Academic literature on the topic 'Electromagnetic interference shield'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electromagnetic interference shield.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electromagnetic interference shield"
PAVLENKO, Yevhen, and Mikhailo STEPANOV. "ELECTROMAGNETIC SHIELDING AS A WAY OF PROTECTING INFORMATION FROM ITS LEAKAGE BY TECHNICAL CHANNELS." Herald of Khmelnytskyi National University. Technical sciences 319, no. 2 (April 27, 2023): 231–39. http://dx.doi.org/10.31891/2307-5732-2023-319-1-240-246.
Full textKim, Tae Wan, Hye Rim Lee, Sung Soo Kim, and Yun Soo Lim. "Electromagnetic Interference Shielding Properties of Carbon Nanotubes Reinforced Composites." Advanced Materials Research 26-28 (October 2007): 305–8. http://dx.doi.org/10.4028/www.scientific.net/amr.26-28.305.
Full textAlegaonkar, Ashwini P., Himangshu B. Baskey, and Prashant S. Alegaonkar. "Microwave scattering parameters of ferro–nanocarbon composites for tracking range countermeasures." Materials Advances 3, no. 3 (2022): 1660–72. http://dx.doi.org/10.1039/d1ma00977j.
Full textGong, Zhentao, Haoting Du, Wenming Wu, Kehan Chen, Jiang Tian, Chengsheng Ji, Dexin Sun, and Yinnian Liu. "Shielding Grounding Optimization Method for Spaceborne Multi-Cable." Applied Sciences 13, no. 6 (March 7, 2023): 3389. http://dx.doi.org/10.3390/app13063389.
Full textMaity, Subhankar, and Arobindo Chatterjee. "Conductive polymer-based electro-conductive textile composites for electromagnetic interference shielding: A review." Journal of Industrial Textiles 47, no. 8 (September 19, 2016): 2228–52. http://dx.doi.org/10.1177/1528083716670310.
Full textTesfalem Berhe, Aron, and Frank Graebner. "New EMC Effects with Multi-layered Type of EM Shield." Journal of CIEES 1, no. 2 (December 22, 2021): 14–17. http://dx.doi.org/10.48149/jciees.2021.1.2.2.
Full textDhawan, S. K., S. Koul, S. Chandra, and S. Venkatachalam. "Conducting Fabrics as a Shield Against Electromagnetic Interference (EMI)." Journal of Coated Fabrics 28, no. 1 (July 1998): 29–36. http://dx.doi.org/10.1177/152808379802800103.
Full textDhawan, S. K., S. Koul, S. Chandra, and S. Venkatachalam. "Conducting Fabrics as a Shield Against Electromagnetic Interference (EMI)." Journal of Coated Fabrics 28, no. 3 (December 1998): 29–36. http://dx.doi.org/10.1177/152808379802800302.
Full textWu, Xiaoshan, Xiaohui Shi, Jin Jia, Heming Zhao, and Xu Li. "Shield Reliability Analysis-Based Transfer Impedance Optimization Model for Double Shielded Cable of Electric Vehicle." Mathematical Problems in Engineering 2021 (February 6, 2021): 1–8. http://dx.doi.org/10.1155/2021/5373094.
Full textHung, Fei Shuo, Fei Yi Hung, Che Ming Chiang, and Truan Sheng Lui. "Building Materials Effects of Al Content and Physical Properties on the Electromagnetic Interference Shielding of Sn Based Coating Thin Layers." Applied Mechanics and Materials 142 (November 2011): 142–51. http://dx.doi.org/10.4028/www.scientific.net/amm.142.142.
Full textDissertations / Theses on the topic "Electromagnetic interference shield"
Chupáč, Michal. "Skener elektromagnetických polí a jeho využití při měření elektromagnetické kompatibility." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220301.
