nanocomposite filled with GNP at 0.3 wt%, 0.5 wt% and 0.7 wt%. The enhancement of the piezoelectric response of the PVDF / GNP nanocomposite can be explained assuming that GNPs induce the formation of the β-phase in PVDF, as shown elsewhere. The results show a qualitative correlation between induced β-phase, as assessed through FT-IR measurements, and intensity of the measured piezoelectric response, resulting from the PFM analysis. The second part of the thesis consists of two chapters and is focused on PVDF/GNP nanocomposites for electromagnetic and power generation applications. Chapter 6 deals with the synthesis and characterization of 3D porous graphene nanocomposite aerogels for electromagnetic applications. The produced nanocomposites are morphologically and electrically characterized, and their relative complex permittivity is measured in the frequency range of 8-18 GHz. Finally, in Chapter 8, a novel flexible and washable membrane for renewable energy production is investigated. In particular, an aluminum-PVDF/GNP membrane saline battery is designed, fabricated, and characterized. It is noticed that the voltage generated is quite stable with the time since voltage variations are visible only at the beginning of the measurements. An almost constant voltage of 0.8 V was measured in the matching condition, i.e. when the cell is loaded on a 470 kΩ resistance.
APA, Harvard, Vancouver, ISO, and other styles
29

Kuan-WeiChen and 陳冠維. "Co-Simulation of FEM-Analytic Method-SPICE for Electromechanical Coupling Systems Applying to Optimal Design of High-Power Density Piezoelectric Energy Harvesting Modules." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/3x7g9c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

FORTUNATO, MARCO. "Production and characterization of ZnO/Graphene devices for energy harvesting." Doctoral thesis, 2019. http://hdl.handle.net/11573/1237548.

Full text
Abstract:
In this thesis, different types of innovative highly performing piezoelectric nanomaterials and nanocomposites have been synthesized and characterized for energy harvesting application. In order to evaluate the piezoelectric properties of the produced materials, a novel approach to quantitatively evaluate the effective piezoelectric coefficient d33, trough Piezoresponse Force Microscopy (PFM), has been developed. PFM is one of the most widely used techniques for the characterization of piezoelectric materials at nanoscale, since it enables the measurement of the piezo-displacement with picometer resolution. PFM is a non-invasive and easy to use test method; it requires only a bottom electrode (no need of a top-electrode deposition over the material under test), thus considerably simplifying the test structure preparation. In particular, in order to have a quantitative information on the d33 a calibration protocol was developed. To get a macroscale characterization of the piezoelectric coefficient, the PFM signal is averaged over different areas of the sample. The proposed method allows to precisely evaluate the piezoelectric coefficient enabling a proper comparison among the different materials analysed. Two different classes of piezoelectric materials have been synthesized and characterized: zinc oxide nanostructures, in particular zinc oxide nanorods (ZnO-NRs) and zinc oxide nanowalls (ZnO-NWs), polyvinylidene fluoride (PVDF) nanocomposites films. The produced piezoelectric materials were fabricated using process which are cost-effective, time-consuming and easy to scale-up. The ZnO nanostuctures were grown by chemical bath deposition (CBD), that guarantees high deposition rate on a wide variety of substrates. PVDF nanocomposite films were produced with a simple solution casting method, without the need of subsequent electrical poling step. To enhance the piezoelectric properties of PVDF films we investigated different PVDF nanocomposite films: PVDF filled with Graphene nanoplatelets (GNPs) or with ZnO-NRs; PVDF filled with different types of hexahydrate metal-salts (HMS); PVDF filled with HMS in combination with nanofillers, like GNPs or ZnO-NRs. We found that the piezoelectric coefficient of the ZnO-NRs is (7.01±0.33) pm/V and (2.63±0.49) pm/V for ZnO-NWs. The higher piezoelectric response of ZnO-NRs is believed to be due to a better crystallinity and a less defectiveness of the ZnO-NRs if compared to the ZnO-NWs, as it has been confirmed by X-ray diffraction (XRD) spectra and by photoluminescence spectroscopy (PL) measurements. The neat PVDF show a d33 limited to 4.65 pm/V; when the nanofillers are added the d33 increases up to 6 pm/V. This value reaches 8.8 pm/V when a specific hexahydrate metal-salts: [Mg(NO3)2∙6H2O] is dispersed in the PVDF polymer matrix. From the comparative analysis of the synthesized materials we found that the sample produced using the dissolution of HMS in PVDF shows the best piezoelectric response (8.8 pm/V) and the most attractive structural and mechanical properties to fabricate a flexible nanogenerators. Therefore, a porous piezoelectric HMS-PVDF nanocomposite film has been used as active material to fabricate flexible nanogenerator. To build such a device, graphene-gold flexible top electrodes were developed. The bilayer electrode structure avoids short circuits between top and bottom electrodes, observed in the absence of graphene interlayer. The nanogenerator was tested using a commercial mini-shaker and operated successfully. The piezoelectric coefficient determined from the electromechanical tests was 9.00 pm/V, which is in good agreement with the one (8.88±3.14) pm/V measured through PFM on the same PVDF film without top electrode. We also measured the piezoelectric coefficient of PVDF using PFM with and without top electrode and both values were found to be in close agreement. This finding suggests that the local characterization using PFM is also a good representation of the global piezoelectric properties of the samples. The progress on advanced piezoelectric materials reported in this work opens new opportunities to fabricate energy harvesters and sensors for wearable and smart clothing applications.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography