Academic literature on the topic 'Electromagnetic therapy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electromagnetic therapy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electromagnetic therapy"
Barker, A. T. "Electromagnetic therapy." Journal of Biomedical Engineering 12, no. 1 (January 1990): 85. http://dx.doi.org/10.1016/0141-5425(90)90121-3.
Full textLightwood, R. "Electromagnetic therapy." Journal of Biomedical Engineering 12, no. 1 (January 1990): 85–86. http://dx.doi.org/10.1016/0141-5425(90)90122-4.
Full textMarkov, Marko S., and Agata P. Colbert. "Magnetic and electromagnetic field therapy." Journal of Back and Musculoskeletal Rehabilitation 15, no. 1 (July 1, 2000): 17–29. http://dx.doi.org/10.3233/bmr-2000-15103.
Full textKITAGAWA, Fumio. "Dovelopment of Pulsed Electromagnetic Therapy." Journal of the Society of Mechanical Engineers 94, no. 876 (1991): 940–42. http://dx.doi.org/10.1299/jsmemag.94.876_940.
Full textLightwood, Ray. "Electromagnetic therapy: science or quackery?" Journal of Biomedical Engineering 11, no. 4 (July 1989): 352. http://dx.doi.org/10.1016/0141-5425(89)90072-1.
Full textMclntosh, Jeanne. "Electromagnetic Energy Exonerated." Physiotherapy 80, no. 4 (April 1994): 266. http://dx.doi.org/10.1016/s0031-9406(10)61322-3.
Full textLow, JL. "Pulsed Electromagnetic Fields." Physiotherapy 89, no. 1 (January 2003): 71. http://dx.doi.org/10.1016/s0031-9406(05)60689-x.
Full textGeorge, Mark S. "Current state of electromagnetic neuromodulation therapy." Brain Stimulation 14, no. 6 (November 2021): 1735. http://dx.doi.org/10.1016/j.brs.2021.10.487.
Full textDiLazzaro, Vincenzo. "Cellular mechanisms of electromagnetic neuromodulation therapy." Brain Stimulation 14, no. 6 (November 2021): 1734. http://dx.doi.org/10.1016/j.brs.2021.10.485.
Full textGoats, G. C. "Pulsed electromagnetic (short-wave) energy therapy." British Journal of Sports Medicine 23, no. 4 (December 1, 1989): 213–16. http://dx.doi.org/10.1136/bjsm.23.4.213.
Full textDissertations / Theses on the topic "Electromagnetic therapy"
Jiang, Yuxiang. "A Unipolar Pulse Electromagnetic Field Apparatus for Magnetic Therapy: Design, Simulation and Development." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37854.
Full textBanyard, Henry. "Effects of pulsed electromagnetic field therapy on symptoms associated with eccentric exercise-induced muscle damage." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2013. https://ro.ecu.edu.au/theses/705.
Full textSereni, Elettra. "Study on cellular and molecular mechanisms underline the biological effects of extremely low frequency electromagnetic fields (ELF EMFs)." Doctoral thesis, Università di Siena, 2018. http://hdl.handle.net/11365/1046221.
Full textHANNA, REEM. "ELECTROMAGNETIC MODELING FOR THE DEVELOPMENT AND OPTIMIZATION OF DIFFERENT DEVICES TO SUPPORT BONE REGENERATION." Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/1002772.
Full textLIMA, FILHA ELIANA R. "Otimização de parâmetros de transferência in vivo do gene do hormônio de crescimento visando a correção fenotípica de camundongos anões." reponame:Repositório Institucional do IPEN, 2016. http://repositorio.ipen.br:8080/xmlui/handle/123456789/26805.