Full textSartin, Antonio Carlos Passos [UNESP]. "Avaliação da suscetibilidade eletromagnética dos cabos metálicos dos sistemas de supervisão, proteção, comunicação e controle de subestações de alta tensão." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/87197.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O presente trabalho possui como foco principal a apresentação de proposições técnicas para a avaliação da suscetibilidade eletromagnética de cabos metálicos isolados, blindados ou não, para atender aos sistemas de supervisão, proteção, comunicação e controle de subestações de alta tensão frente às interferências eletromagnéticas provocadas pelas descargas atmosféricas, manobras de chaveamento, campo magnético na frequência de 60Hz e do efeito corona. Para a realização destas proposições foram analisados e estudados diversos cabos usados em uma subestação de 440kV. A diretriz metodológica adotada nesta pesquisa incorporou simulações de modelo computacional, ensaios laboratoriais recomendados pelas normas e publicações técnicas correlatas com a finalidade de identificar os efeitos provocados pelas interferências eletromagnéticas nesses cabos. Os resultados obtidos conduziram a uma análise da interferência eletromagnética nos diversos cabos avaliados fornecendo, assim, um valor de imunidade de cada cabo estudado. Constatou-se que os cabos sem blindagem devem ser usados com reservas e podem ser instalados em sistemas poucos sujeitos a interferências eletromagnéticas ou promover uma blindagem adicional. Os cabos blindados, menos suscetível a interferências eletromagnéticas, podem ser instalados em pátios de subestações, entretanto devem-se tomar os devidos cuidados com o aterramento da blindagem. Desta forma, a pesquisa realizada contribuiu para o desenvolvimento de um procedimento técnico para o uso adequado de cabos em questão visando minimizar os efeitos provocados pelas interferências eletromagnéticas nos sistemas de supervisão, proteção, comunicação e controle presentes em subestações de alta tensão.
The main focus of this work is the presentation of technical propositions to assessing the electromagnetic susceptibility of isolated metallic cable, shielded or not, in order to comply with the supervision, protection, communication and control systems of high voltage substations in the presence of electromagnetic interferences caused by lightning discharge, switching maneuver, electromagnetic field at 60Hz and corona effect. Several cables used in 440 kV substation were analyzed and studied for accomplishing these propositions. The methodological guideline adopted in this research has included simulations of computational models, laboratorial tests recommended by standards and technical publications correlated in order to identifying the effects provoked by electromagnetic interferences to these cables. The obtained results led to an analysis of the electromagnetic interference in the several cables assessed, thus providing a value of immunity for each cable studied. It was verified that cable without shielding must be employed with restrictions and can be installed in systems which are little subject to electromagnetic interference or to promote an additional shielding. The shielding cables less susceptible to the electromagnetic interference can be installed in substation courtyard; however, it is important to pay special attention to the grounding of the shielding. Thus, this research contributed to the development of a technical proceeding for employing the mentioned cables suitably, aiming at minimizing the effects provoked by the electromagnetic interferences in the supervision, protection, communication and control systems which are present at the high voltage substations.
Sartin, Antonio Carlos Passos. "Avaliação da suscetibilidade eletromagnética dos cabos metálicos dos sistemas de supervisão, proteção, comunicação e controle de subestações de alta tensão /." Bauru : [s.n.], 2010. http://hdl.handle.net/11449/87197.
Full textBanca: Paulo Roberto de Aguiar
Banca: José Carlos de Melo Vieira Junior
Resumo: O presente trabalho possui como foco principal a apresentação de proposições técnicas para a avaliação da suscetibilidade eletromagnética de cabos metálicos isolados, blindados ou não, para atender aos sistemas de supervisão, proteção, comunicação e controle de subestações de alta tensão frente às interferências eletromagnéticas provocadas pelas descargas atmosféricas, manobras de chaveamento, campo magnético na frequência de 60Hz e do efeito corona. Para a realização destas proposições foram analisados e estudados diversos cabos usados em uma subestação de 440kV. A diretriz metodológica adotada nesta pesquisa incorporou simulações de modelo computacional, ensaios laboratoriais recomendados pelas normas e publicações técnicas correlatas com a finalidade de identificar os efeitos provocados pelas interferências eletromagnéticas nesses cabos. Os resultados obtidos conduziram a uma análise da interferência eletromagnética nos diversos cabos avaliados fornecendo, assim, um valor de imunidade de cada cabo estudado. Constatou-se que os cabos sem blindagem devem ser usados com reservas e podem ser instalados em sistemas poucos sujeitos a interferências eletromagnéticas ou promover uma blindagem adicional. Os cabos blindados, menos suscetível a interferências eletromagnéticas, podem ser instalados em pátios de subestações, entretanto devem-se tomar os devidos cuidados com o aterramento da blindagem. Desta forma, a pesquisa realizada contribuiu para o desenvolvimento de um procedimento técnico para o uso adequado de cabos em questão visando minimizar os efeitos provocados pelas interferências eletromagnéticas nos sistemas de supervisão, proteção, comunicação e controle presentes em subestações de alta tensão.
