Academic literature on the topic 'Electromagnetic invisibility'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electromagnetic invisibility.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electromagnetic invisibility"

1

Kan, Yao, Li Chao, and Li Fang. "Electromagnetic Invisibility of Elliptic Cylinder Cloaks." Chinese Physics Letters 25, no. 5 (May 2008): 1657–60. http://dx.doi.org/10.1088/0256-307x/25/5/037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mitri, F. G. "Active electromagnetic invisibility cloaking and radiation force cancellation." Journal of Quantitative Spectroscopy and Radiative Transfer 207 (March 2018): 48–53. http://dx.doi.org/10.1016/j.jqsrt.2017.12.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weder, Ricardo. "The boundary conditions for point transformed electromagnetic invisibility cloaks." Journal of Physics A: Mathematical and Theoretical 41, no. 41 (September 15, 2008): 415401. http://dx.doi.org/10.1088/1751-8113/41/41/415401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Weder, Ricardo. "A rigorous analysis of high-order electromagnetic invisibility cloaks." Journal of Physics A: Mathematical and Theoretical 41, no. 6 (January 29, 2008): 065207. http://dx.doi.org/10.1088/1751-8113/41/6/065207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kaproulias, S., and M. M. Sigalas. "On the sensitivity of the 2D electromagnetic invisibility cloak." Physica B: Condensed Matter 407, no. 20 (October 2012): 4078–80. http://dx.doi.org/10.1016/j.physb.2012.02.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guo, Zhong Wei, Wen Tao Xu, Hong Feng Li, and Wang Yang Hu. "The Visualization of Electromagnetic Environment for Weapon Equipments." Advanced Materials Research 466-467 (February 2012): 1191–96. http://dx.doi.org/10.4028/www.scientific.net/amr.466-467.1191.

Full text
Abstract:
Aiming at the invisibility of the electromagnetic environment (EME), this paper presents the method to visualize the weapon equipments EME. The visualization can be divided into two steps. Firstly, we can model the weapon equipments EME to get the electromagnetic data by the finite difference time domain(FDTD) and the transformation from the near field to the far field. Secondly, we can render the electromagnetic data by the data field visualization. The experiment shows that this way is feasible and effective.
APA, Harvard, Vancouver, ISO, and other styles
7

Zolla, Frédéric, Sébastien Guenneau, André Nicolet, and J. B. Pendry. "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect." Optics Letters 32, no. 9 (April 3, 2007): 1069. http://dx.doi.org/10.1364/ol.32.001069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Meng, Fan-Yi, Ying Liang, Qun Wu, and Le-Wei Li. "Invisibility of a metamaterial cloak illuminated by spherical electromagnetic wave." Applied Physics A 95, no. 3 (January 27, 2009): 881–88. http://dx.doi.org/10.1007/s00339-009-5092-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sarin, V. P., M. P. Jayakrishnan, P. V. Vinesh, C. K. Aanandan, P. Mohanan, and K. Vasudevan. "An experimental realization of cylindrical cloaking using dogbone metamaterials." Canadian Journal of Physics 95, no. 10 (October 2017): 927–32. http://dx.doi.org/10.1139/cjp-2016-0876.

Full text
Abstract:
The quest for invisibility has inspired a deep ardour in the research community over the past decade. The invention of metamaterials has boosted the research on electromagnetic cloaking due to its unusual electromagnetic parameters under plane wave incidence. In this study, we propose a novel cloaking scheme, using dogbone metamaterials, for effectively routing the incident electromagnetic fields around a target metal cylinder under consideration. Notable reduction in the scattered power is observed from the target in comparison to an uncloaked target. Experiments and simulations validate an effective reduction in the scattering cross section of the target and effective guiding of the incident plane wave around the target.
APA, Harvard, Vancouver, ISO, and other styles
10

Brosa, Ulrich. "Electromagnetic Waves in Variable Media." Zeitschrift für Naturforschung A 67, no. 3-4 (April 1, 2012): 111–31. http://dx.doi.org/10.5560/zna.2011-0069.

Full text
Abstract:
Two methods are explained to exactly solve Maxwell’s equations where permittivity, permeability, and conductivity may vary in space. In the constitutive relations, retardation is regarded. If the material properties depend but on one coordinate, general solutions are derived. If the properties depend on two coordinates, geometrically restricted solutions are obtained. Applications to graded reflectors, especially to dielectric mirrors, to filters, polarizers, and to waveguides, plain and cylindrical, are indicated. New foundations for the design of optical instruments, which are centered around an axis, and for the design of invisibility cloaks, plain and spherical, are proposed. The variability of material properties makes possible effects which cannot happen in constant media, e.g. stopping the flux of electromagnetic energy without loss. As a consequence, spherical devices can be constructed which bind electromagnetic waves
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Electromagnetic invisibility"

1

Зеленський, С. М. "Плащ-невидимка: мрія чи реальність." Thesis, Сумський державний університет, 2015. http://essuir.sumdu.edu.ua/handle/123456789/43598.

