Academic literature on the topic 'Electromagnetic measurements'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electromagnetic measurements.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electromagnetic measurements"
Yell, R. "Electromagnetic measurements." IEE Proceedings A Science, Measurement and Technology 139, no. 5 (1992): 213. http://dx.doi.org/10.1049/ip-a-3.1992.0034.
Full textJensen, H. D. "Editorial: Electromagnetic measurements." IEE Proceedings - Science, Measurement and Technology 145, no. 4 (1998): 153. http://dx.doi.org/10.1049/ip-smt:19982116.
Full textHenderson, L. C. A. "Editorial: Electromagnetic measurements." IEE Proceedings - Science, Measurement and Technology 147, no. 4 (July 1, 2000): 173. http://dx.doi.org/10.1049/ip-smt:20000642.
Full textHenderson, Lesley CA. "Editorial: Electromagnetic measurements." IEE Proceedings - Science, Measurement and Technology 149, no. 6 (November 1, 2002): 297–98. http://dx.doi.org/10.1049/ip-smt:20020766.
Full textCheney, M., and G. Kristensson. "Optimal Electromagnetic Measurements." Journal of Electromagnetic Waves and Applications 15, no. 10 (January 2001): 1323–36. http://dx.doi.org/10.1163/156939301x01228.
Full textGradoni, Gabriele, Johannes Russer, Mohd Hafiz Baharuddin, Michael Haider, Peter Russer, Christopher Smartt, Stephen C. Creagh, Gregor Tanner, and David W. P. Thomas. "Stochastic electromagnetic field propagation— measurement and modelling." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2134 (October 29, 2018): 20170455. http://dx.doi.org/10.1098/rsta.2017.0455.
Full textPerov, Sergey Yu, and Olga V. Belaya. "Instrumental assessment of mobile communication base station electromagnetic field exposure." Russian Journal of Occupational Health and Industrial Ecology 60, no. 11 (December 3, 2020): 853–56. http://dx.doi.org/10.31089/1026-9428-2020-60-11-853-856.
Full textKrupka, Jerzy. "Microwave Measurements of Electromagnetic Properties of Materials." Materials 14, no. 17 (September 6, 2021): 5097. http://dx.doi.org/10.3390/ma14175097.
Full textMiszkiewicz, Andrzej, and Krzysztof Tchórzewski. "Levels of Electromagnetic Fields From Rail Vehicles in the Context of Formal Requirements." Problemy Kolejnictwa - Railway Reports 64, no. 187 (June 2020): 109–16. http://dx.doi.org/10.36137/1875e.
Full textBudnarowska, Magdalena, and Jerzy Mizeraczyk. "Use of the waveguide technique to measure the electromagnetic parameters of materials." Scientific Journal of Gdynia Maritime University, no. 115 (September 30, 2020): 7–13. http://dx.doi.org/10.26408/115.01.
Full textDissertations / Theses on the topic "Electromagnetic measurements"
Naftali, Verena Kashikuka. "Implementation of a reverberation chamber for electro-magnetic compatibility measurements." Thesis, Cape Peninsula University of Technology, 2017. http://hdl.handle.net/20.500.11838/2566.
Full textThis research project focuses on the implementation of a Reverberation Chamber (RC) by the transformation of an existing electromagnetically shielded room. The reverberation chamber is a kind of shielded room designed to create a statistically random internal electromagnetic environment. The reverberating environment makes it possible to obtain high field strengths from a relatively low input power. The electric fields in the chamber have to be stirred to achieve a statistically uniform field. The first part of this thesis presents an overview of reverberation chamber principles and preliminary calculations are done: the lowest usable frequency is estimated to be close to 300 MHz from empirical criteria. Modelling of the statistical environment is then presented, where electromagnetic quantities are characterised by probability density functions (Gaussian, Rayleigh and exponential); correlation issues are also presented. Measurements are performed in the frequency range of 800 MHz – 4 GHz, dictated by the antennas available for this research study. An investigation of cable losses is conducted, followed by a discussion on measurement accuracy. Mechanical stirrers are designed and manufactured. Electromechanical components are selected based on the literature study. Measurements are obtained through an automated setup using MATLAB®. To verify that the RC, with its in-house designed mechanical stirrers, is well-operated, the stirring ratio is experimentally determined. After this first test, an exhaustive investigation of probability density functions is conducted, taking into account correlation issues. Measurements show that the quality factor of the chamber is close to 2000 at 3 GHz, and that 60 independent stirrer positions at 4 GHz can be used for statistical analyses. Finally, the uniformity test is performed with an improved accuracy using frequency stirring. In conclusion, the CPUT RC passes the validation procedure according to the IEC 61000-4-21 standard by generating the required field uniformity within the accepted uncertainty level.