Full textMade available in DSpace on 2016-11-11T11:03:59Z (GMT). No. of bitstreams: 0
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
A deficiência de hormônio de crescimento (DGH) é tratada convencionalmente com repetidas injeções do hormônio recombinante. Este trabalho teve como objetivo estabelecer uma alternativa de tratamento baseada na transferência dos genes do hormônio de crescimento humano (hGH) ou de camundongo (mGH), em camundongos anões lit/lit ou lit/scid, mediante administração de DNA plasmidial associada à eletrotransferência, com a finalidade de atingir a máxima recuperação de crescimento em comparação ao camundongo normal (catch-up growth). Inicialmente foi realizada a administração do plasmídeo contendo o gene do mGH no músculo quadríceps exposto ou tibial anterior (TA) não exposto. Utilizando diferentes condições de eletrotransferência, baseadas em pulsos alternados de baixa (100 V/cm) e alta (1000 V/cm) voltagem (HV/LV, HV/8LV) ou em pulsos seguidos de baixa voltagem (8 pulsos de 150 V/cm), o músculo TA na condição HV/LV apresentou os maiores níveis de expressão de mGH: 6,7 ± 2,5 ng/mL. O tempo de exposição e a quantidade da enzima hialuronidase (HI) necessária para a eletrotransferência foram também analisados. O tempo de 30 minutos e a dose de 20 U de HI proporcionaram os melhores resultados de expressão. Diferentes quantidades de DNA foram também testadas, mas a administração de 50 μg DNA/animal foi confirmada como a melhor. Na padronização do volume de solução do plasmídeo administrado no TA, foi observado que a injeção de 20 μL de DNA apresentou expressão significativamente maior da proteína em comparação a de 10 μL. Buscando uma maior expressão de GH, foi realizado experimento adicionando poli-L-glutamato ao diluente do DNA, comparando também diferentes condições de eletrotransferência (HV/LV e 375 V/cm). A condição de 375 V/cm, sem a adição do polímero, proporcionou as maiores concentrações, tanto de hGH como de mGH, no soro de camundongos lit/scid e lit/lit, respectivamente. Quando utilizados 3 pulsos de 375 V/cm e a administração do plasmídeo com o gene do mGH em dois locais de cada músculo TA, foram obtidos os mais altos níveis de expressão atingindo 14,7 ± 3,7 ng mGH/mL. Estes foram os parâmetros utilizados em um bioensaio, no qual foi também determinada a medida do comprimento inicial e final do fêmur por radiografia. Neste bioensaio de 36 dias, a curva de crescimento dos camundongos lit/lit tratados foi similar a de camundongos heterozigotos não tratados e os níveis de mGH do grupo DNA foram significativamente maiores (P<0,0002) em relação ao grupo controle. Os camundongos tratados também apresentarem concentração de mIGF-I no soro superior a do grupo controle. Considerando os parâmetros de crescimento avaliados, o grupo tratado com DNA apresentou percentuais de incremento altamente significativos em relação ao grupo controle, com P<0,001 para o peso corpóreo e P<0,002 para o comprimento do corpo, da cauda e para ambos os fêmures, com valores de catch-up da ordem de 79% para o comprimento dos fêmures. Podemos concluir que foi estabelecida uma metodologia eficiente de transferência gênica não viral, que poderá levar a uma completa normalização de crescimento de camundongos anões mediante utilização de animais mais jovens, como mencionado na literatura e em trabalho recente do nosso grupo.
Dissertação (Mestrado em Tecnologia Nuclear)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
FAPESP: 14/07380-6
Peroz, Ingrid. "Untersuchungen zur Diskusverlagerung ohne Reposition am Kiefergelenk." Doctoral thesis, [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972589163.
Full textFlanagan, Shawn D. "Neurological Basis of Persistent Functional Deficits after Traumatic Musculoskeletal Injury." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1469031876.
Full text"The effect of pulsed electromagnetic/magnetic field therapy on tendon inflammation (tendoachilles)." Chinese University of Hong Kong, 1993. http://library.cuhk.edu.hk/record=b5887781.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1993.
Includes bibliographical references (leaves 115-125).