Full text
Abstract:
З самого дитинства ми чули про плащ-невидимку з казок або історій і мріяли його мати, але зараз така річ може стати реальністю. Плащ-невидимка - це мантія, що зробить невидимим того, на кому вона одягнута. В ідеалі він повинен виконувати дві функції: робити когось, або щось невидимим для повного діапазону електромагнітних хвиль не зважаючи на кут під яким ці хвилі вкривають предмет; випромінювання, яке проходить через плащ не повинно змінювати своїх початкових характеристик.
APA, Harvard, Vancouver, ISO, and other styles
2

Klotz, Geoffroy. "Revêtements d’optique de transformation en hyperfréquences." Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0126.

Full text
Abstract:
Ce travail de thèse porte sur l'optique transformationnelle et ses applications. Les capes et tapis d'invisibilité, ainsi que les revêtements mimétiques sont étudiés au travers de simulations dans les hyperfréquences à l'aide du logiciel COMSOL Multiphysics. Ces simulations permettent de comprendre les phénomènes en jeu et d'appréhender les difficultés de réalisation expérimentale. Nous abordons divers systèmes et discutons de leurs performances ainsi que de leur faisabilité. La réalisation de revêtements d'optique transformationnelle (OT) est un challenge important, pour lequel nous proposons une architecture des revêtements sous la forme d'une structuration multicouches. Les permittivités diélectriques et perméabilités magnétiques requises dans les revêtements d'OT étant peu communes, une part importante de ce travail s'est concentré sur les métamatériaux constitués de réseaux d'inclusions résonantes. Leur phénoménologie est abordée, ainsi que les techniques d'homogénéisation, permettant de leur affecter des propriétés effectives homogènes. Enfin, nous envisageons l'intégration de matériaux dispersifs en fréquence dans des capes, et proposons une méthodologie permettant aux revêtements de fonctionner sur une large bande fréquentielle
The present thesis work relates to transformational optics and its applications. Invisibility cloaks and carpets, as well as mimetic coatings, are studied using simulations with the commercial software COMSOL Multiphysics in the micro-wave domain. First, these simulations help in the understanding of the phenomena at stake and allow us to evaluate how challenging it would be to develop experimental devices. Based on objective criteria, we consider multiple systems and discuss their efficiency and feasibility. The realization of transformation optics coatings is a difficult challenge, so we suggest a multilayer design for the coatings. As dielectric permittivity and magnetic permeability required in the OT coatings are unusual among natural materials, we worked on resonant metamaterials composed of a lattice of small conducting structures. The physical origin of the phenomenon is investigated, as the homogenization technics allowing computation of effective homogeneous parameters. Finally, we consider the realization of invisibility cloaks using frequency dispersive metamaterials and developed a design allowing broadband operations
APA, Harvard, Vancouver, ISO, and other styles
3

Tichit, Paul-Henri. "Transformations d’espaces et applications électromagnétiques dans les domaines optiques et micro-ondes." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112007.

Full text
Abstract:
Ce travail de thèse constitue une contribution originale et importante à la compréhension de la transformation d’espace et ouvre la voie au design de nouvelles structures éléctromagnétiques. Le couplage entre cette technique innovante et les métamatériaux a permis la réalisation de prototypes aux propriétés uniques. C’est ainsi que nous avons pu concevoir une cape d’invisibilité polygonale, un adapteur de modes ou encore une antenne directive ou isotrope. La fabrication de notre antenne très directive par cette méthode est le seul prototype dans la littérature qui allie le contrôle de la permittivité et la perméabilité à partir de résonnateurs électriques et magnétiques. Ce contrôle ultime de la lumière à partir d’une ingénierie de l’espace trouvera son utilité dans la recherche fondamentale mais aussi pour les ingénieurs et dévellopeurs recherchant plus de précision dans leur conception de dispositifs électromagnétiques
This phD work is an original and important contribution to the understanding of transformation optics and paves the way to the design of new electromagnetic structures. The coupling between this innovative technique and metamaterials has led to prototypes with unique properties. We have thus developed an invisibility polygonal cloak, an electromagnetic taper, a directional antenna and isotropic source. The realization of our high-directive antenna with this method is the only prototype in the literature that combines controlled variations of the permittivity and permeability from electric and magnetic resonators. The ultimate control of light from an engineering space will find its usefulness in fundamental research but also for engineers and developers who are looking for more precision in the design of electromagnetic devices
APA, Harvard, Vancouver, ISO, and other styles
4