Johnstone, Sherri. "Electromagnetic measurements of steel phase transformations." Thesis, Durham University, 2002. http://etheses.dur.ac.uk/3982/.
Full textFreeman, Larry. "PREDICTION AND MEASUREMENT OF RADIATED EMISSIONS BASED ON EMPIRICAL TIME DOMAIN CONDUCTED MEASUREMENTS." Master's thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4232.
Full textM.S.E.E.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering
Azpúrua, Marco A. "Full time-domain electromagnetic interference measurements and applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/587194.
Full textEsta Tesis comprende un compendio de contribuciones hechas por el autor al campo de la tecnología de medición de radiofrecuencia para la compatibilidad electromagnética. En particular, esta Tesis presenta una tecnología de sistemas medición de interferencias electromagnéticas completamente basado en dominio del tiempo (Full TDEMI) y algunas de sus aplicaciones más relevantes. Los sistemas de medición Full TDEMI son una implementación de un receptor de medida basado en FFT que permite el uso de osciloscopios para mediciones de interferencias electromagnéticas. Los sistemas de medición Full TDEMI siguen el enfoque de instrumentación virtual para transformar los osciloscopios de propósito general en un receptor de medida completamente funcional y conforme con la norma CISPR 16-1-1. Por un lado, esto es factible debido a las técnicas específicas de procesamiento de señales aplicadas sobre las adquisiciones en el dominio del tiempo utilizando una capa de software dedicada. Por otro lado, los sistemas de medida Full TDEMI se han evaluado exhaustivamente para caracterizar su rendimiento utilizando procedimientos novedosos de calibración orientados a formas de onda que acortan la brecha entre las magnitudes medidas en el dominio del tiempo y las aquellas procesadas en el dominio de frecuencia. Como resultado, se certifica la conformidad de los sistemas completos de medición TDEMI con respecto a los requisitos definidos en los estándares internacionales paramediciones EMI. Además, se ha demostrado que los sistemas de medición Full TDEMI ofrecen ventajas en comparación con los receptores de barrido convencionales para realizar varias medidas desafiantes típicas de las evaluaciones de emisiones electromagnéticas. Por ejemplo, las capturas de dominio de tiempo posibilitan mediciones de espectro completo que permiten un análisis adecuado de fenómenos transitorios. Del mismo modo, la cantidad de canales disponibles en la mayoría de los osciloscopios hace viables múltiples mediciones síncronas que para registrar las perturbaciones interferentes mediante una combinación de transductores. Algunas de las aplicaciones de la medición EMI multicanal son la evaluación de etapa única de la EMI conducida de todas las líneas de alimentación de los equipos bajo prueba (EUT), la medición instantánea del voltaje del ruido en modo común y en modo diferencial, las mediciones concurrentes de la EMI conducida y radiada y la paralelización de los ensayos de emisiones radiadas con múltiples antenas. Tales métodos de prueba alternativos, han mejorado significativamente el proceso de prueba de EMC en una variedad de industrias al reducir la cantidad de tiempo y los esfuerzos necesarios para realizar una evaluación completa del sistema principalmente debido a las siguientes razones. En primer lugar, las mediciones de EMI en el dominio del tiempo arrojan resultados más rápidos porque el espectro de interferencias se estima simultáneamente para todos los detectores de ponderación estándar necesarios para determinar el cumplimiento de los límites máximos de emisiones definidos en las respectivas normas de producto. En segundo lugar, el número de iteraciones de medición se reduce debido a las posibilidades multicanal y también debido a una identificación ágil del peor caso de las emisiones de un EUT que tiene diferentes modos de funcionamiento. En tercer lugar, el sistema Full TDEMI es una alternativa económica y versátil a los analizadores de espectro en tiempo real más avanzados en lo concerniente a mediciones EMI en el rango de pocos gigahertzios. Desde el punto de vista teórico, los sistemas de medición Full TDEMI han extendido el estado del arte, como en el caso de un par de contribuciones denominadas el detector de máximo esperado y la descomposición empírica de interferencias. El detector de máximo esperado es una medida estadística del nivel más probable de las emisiones pico que se basa en un modelado tiempo-frecuencia de las interferencias medidas utilizando la teoría del valor extremo. Usando la información de variabilidad del nivel de interferencia en cada componente de frecuencia, el detector de máximo esperado se puede usar para estimar el valor de retención máximo (max-hold) equivalente de una interferencia aleatoria. El detector demáximo esperado también proporciona un modelo que cuantifica la incertidumbre de lamedición del detector de picos ante interferencias estocásticas. La descomposición de interferencia empírica (EID) es una implementación modificada de la transformada de Hilbert-Huang con capacidades de sincronización de tiempo que permiten una determinación heurística de patrones oscilatorios característicos sin requerir transformación de dominio ni un conjunto predefinido de funciones base. La descomposición de la interferencia empírica se ha utilizado con éxito para la cancelación del ruido ambiental durante prueba de concepto de mediciones de EMI de al aire libre, obteniendo más de 20 dB de atenuación de las señales habituales de radiodifusión. El fundamento de la cancelación del ruido ambiental mediante EID es la identificación, en el tiempo y en el dominio de la frecuencia, de los modos de emisión intrínsecos que son atribuibles al EUT al restar los modos residuales (ruido ambiental) de los resultados de medición. Las contribuciones mencionadas se distribuyen en cuatro artículos de revista. Los resultados de medición complementarios y las aplicaciones de los sistemas de medición Full TDEMI también se han publicado en conferencias notables en el área. Por los motivos antes mencionados, la tecnología Full TDEMI tiene ventajas significativas para los ensayos, el análisis y la resolución de problemas de EMI. Asimismo, proporciona un enfoque complementario a las mediciones típicas completamente enfocadas en el dominio de la frecuencia y exhibe un nivel de madurez que podría permitir su estandarización en los próximos años.
Mansoor, Hadi. "Microfabricated electromagnetic actuators for confocal measurements and imaging." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44146.
Full textMcAughey, Kevin L. "High precision measurements for NDE using electromagnetic sensors." Thesis, University of Warwick, 2014. http://wrap.warwick.ac.uk/72801/.
Full textKim, Jerry. "Through-the-wall imaging from electromagnetic scattered field measurements." Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion.exe/07Mar%5FKim%5FJerry.pdf.
Full textThesis Advisor(s): Brett Borden, Gamani Karunasiri. "March 2007." Includes bibliographical references (p. 97-99). Also available in print.
Karlsson, Roger. "Theory and Applications of Tri-Axial Electromagnetic Field Measurements." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5916.
Full textBukowski, Edward F., T. Gordon Brown, Tim Brosseau, and Fred J. Brandon. "In-Bore Acceleration Measurements of an Electromagnetic Gun Launcher." International Foundation for Telemetering, 2008. http://hdl.handle.net/10150/606161.
Full textThe US Army Research Laboratory has been involved in the design and implementation of electromagnetic gun technology for the past several years. One of the primary factors of this research is an accurate assessment of in-bore structural loads on the launch projectiles. This assessment is essential for the design of mass-efficient launch packages for electromagnetic guns. If not properly accounted for, projectile failure can result. In order to better understand the magnitude of the in-bore loads, a data-recorder was integrated with an armature and on-board payload that included tri-directional accelerometers and magnetic field sensors. Several packages were launched from an electromagnetic railgun located at Aberdeen Proving Ground, MD. Substantial effort was placed on soft-catching the rounds in order to facilitate data recovery. Analysis of the recovered data provided acceleration and magnetic field data acquired during the launch event.
Dorai, Sriram. "Electromagnetic modelling of UTP cables for non-contact measurements." Thesis, University of Manchester, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.706081.
Full textBooks on the topic "Electromagnetic measurements"
Burnside, C. D. Electromagnetic distance measurement. 3rd ed. Oxford: BSP Professional Books, 1991.
Find full textSusko, Michael. Wind measurements by electromagnetic probes. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Find full textWessel-Berg, Tore. Electromagnetic and Quantum Measurements. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3.
Full text1959-, Cravey Robin Lee, and Langley Research Center, eds. Dielectric property measurements in the Electromagnetic Properties Measurement Laboratory. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Find full textHaus, Hermann A. Electromagnetic Noise and Quantum Optical Measurements. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04190-1.
Full textHubert, Trzaska, and Trzaska Hubert, eds. Electromagnetic measurements in the near field. 2nd ed. Raleigh, NC: SciTech Pub., 2012.
Find full textHaus, Hermann A. Electromagnetic Noise and Quantum Optical Measurements. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
Find full text1935-, Miller E. K., ed. Time-domain measurements in electromagnetics. New York: Van Nostrand Reinhold, 1986.
Find full textGajewski, Juliusz B. Electrostatic induction in two-phase gas-solid flow measurements: 50 years of a measurement method. Wroclaw: Oficyna Wydawnicza Politechniki Wroclawskiej, 2010.
Find full textCruz, J. E. Assessment of error bounds for some typical MIL-STD-461/462 types of measurements. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1986.
Find full textBook chapters on the topic "Electromagnetic measurements"
Ashok Kumar, L., and Y. Uma Maheswari. "Instruments for EMI Measurements." In Electromagnetic Interference and Electromagnetic Compatibility, 191–220. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003362951-6.
Full textHirao, Masahiko, and Hirotsugu Ogi. "Acoustoelastic Stress Measurements." In Electromagnetic Acoustic Transducers, 233–69. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56036-4_12.
Full textFavennec, Pierre-noël. "Electromagnetic Environment." In Measurements using Optic and RF Waves, 1–22. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118586228.ch1.
Full textWessel-Berg, Tore. "Neoclassical Electromagnetics." In Electromagnetic and Quantum Measurements, 39–74. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3_3.
Full textWessel-Berg, Tore. "The Causal Enigma." In Electromagnetic and Quantum Measurements, 1–9. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3_1.
Full textWessel-Berg, Tore. "Questioning Stern-Gerlach." In Electromagnetic and Quantum Measurements, 265–75. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3_10.
Full textWessel-Berg, Tore. "Photon Tunneling—Superluminal Velocity?" In Electromagnetic and Quantum Measurements, 277–87. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3_11.
Full textWessel-Berg, Tore. "Delayed Choice Interferometric Experiments." In Electromagnetic and Quantum Measurements, 289–314. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3_12.
Full textWessel-Berg, Tore. "The Famous EPR Paradox." In Electromagnetic and Quantum Measurements, 315–36. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3_13.
Full textWessel-Berg, Tore. "Quantum Bases-Neoclassical View." In Electromagnetic and Quantum Measurements, 337–61. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1603-3_14.
Full textConference papers on the topic "Electromagnetic measurements"
"Electromagnetic measurements. Microwave measurement." In 2017 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2017. http://dx.doi.org/10.1109/rsemw.2017.8103683.
Full textStecher. "Measurement uncertainty in EMI emission measurements." In Proceedings of International Symposium on Electromagnetic Compatibility. IEEE, 1997. http://dx.doi.org/10.1109/elmagc.1997.617139.
Full textManzur, Tariq, Xuejun Lu, Yifei Li, Michael J. Benker, and Lucio De Pra. "Nanophotonics in electromagnetic measurements." In Quantum Sensing and Nano Electronics and Photonics XVIII, edited by Manijeh Razeghi. SPIE, 2022. http://dx.doi.org/10.1117/12.2601722.
Full text"Session TC3: Electromagnetic Measurements 1." In 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings. IEEE, 2005. http://dx.doi.org/10.1109/imtc.2005.1604098.
Full text"Session TC4: Electromagnetic Measurements 2." In 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings. IEEE, 2005. http://dx.doi.org/10.1109/imtc.2005.1604128.
Full textGao, Xiaofeng, Shihong Yue, Ziqiang Cui, Mingliang Ding, Qi Li, and Huaxiang Wang. "Optimal Measurements of Electromagnetic Flowmeter." In 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2019. http://dx.doi.org/10.1109/i2mtc.2019.8827151.
Full textM. Malik, Qamar, Brigida R.P. da Rocha, Robert Marsden, and Michael S. King. "Permeability Prediction from Electromagnetic Measurements." In 5th International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers, 1997. http://dx.doi.org/10.3997/2214-4609-pdb.299.253.
Full textMoskaletz, Oleg D. "Electromagnetic signals and spectral measurements." In SPIE Proceedings, edited by Vadim E. Privalov. SPIE, 2007. http://dx.doi.org/10.1117/12.725613.
Full textNorgard, J., D. Metzger, R. Sega, M. Harrison, R. Komar, H. Pohle, A. Schmelzel, et al. "Infrared measurements of electromagnetic fields." In 1992 Quantitative InfraRed Thermography. QIRT Council, 1992. http://dx.doi.org/10.21611/qirt.1992.048.
Full textKawaji, Nagashima, Kikuchi, Wakabayashi, Inagaki, Kinoshita, Yoshihiro, and Yamanouchi. "Quantized Hall Resistance Measurements." In Conference on Precision Electromagnetic Measurements. IEEE, 1988. http://dx.doi.org/10.1109/cpem.1988.671305.
Full textReports on the topic "Electromagnetic measurements"
Jones, Chriss A. Stripline resonator for electromagnetic measurements of materials. Gaithersburg, MD: National Bureau of Standards, 1998. http://dx.doi.org/10.6028/nist.tn.1505.
Full textPalacky, G. J., and L. E. Stephens. Electromagnetic Measurements On the Beaufort Shelf, Northwest Territories. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/133567.
Full textMcGahan, Robert V. Scattering Experiments at the Ipswich Electromagnetic Measurements Facility: Swept Bistatic Angle Measurement System. Fort Belvoir, VA: Defense Technical Information Center, April 1991. http://dx.doi.org/10.21236/ada274060.
Full textAurand, J. F. Measurements of transient electromagnetic propagation through concrete and sand. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/380334.
Full textMatthews, P., Y. Kang, T. Berenc, R. Kustom, T. Willke, and A. Feinerman. Electromagnetic field measurements on a mm-wave linear accelerator. Office of Scientific and Technical Information (OSTI), July 1994. http://dx.doi.org/10.2172/10165941.
Full textReil, K. Measurements of the Fluorescence Light Yield in Electromagnetic Showers. Office of Scientific and Technical Information (OSTI), March 2005. http://dx.doi.org/10.2172/839935.
Full textCoburn, William O., Calvin Le, and Harry Martin. Electromagnetic Field Measurements Near a Single-Stage Reconnection Gun. Fort Belvoir, VA: Defense Technical Information Center, April 1995. http://dx.doi.org/10.21236/ada293346.
Full textCamell, D. G., Robert T. Johnk, Galen H. Koepke, David R. Novotny, and Chriss A. Grosvenor. Electromagnetic airframe penetration measurements of a Beechraft Premier IA. Gaithersburg, MD: National Bureau of Standards, 2008. http://dx.doi.org/10.6028/nist.tn.1548.
Full textCamell, D. G., Seturnino Canales, Robert T. Johnk, Galen H. Koepke, David R. Novotny, and Chriss A. Grosvenor. Electromagnetic airframe penetration measurements of the FAA's 737-200. Gaithersburg, MD: National Bureau of Standards, 2010. http://dx.doi.org/10.6028/nist.tn.1549.
Full textSheffield, S. A., R. L. Gustavsen, L. G. Hill, and R. R. Alcon. Electromagnetic gauge measurements of shock initiating PBX9501 and PBX9502 explosives. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/350871.
Full text