Abstract: The main focus of this work is the presentation of technical propositions to assessing the electromagnetic susceptibility of isolated metallic cable, shielded or not, in order to comply with the supervision, protection, communication and control systems of high voltage substations in the presence of electromagnetic interferences caused by lightning discharge, switching maneuver, electromagnetic field at 60Hz and corona effect. Several cables used in 440 kV substation were analyzed and studied for accomplishing these propositions. The methodological guideline adopted in this research has included simulations of computational models, laboratorial tests recommended by standards and technical publications correlated in order to identifying the effects provoked by electromagnetic interferences to these cables. The obtained results led to an analysis of the electromagnetic interference in the several cables assessed, thus providing a value of immunity for each cable studied. It was verified that cable without shielding must be employed with restrictions and can be installed in systems which are little subject to electromagnetic interference or to promote an additional shielding. The shielding cables less susceptible to the electromagnetic interference can be installed in substation courtyard; however, it is important to pay special attention to the grounding of the shielding. Thus, this research contributed to the development of a technical proceeding for employing the mentioned cables suitably, aiming at minimizing the effects provoked by the electromagnetic interferences in the supervision, protection, communication and control systems which are present at the high voltage substations.
Mestre
Choudhary, Harish Kumar. "Mechanistic Insights for Controlling Electromagnetic Interference Shielding Through Microwave Absorption in Magnetic Composites." Thesis, 2019. https://etd.iisc.ac.in/handle/2005/5167.
Full textSunitha, K. "Coupling Of Electromagnetic Fields From Intentional High Power Electromagnetic Sources With A Buried Cable And An Airborne Vehicle In Flight." Thesis, 2013. https://etd.iisc.ac.in/handle/2005/2620.
Full textSunitha, K. "Coupling Of Electromagnetic Fields From Intentional High Power Electromagnetic Sources With A Buried Cable And An Airborne Vehicle In Flight." Thesis, 2013. http://etd.iisc.ernet.in/handle/2005/2620.
Full textBooks on the topic "Electromagnetic interference shield"
Gaier, James R. Intercalated graphite fiber composites as EMI shields in aeorspace structures. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Find full textVance, Edward F. Coupling to shielded cables. Malabar, Fla: R.E. Krieger Pub. Co., 1987.
Find full textGaier, James R. EMI shields made from intercalated graphite composites. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Find full textBook chapters on the topic "Electromagnetic interference shield"
Singh, Avanish Pratap, Monika Mishra, Anil Ohlan, and S. K. Dhawan. "Electromagnetic Interference Shielding and its Evaluation." In Smart Materials Design for Electromagnetic Interference Shielding Applications, 1–58. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815036428122010004.
Full textSaini, Ayushi, Anil Ohlan, S. K. Dhawan, and Kuldeep Singh. "Nanostructured Two-Dimensional (2D) Materials as Potential Candidates for EMI Shielding." In Smart Materials Design for Electromagnetic Interference Shielding Applications, 465–526. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815036428122010014.
Full textGupta, Tejendra K., Rajeev Kumar, Manjeet Singh Goyat, and Deepshikha Gupta. "Carbon Nanostructures-based Polymer Nanocomposites for EMI Shielding Applications." In Smart Materials Design for Electromagnetic Interference Shielding Applications, 109–52. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815036428122010006.
Full textMin Koo, Chong, Pradeep Sambyal, and S. K. Dhawan. "Porous 2D MXenes for EMI Shieldin." In Smart Materials Design for Electromagnetic Interference Shielding Applications, 439–64. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815036428122010013.
Full textVarshney, Swati, and S. K. Dhawan. "Utilization of Fly Ash Composites in Electromagnetic Shielding Applications." In Smart Materials Design for Electromagnetic Interference Shielding Applications, 315–54. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815036428122010010.
Full textNaresh, U., N. Suresh Kumar, K. Chandra Babu Naidu, A. Manohar, and Khalid Mujasam Batoo. "Advanced Ceramics for Effective Electromagnetic Interference Shields." In 25425269, 80–94. BENTHAM SCIENCE PUBLISHERS, 2020. http://dx.doi.org/10.2174/9789811478192120030009.
Full textVerma, Meenakshi, Veena Choudhary, and S. K. Dhawan. "Thermoplastic Polyurethane Graphene Nanocomposites for EMI Shielding." In Smart Materials Design for Electromagnetic Interference Shielding Applications, 153–212. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815036428122010007.
Full textKumar, Rakesh, and S. K. Dhawan. "Fabrication and Microwave Shielding Properties of Free-Standing Conducting Polymer-Carbon Fiber Thin Sheets." In Smart Materials Design for Electromagnetic Interference Shielding Applications, 355–410. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815036428122010011.