Acknowledgments --- p.I
List of figures --- p.II
List of tables --- p.III
List of graphs --- p.III
Abstract --- p.VIII
Chapter I.CHAPTER ONE --- Introduction --- p.1
Chapter 1.1 --- Electromagnetic / Magnetic field in biological interventions --- p.1
Chapter 1.2 --- Objective of the study --- p.4
Chapter 1.3 --- Hypothesis of the study --- p.5
Chapter II.CHAPTER TWO --- Literature Review --- p.6
Chapter 2.1 --- Inflammation
Chapter 2.1.1 --- Models of studying tendon injuries --- p.6
Chapter 2.1.2 --- Methods of measuring inflammation --- p.7
Chapter 2.1.3 --- Treatments of soft tissue inflammation --- p.9
Chapter 2.2 --- Aspects of electromagnetic and magnetic fields
Chapter 2.2.1 --- Applications of electromagnetic / magnetic fields in soft tissue inflammation --- p.12
Chapter 2.2.2 --- Physiological effects of electromagnetic/magnetic fields
Chapter 2.2.2.1 --- Experiments on inflammation --- p.16
Chapter 2.2.2.2 --- Experiments on soft tissue / tendon injuries --- p.16
Chapter 2.2.2.3 --- Experiments on blood circulation --- p.18
Chapter 2.2.3 --- Experiments with different parameter settings of PEMF / PMF in soft tissue inflammation --- p.19
Chapter 2.2.4 --- Proposed mechanisms of electromagnetic/magnetic fields --- p.22
Chapter III.CHAPTER THREE --- Methods and Materials --- p.23
Chapter 3.1 --- Animal models --- p.23
Chapter 3.2 --- Apparatus --- p.24
Chapter 3.3 --- Treatment Regimen --- p.27
Chapter 3.4 --- Assessments --- p.29
Chapter IV.CHAPTER FOUR --- Histological Assessment --- p.30
Chapter 4.1 --- Introduction --- p.30
Chapter 4.2 --- Methods --- p.31
Chapter 4.3 --- Results --- p.31
Chapter 4.4 --- Discussions --- p.45
Chapter V.CHAPTER FIVE --- Morphometrical analysis on tissue sections with immunochemical staining --- p.51
Chapter 5.1 --- Introduction
Chapter 5.1.1 --- Different approaches in identification of macrophages --- p.51
Chapter 5.1.2 --- Avidin-biotin enzyme complex assay --- p.52
Chapter 5.2 --- Methods --- p.54
Chapter 5.2.1 --- ABC method --- p.54
Chapter 5.2.2 --- Morphometric analysis of tissue sections --- p.55
Chapter 5.2.3 --- Statistical method --- p.56
Chapter 5.3 --- Results
Chapter 5.3.1 --- Immunochemical results --- p.56
Chapter 5.3.2 --- Morphometric results --- p.60
Chapter 5.4 --- Discussions --- p.64
Chapter VI.CHAPTER SIX --- Biochemical Assessments --- p.67
Chapter 6.1 --- Water content
Chapter 6.1.1 --- Introduction --- p.67
Chapter 6.1.2 --- Methods --- p.68
Chapter 6.1.2.1 --- Water content measurement --- p.68
Chapter 6.1.2.2 --- Statistical method --- p.69
Chapter 6.1.3 --- Results --- p.72
Chapter 6.1.4 --- Discussions --- p.77
Chapter 6.2 --- Total collagen content
Chapter 6.2.1 --- Introduction --- p.81
Chapter 6.2.1.1 --- Hydroxyproline as an indicator for collagen content assay --- p.81
Chapter 6.2.2 --- Methods
Chapter 6.2.2.1 --- Hydrolysis method --- p.82
Chapter 6.2.2.2 --- Standard-curve preparation --- p.83
Chapter 6.2.2.3 --- Statstical method --- p.84
Chapter 6.2.3 --- Results --- p.84
Chapter 6.2.4 --- Discussions --- p.89
Chapter VII.CHAPTER SEVEN --- Discussion --- p.92
Chapter VIII.CHAPTER EIGHT --- Summary and Conclusions --- p.103
Appendix A : Histological reagents preparations --- p.106
Appendix B : Staining procedures for standard H & E --- p.107
Appendix C : Immunochemical staining reagents preparations --- p.108
Appendix D : Staining procedure for StreptABComplex / HRP --- p.110
AppendixE : Biochemical reagents and preparations --- p.111
Appendix F : Hydrolysis method for the tendon --- p.112
Appendix G : Standard-curve of hydroxyproline --- p.113
Appendix H : Determination of optimal hours for collagen hydrolysis --- p.114
REFERENCES --- p.115
劉崇顯. "Hemostasis Plug for an Electromagnetic Thermo-therapy and Its Application for Liver Laceration." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/67146463685805300903.
Full textChing-HungLin and 林璟宏. "System Interface Design and Heating Analysis of Electromagnetic Therapy Needle Based Minimum Invasive Treatment in Biological Tissue." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/746nrh.
Full text國立成功大學
電機工程學系專班
101
The idea of minimally invasive electromagnetic thermal ablation therapy is to create an alternating magnetic field in vitro by high-frequency induction heater, and in the magnetic field, the metal needle surrounding the tumor cells can be heated, so as to kill tumor cells and achieve the effect of thermal therapy. The objective of this study was to analyze the temperature data of the metal needle end and point measured in the experiment in order to derive the temperature prediction equation for different currents and depths of therapy. In addition, a man-machine program was designed to allow the doctor to set the time of therapy, choose from the therapy options, monitor the temperature of the metal needle in therapy and preview the heating effect through a graphical interface. Based on the experimental results, we performed nonlinear regression analysis for the experimental data with statistical software and derived the temperature prediction equation for the thyroid needle. Then, the equation was set in the medical Human-Machine interface to allow the medical staff to predict the temperature rise of metal needle before therapy. During the course of the electromagnetic thermal therapy system, temperature feedback control could be performed automatically according to this equation, so as to ensure that the treatment temperature of the metal needle is controlled between 55℃ and 95℃, helping achieve the purpose of therapy more accurately and safely.
Books on the topic "Electromagnetic therapy"
Crocco, Lorenzo, Irene Karanasiou, Michael L. James, and Raquel Cruz Conceição, eds. Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75007-1.
Full textNicky, Cullum, and National Co-ordinating Centre for HTA (Great Britain), eds. Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy. Alton: Core research, on behalf of NCCHTA, 2001.
Find full textNicky, Cullum, Health Technology Assessment Programme, National Co-ordinating Centre for HTA (Great Britain), and HTA Commissioning Board, eds. Systematic reviews of wound care management: (5) beds; (6) compression; (7) laser therapy, therapeutic ultrasound, electrotherapy and electromagnetic therapy. Alton: Core Research on behalf of the NCCHTA, 2001.
Find full textElectricity, fields and waves in therapy. Marrickville, N.S.W: Science Press, 1986.
Find full textDr, Wasserman Eric, Epstein Charles M, and Ziemann Ulf, eds. The Oxford handbook of transcranial stimulation. Oxford: Oxford University Press, 2008.
Find full textDr, Wasserman Eric, Epstein Charles M, and Ziemann Ulf, eds. The Oxford handbook of transcranial stimulation. Oxford: Oxford University Press, 2008.
Find full textMorell, Franz. The MORA concept: Patients' own and coloured light oscillations : theory and practice. Heidelberg: Karl F. Haug Publishers, 1990.
Find full textSubtle energy. Saffron Walden: C.W. Daniel, 1987.
Find full textConceição, Raquel Cruz, Lorenzo Crocco, Irene Karanasiou, and Michael L. James. Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy. Springer, 2018.
Find full textConceição, Raquel Cruz, Lorenzo Crocco, Irene Karanasiou, and Michael L. James. Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy. Springer, 2018.
Find full textBook chapters on the topic "Electromagnetic therapy"
HAZLEWOOD, CARLTON, MARKO MARKOV, and ARTHUR ERICSSON. "ELECTROMAGNETIC FIELD THERAPY: A ROLE FOR WATER?" In BIOELECTROMAGNETICS Current Concepts, 227–40. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4278-7_13.
Full textPersson, Bertil R. R. "Applications and Control of High Voltage Pulse Delivery for Tumor Therapy and Gene Therapy in vivo." In Advances in Electromagnetic Fields in Living Systems, 121–46. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4203-2_4.
Full textTekam, Chandra Kant Singh, Amit Kumar Tripathi, Gaurav Kumar, and Ranjana Patnaik. "Emerging Role of Electromagnetic Field Therapy in Stroke." In Advancement in the Pathophysiology of Cerebral Stroke, 93–102. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1453-7_8.
Full textXiao, S., K. H. Schoenbach, and C. E. Baum. "Focusing Pulsed Electromagnetic Radiation for Therapy and Imaging." In IFMBE Proceedings, 705–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03879-2_197.
Full textZouboulis, Christos C. "Physical Therapy in Dermatology: Cold, Heat, Electromagnetic Radiation." In Braun-Falco´s Dermatology, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-58713-3_118-1.
Full textLuzhnov, P. V., L. A. Shamkina, and S. I. Shchukin. "Multilevel biofeedback technology for electromagnetic therapy of vascular diseases." In IFMBE Proceedings, 392–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03885-3_109.
Full textKaranasiou, Irene, and Maria Koutsoupidou. "Towards Multispectral Multimodal Non-ionising Diagnosis and Therapy." In Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy, 211–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75007-1_8.
Full textZ’Graggen, Werner J., and Claudio Pollo. "Monitoring of Brain Function in Neurointensive Care: Current State and Future Requirements." In Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy, 1–6. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75007-1_1.
Full textScapaticci, Rosa, Mina Bjelogrlic, Jorge A. Tobon Vasquez, Francesca Vipiana, Michael Mattes, and Lorenzo Crocco. "Microwave Technology for Brain Imaging and Monitoring: Physical Foundations, Potential and Limitations." In Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy, 7–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75007-1_2.
Full textÇayören, Mehmet, and İbrahim Akduman. "Continuous Monitoring of Hemorrhagic Strokes via Differential Microwave Imaging." In Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy, 37–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75007-1_3.
Full textConference papers on the topic "Electromagnetic therapy"
Zheng, Yuanjin, Fei Gao, and Xiaohua Feng. "Electromagnetic acoustics towards revolutionary imaging and therapy." In 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2016. http://dx.doi.org/10.1109/iceaa.2016.7731567.
Full textPaulsen, Keith D., Alex Hartov, and Paul M. Meaney. "Electromagnetic methods for thermal therapy monitoring and assessment." In Critical Review Collection. SPIE, 2000. http://dx.doi.org/10.1117/12.375220.
Full textSiyuan Jiang, Xian Zhang, Zhaoyang Yuan, and Xiaokang Wu. "Design and optimization of wireless powered brain photodynamic therapy." In 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7735872.
Full textXi, Tingting, Yan Sun, Lixu Gu, and Minjie Chen. "SurgView-RFT Electromagnetic Navigation System in Trigeminal Ganglion RF Therapy." In 2009 2nd International Conference on Biomedical Engineering and Informatics. IEEE, 2009. http://dx.doi.org/10.1109/bmei.2009.5305668.
Full textLu, Zichen, Xiwei Liu, Yonghong Ma, Jie Wang, Dong Zhang, Zongning Zhang, and Hong Mo. "Study on power output of different wavelength electromagnetic waves in therapy." In 2014 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI). IEEE, 2014. http://dx.doi.org/10.1109/soli.2014.6960685.
Full textSmith, Ryan L., Kristen Lechleiter, Kathleen Malinowski, and Parag Parikh. "Incorporating electromagnetic tracking into respiratory correlated imaging for high precision radiation therapy." In Medical Imaging, edited by Michael I. Miga and Kevin R. Cleary. SPIE, 2008. http://dx.doi.org/10.1117/12.772379.
Full textEtheridge, Michael L., and John C. Bischof. "Investigating Electromagnetic Field, Nanoparticle Design, and Treatment Volume for Magnetic Nanoparticle Thermal Therapy." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80779.
Full textWang, Pengyu, Jinxing Zheng, and Wuquan Zhang. "Research on the Design of Scanning Magnets for Proton Therapy Nozzle." In 2018 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). IEEE, 2018. http://dx.doi.org/10.1109/asemd.2018.8558946.
Full textZhao, Zhuo, Sheng Xu, Bradford Wood, and Zion Tsz Ho Tse. "An Electromagnetic Tracking Needle Clip: An Enabling Design for Low-Cost Image-Guided Therapy." In 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dmd2018-6892.
Full textNoh, Si-Cheol, Hae-Ki Min, Woo-Jin Yu, Moon-Kyu Park, Jang-Woo Kwon, Hong-Ki Min, and Heung-Ho Choi. "Development of Electromagnetic Therapy System with Individually Patterned Protocol for Urine Incontinence Patients." In 2008 International Conference on Biomedical Engineering And Informatics (BMEI). IEEE, 2008. http://dx.doi.org/10.1109/bmei.2008.218.
Full text