Dissertations / Theses on the topic 'Electromagnetism and gravity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 dissertations / theses for your research on the topic 'Electromagnetism and gravity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Giannopoulos, Araham Athanassiou. "On the unification of gravity and electromagnetism." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338737.
Full textHelfer, A. D. "A new approach to curved twistor spaces." Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370255.
Full textMackman, Stephen William. "Gauge fields and quantum theory." Thesis, Durham University, 1996. http://etheses.dur.ac.uk/5183/.
Full textClark, Simon J. "Perturbative gravitation and gravito electromagnetism." Thesis, Lancaster University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250544.
Full textVeilleux, Douglas L. "Melting in a low gravity environment with applied electromagnetic fields /." View online ; access limited to URI, 2005. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3186925.
Full textHuo, Yunlong. "Finite element modeling of internal flow and stability of droplets levitated in electric and magnetic fields." Online access for everyone, 2005. http://www.dissertations.wsu.edu/Dissertations/Summer2005/y%5Fhuo%5F083005.pdf.
Full textLeong, Jonathan Ryan Kyoung Ho. "Characterization of the Polarization and Frequency Selective Bolometric Detector Architecture." Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1232487119.
Full textLemberger, Benjamin Kurt. "The one place we're trying to get to is just where we can't get: algebraic speciality and gravito-electromagnetism in Bianchi type IX." Oberlin College Honors Theses / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin1400163799.
Full textMohammadi, Soroor. "Processing and Modeling of Gravity, Magnetic and Electromagnetic Data in the Falkenberg Area, Sweden." Thesis, Uppsala universitet, Geofysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-232714.
Full textCabral, Francisco Tenreiro Oliveira. "Geometrical methods in electromagnetism and gravitation: gravitoelectromagnetism and gravity with torsion (with cosmological applications)." Master's thesis, 2012. http://hdl.handle.net/10451/9264.
Full textPrincipais motivações que orientam a linha de investigação na qual a tese se insere: - Aprofundar o estudo da relação íntima entre geometria e física; - Estudar as analogias e o acoplamento entre gravidade e electromagnetismo usando métodos geométricos, compreendendo a possibilidade de importantes aplicações teóricas e tecnológicas, podendo mesmo ser relevante para a astrofísica, a cosmologia e, eventualmente, no caminho para uma teoria consistente da gravidade quântica; - Estudar o gravitoelectromagnetismo e suas aplicações astrofísicas e eventualmente tecnológicas; - Explorar a noção de torsão em geometria diferencial e sua importância em física, nomeadamente no âmbito das teorias de gravitação. Enquadramento geral e tópicos principais da dissertação. Relação entre geometria e Natureza - relação entre geometria e física. • Importância dos métodos geométricos no estudo do campo eletromagnético e da gravidade e na exploração das analogias e acoplamento entre estas duas interações: • Axiomática do electromagnetismo; • Gravitoelectromagnetismo; • Acoplamento entre gravidade e electromagnetismo; • Gravidade com torsão: - Relevância teórica. Diferentes modelos; - Alguns modelos cosmológicos; - Exploração das analogias entre gravidade e electromagnetismo; - Testes experimentais. A questão da interpretação do papel das estruturas geométricas do espaço-tempo em física é abordada, realçando algumas reflexões relacionadas com a geometrização da física, motivadas pelo estudo das analogias e acoplamento entre gravidade e electromagnetismo. Neste âmbito a noção da ontologia física do espaço-tempo é brevemente abordada na sua conexão com as teorias unificadas.
Although this work contains many personal investigations, interpretations and ideas, it was mainly constructed as a review compilation on several selected topics concerning the electromagnetic and gravitational studies using geometrical methods. The selected topics and their sources reflect the author’s interests and were compiled together and organized into a single framework in order to construct a meaningful and solid line of research on the related topics of gravitation and electromagnetism. One could say that this project fits within the wider scientific arena for research on the relation between geometry and physics and the nature of space and time. Some of the topics addressed, such as the coupling of gravity and electromagnetism, gravitoelectromagnetism and gravity with torsion, are areas of active research from the theoretical side but it’s the author’s conviction that these studies will eventually reveal many astonishing practical (technological) applications. Main motivations and research lines: - To deepen the study on the profound relation between geometry and physics and the nature of space and time; - To study the analogies and physical coupling between gravity and electromagnetism using geometrical methods, considering the possibility of important theoretical (and technological) applications, being relevant for astrophysics, cosmology and, eventually, for the search of a consistent theory of quantum gravity; - To study gravitoelectromagnetism from a theoretical point of view as well as its astrophysical and technological applications; - To explore the notion of torsion in differential geometry and its importance in physics, namely in classical and quantum gravitation, unified theories of interactions and cosmology; - To explore, using the already mentioned analogies, to which extent is it possible to have a geometrical explanation of “inertial forces” (compatible with the equivalence principle), seen as geometrical deformations of space-time, such as curvature and torsion. (Not all of these topics are covered in the present work but these are the main research lines that motivate this and future projects) General conceptual framework and main topics present in this thesis Relation between geometry and physics: Importance of geometrical methods in the study of the electromagnetic and gravitational fields and in the exploration of the analogies and coupling between these physical interactions: - Axiomatic of the electromagnetism; - Coupling between gravity and electromagnetism; - Gravitoelectromagnetism and GP-B experiment; - Gravity with torsion: • Theoretical relevance of extended theories of gravity. Different models with torsion and interpretations; • Some cosmological applications; • Exploration of the analogies and coupling between gravity and electromagnetism. • Testing space-time torsion - The work suggests the idea that the electromagnetic properties of “empty space” might be interpreted as geometrical properties of the space-time continuum and that electromagnetic and gravitational waves should be fundamentally connected and be mutually generated. In this sense, it also reinforces the need to rethink the concept of “vacuum” in physics. It is also briefly explored the possibility of a geometrical description of the electromagnetic field.. - Being essentially devoted to geometrical methods in the study of the electromagnetic and gravitational fields and to the role of space-time (geometrical) structures in these field theories, this work enhances the philosophical debate on the nature of space and time inspired by ideas coming from physics. On the last part it discusses some relevant open questions such as the possibility of a coherent physicalism of space-time and the geometrization of fundamental structures such as Higgs fields.
Speck, Jared R. "On the questions of local and global well-posedness for the hyperbolic PDEs occurring in some relativistic theories of gravity and electromagnetism." 2008. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17393.
Full textKuchynka, Martin. "Univerzální řešení v gravitaci, elektrodynamice a neabelovských kalibračních teoriích." Doctoral thesis, 2020. http://www.nusl.cz/ntk/nusl-437536.
Full textBracker, Gwendolyn. "Computational Fluid Dynamics Models of Electromagnetic Levitation Experiments in Reduced Gravity." 2019. https://scholarworks.umass.edu/masters_theses_2/821.
Full textCosta, Luís Filipe de Pinho Oliveira e. "General Relativity in the Framework of exact gravito-electromagnetic analogies." Tese, 2012. https://repositorio-aberto.up.pt/handle/10216/64897.
Full textCosta, Luís Filipe de Pinho Oliveira e. "General Relativity in the Framework of exact gravito-electromagnetic analogies." Doctoral thesis, 2012. https://repositorio-aberto.up.pt/handle/10216/64897.
Full text