Full textEscudero, Javier, Roberto Hornero, Daniel Abásolo, Jesús Poza, and Alberto Fernández. "Applying Independent Component Analysis to the Artifact Detection Problem in Magnetoencephalogram Background Recordings." In Encyclopedia of Healthcare Information Systems, 84–92. IGI Global, 2008. http://dx.doi.org/10.4018/978-1-59904-889-5.ch012.
Full textConference papers on the topic "Electromagnetic interference shield"
Bhooma, G., Ch Phanendra Rao, S. M. Muniraja, S. T. Nandish, B. Karthikeyan, Jeyanthi Rajesh, V. K. Hariharan, and M. Nageswara Rao. "Effectiveness of various shield termination methods of cables." In 2016 International Conference on ElectroMagnetic Interference & Compatibility (INCEMIC). IEEE, 2016. http://dx.doi.org/10.1109/incemic.2016.7921473.
Full textSudirman, R., N. A. Zakaria, M. N. Jamaluddin, M. R. Mohamed, and K. N. Khalid. "Study of Electromagnetic Interference to ECG Using Faraday Shield." In 2009 Third Asia International Conference on Modelling & Simulation. IEEE, 2009. http://dx.doi.org/10.1109/ams.2009.58.
Full textChung, Young-ki, Kangsoo Lee, and Bok-hee Lee. "Effect of the corona shield of the OMNI bipolar conventional air terminals." In 2016 International Conference on ElectroMagnetic Interference & Compatibility (INCEMIC). IEEE, 2016. http://dx.doi.org/10.1109/incemic.2016.7921510.
Full textRani, R. Boopathi, and S. K. Pandey. "Mobile phone radiation reduction using shield made of different materials." In 2015 13th International Conference on Electromagnetic Interference and Compatibility (INCEMIC). IEEE, 2015. http://dx.doi.org/10.1109/incemic.2015.8055874.
Full textKeshtkar, Asghar, Ali Kalantarnia, and Ahmad Keshtkar. "The Effect of Shield Orifice on the Electromagnetic Interference Factor in HPM." In 2008 14th Symposium on Electromagnetic Launch Technology. IEEE, 2008. http://dx.doi.org/10.1109/elt.2008.86.
Full textPramanick, Moumita, Joydev Pal, Monali Chakraborty, Syed Masudur Rahim, and Tarun Kumar Dey. "Performance of single and double layered wire mesh electromagnetic shield(s) in the laboratories of degree engineering colleges." In 2018 15th International Conference on ElectroMagnetic Interference & Compatibility (INCEMIC). IEEE, 2018. http://dx.doi.org/10.1109/incemic.2018.8704546.
Full textNgoh, Zhi Lin, Edwin Hang Tong Teo, Fei Ni Leong, Roland Yingjie Tay, Matthew David Whiteside, Soon Siang Chng, Jong Jen Yu, Siu Hon Tsang, Dunlin Tan, and Geok Ing Ng. "Boron Nitride Coated Three-Dimensional Graphene as an Electrically Insulating Electromagnetic Interference Shield." In 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE, 2019. http://dx.doi.org/10.1109/imws-amp.2019.8880119.
Full textDejband, Erfan, Hamidreza Karami, and Manouchehr Hosseini. "Tunable electromagnetic interference shield using periodic graphene-based structures in the terahertz regime." In 2017 International Conference on Circuits, Devices and Systems (ICCDS). IEEE, 2017. http://dx.doi.org/10.1109/iccds.2017.8120446.
Full textJang, Byeongdeck, Fumio Uchida, Shigenori Harada, Naotaka Oshima, Satoshi Sawaki, Shigeru Ishii, Takuya Kaminaga, Hayato Kiuchi, Tomoharu Takita, and Young Suk Kim. "Step Coverage Improvement for Electromagnetic Interference (EMI) Shield Film by Forming Bevel-Shaped Packages." In 2020 IEEE 70th Electronic Components and Technology Conference (ECTC). IEEE, 2020. http://dx.doi.org/10.1109/ectc32862.2020.00168.
Full text"Modelling of a Multifunction Electromagnetic Interference Shield and Heat Exchanger Device for a Multirotor Drone." In The 34th European Modeling & Simulation Symposium. CAL-TEK srl, 2022. http://dx.doi.org/10.46354/i3m.2022.emss.014.
Full textReports on the topic "Electromagnetic interference shield"
Brown, Jr., Charles G., Amy Cooper, and Alastair S. Moore. Numerical Electromagnetics Simulations of the Leakage Through the Pump-out Holes in the DISC Electromagnetic Interference Shield. Office of Scientific and Technical Information (OSTI), October 2010. http://dx.doi.org/10.2172/1122247.
Full text