JUCA, JOAO MARCOS BREIA. "INVISIBILITY CLOAK AS AN INVERSE PROBLEM IN ELECTROMAGNETISM AND HOMOGENIZATION TECHNIQUES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=25619@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
Invisibilidade sempre mexeu com a imaginação de crianças e adultos. Quem nunca imaginou ser capaz de tornar-se invisível em certas ocasiões? Recentemente essa ideia da ficção científica tomou forma na vida real, e um dos objetivos do presente texto é explicar de uma maneira acessível as principais ideias físicas e matemáticas por trás do conceito de invisibilidade. Pedimos do leitor somente uma modesta familiaridade com Cálculo Vetorial, Séries de Fourier e Álgebra Linear. O objetivo da capa de invisibilidade é tornar um objeto não detectável por meio de energia eletromagnética. A capa é fisicamente realizada por um metamaterial especialmente projetado para redirecionar certas ondas eletromagnéticas irradiadas sobre o objeto. Nesta exposição, usaremos como exemplo a tomografia de impedância elétrica (TIE) como método de detecção e explicaremos como criar uma capa invisível à TIE. Cabe ressaltar que o processamento de imagem através da TIE diz respeito a um problema inverso e, no contexto das equações diferenciais, esse problema envolve, a partir de determinadas simplificações, a equação de Laplace com condições de contorno. Despretensiosamente, optamos pelo caso bidimensional para facilitar a exposição das idéias principais, embora todos os nossos resultados possam ser generalizados em 3 dimensões.
Invisibility has always instigated children and adult s imagination. Who never thought of occasionally being able to turn yourself invisible? Recently, this science fiction idea has taken shape in real life, and one of the objectives of this text is explain the main physical and mathematical ideas behind the invisibility concept, on a comprehensible way. We only require the reader has a modest familiarity with Vectorial Calculus, Fourier Series and Linear Algebra. Invisibility cloak aims to turn an object imperceptible to electromagnetic energy detection. The cloak is made of an especially projected metamaterial that redirects certain electromagnetic waves irradiated over the object. Here we will take as an example electrical impedance tomography (EIT) as a detection method and we will explain how to create an invisible cloak for EIT. It is worth mentioning that image processing through EIT is an inverse problem. Thereby, in the context of differential equations, this problem involves a few simplifications in the Laplace s problem with contours conditions. Unpretentiously, we chose the two-dimensional case to simplify the exposition of the main ideas, although all of our results may be generalized in three-dimensional case.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electromagnetic invisibility"

1

Cai, W., and V. Shalaev. "Transformation Optics and Electromagnetic Cloak of Invisibility." In Optical Metamaterials, 159–95. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1151-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Shuang. "Invisibility Cloak at Optical Frequencies." In Transformation Electromagnetics and Metamaterials, 289–314. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4996-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Brief report on electromagnetic invisibility." In Physics and Applications of Negative Refractive Index Materials, 361–71. CRC Press, 2008. http://dx.doi.org/10.1201/9781420068764.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electromagnetic invisibility"

1

P, Sarin V., Vinesh P. V, Manoj M, and Vasudevan K. "A Miniaturized Electromagnetic Invisibility Cloaking Scheme." In 2020 International Symposium on Antennas & Propagation (APSYM). IEEE, 2020. http://dx.doi.org/10.1109/apsym50265.2020.9350674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tang, Wei, Yan Shi, and Long Li. "Three dimensional electromagnetic invisibility cloak with arbitrary shapes." In 2015 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2015. http://dx.doi.org/10.1109/compem.2015.7052551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xu, Su, Yuyu Jiang, Qinghui Yan, Xiangxiang Cheng, Hongsheng Chen, Hua Chen, Faxin Yu, and Baile Zhang. "Electromagnetic invisibility cloaks based on inverse design method." In 2014 3rd Asia-Pacific Conference on Antennas and Propagation. IEEE, 2014. http://dx.doi.org/10.1109/apcap.2014.6992692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Steel, M. J., Patrick C. Chaumet, and Adel Rahmani. "Radiation dynamics in a discrete electromagnetic invisibility cloak." In 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim. IEEE, 2011. http://dx.doi.org/10.1109/iqec-cleo.2011.6193656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hualiang Zhang, Hao Xin, and R. W. Ziolkowski. "Electromagnetic invisibility cloak with circular-elliptical shaped boundary." In 2009 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE, 2009. http://dx.doi.org/10.1109/aps.2009.5171860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Takano, Yuma, and Atsushi Sanada. "Infinite-Area Isovolumetric Transformation for Electromagnetic Invisibility Cloaks Based on Transformation Electromagnetics." In 2018 48th European Microwave Conference (EuMC). IEEE, 2018. http://dx.doi.org/10.23919/eumc.2018.8541749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Monti, A., M. Barbuto, A. Toscano, and F. Bilotti. "Power-dependent invisibility devices for antenna arrays." In 2019 URSI International Symposium on Electromagnetic Theory (EMTS). IEEE, 2019. http://dx.doi.org/10.23919/ursi-emts.2019.8931450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shengying Liu, Qun Wu, and Kuang Zhang. "Dispersion effect on electromagnetic properties of metamaterials invisibility cloak." In 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC). IEEE, 2011. http://dx.doi.org/10.1109/csqrwc.2011.6036927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dehbashi, Reza, Konstanty S. Bialkowski, and Amin M. Abbosh. "Miniaturizing electromagnetic invisibility cloaks using double near zero slabs." In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2017. http://dx.doi.org/10.1109/apusncursinrsm.2017.8072081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kort-Kamp, W. J. M., F. S. S. Rosa, F. A. Pinheiro, and C. Farina. "Achieving invisibility with a tunable cloaking device." In 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS 2013). IEEE, 2013. http://dx.doi.org/10.1109/metamaterials.2013.6809042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography