Contents
Academic literature on the topic 'Electrolytic plasma oxydation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrolytic plasma oxydation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electrolytic plasma oxydation"
Sottovia, Lívia, Maria Lúcia Pereira Antunes, César Augusto Antonio, Elidiane Cipriano Rangel, and Nilson Cristino da Cruz. "Thin films produced on 5052 aluminum alloy by plasma electrolytic oxydation with Red Mud-containing Electrolytes." Materials Research 17, no. 6 (December 2014): 1404–9. http://dx.doi.org/10.1590/1516-1439.283414.
Full textDissertations / Theses on the topic "Electrolytic plasma oxydation"
Laveissière, Marie. "Elaboration et caractérisations de revêtements élaborés par oxydation micro-arcs sur alliage de titane TA6V." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30351.
Full textSurface treatments are often needed for metallic materials in order to improve their performances and broaden their scope of applications. TA6V (or grade 5) titanium alloy is used in many fields (going from biomedical to aeronautical parts) because it is light and possesses good anticorrosion and thermal properties. Nevertheless its tribological behavior needs substantial improvements that a coating may provide. The aim of this work was to prepare, using Plasma Electrolytic Oxidation (PEO), coatings on TA6V in order to improve its tribological properties. PEO is a recent and innovative electrochemical oxidation process for which growth mechanisms and accurate influence of operating parameters such as electrolyte composition or applied electrical signal, still need clarification. Systematic study of several electrolytes led to the preparation of adherent coatings with thicknesses between 5 and 60 µm. These coatings result from both electrochemical conversion of the substrate and incorporation of compounds from the electrolyte. They are composed of an amorphous phase, its proportion depending directly on the silicates quantity in the bath, and crystalline phases formed after the important rise of surface temperature during treatment. The understanding of correlations between electrolyte and coatings have limited the formation of the soft amorphous phase and favored hard crystalline structures, leading to an optimized electrolyte. The study of electrical parameters, such as frequency or treatment time, highlighted their strong influence on the coatings composition and morphology. The duty cycle influenced the chemical composition of the coatings, promoting the formation of crystalline alumina. Finally coatings prepared with PEO were mechanically tested. The presence of crystalline phases allowed the increase of the coatings Vickers hardness compared to the bare TA6V. Nevertheless, due to the PEO coatings roughness, a step of mechanical polishing post-treatment appeared necessary in order to reduce the friction coefficient and wear loss. Finally, the understanding of correlations between process parameters and coatings properties, has successfully led to the preparation of a coating with promising tribological properties, namely a friction coefficient below 0.3 and a wear loss inferior to 0.01 mm3 after 100,000 cycles, demonstrating a significant improvement in surface mechanical properties of the TA6V substrate
Melhem, Amer. "Oxydation par plasma électrolytique : influence des paramètres du procédé sur le comportement des micro-décharges et conséquences sur les couches d’oxydes." Thesis, Vandoeuvre-les-Nancy, INPL, 2011. http://www.theses.fr/2011INPL098N/document.
Full textPlasma electrolytic oxidation is a surface treatment process applied to light weight alloys (Al, Mg, V, Ti, etc.) which may advantageously replace conventional anodizing, especially regarding environmental issues. Though this process has been known for many years, the underlying mechanisms that govern this micro-discharge assisted process remain poorly understood. This work aims at better identifying the breakdown and development mechanisms of the micro-discharges and at correlating the micro-discharge characteristics to the properties of the layers grown onto Al2214 aluminium alloy samples. The approach consists in coupling the study of the micro-discharges, the characterization of the grown layers and the breakdown mechanisms. By means of high rate video recording (> 125 000 frames/s) and shadowgraph techniques, the dependence of the evolution of the micro-discharges with the macroscopic process parameters has been clearly established. The important role of counter-electrodes and their respective position with respect to the sample have been identified and studied. It is also shown that the suitable choice of current frequency and anodic current density may greatly improve the quality of the resulting oxide layers. Current frequency in the kHz range seems most appropriate to grow thick and defect-free homogeneous layers.Finally, from synchronous measurements, it has been pointed out a delay in the onset of micro-discharges with respect to the rising edge of the current pulses. Besides this delay is strongly sensitive to the process parameters, it is probably related to the breakdown mechanisms of the insulating layer. Scenarios for these mechanisms have been proposed
Maizeray, Arthur. "Protection et fonctionnalisation de surface d’alliages métalliques par un traitement duplex combinant des revêtements réalisés par le procédé cold-spray suivi de l’oxydation par plasma électrolytique." Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0136.
Full textPlasma Electrolytic oxidation (PEO) is a process which enables the grow of a dense and protective oxide layer on light metals (Al, Mg, Ti). This process uses the dielectric breakdown of the oxide layer in a light alkaline electrolyte. In this study is this process coupled with the cold spray (CS) process. This combination enables to coat metals that are poorly treated by PEO directly and to modify the composition of the surface layer especially by combining different metals together of to produce composite such as AMMC. The aim of this study is to produce duplex coatings using CS and PEO and to understand in which way the composition of the top layer impact the behaviour of the PEO process and then to better understand the different regimes of this process. Different ceramics were used to show differences between arc and soft regime. The condition and the composition of the sprayed layer plays an important role on the obtained morphology and the soft regime obtention. The use of different composition oxides also enables us to bring to light some characteristics in the electrical discharge mechanisms occurring during the PEO process. A discharge nature evolution between the two regimes is supposed. The arc regimes present transversal discharges with important size, and this evolve to partially internal discharges in the oxide layer with lower size in the soft regime
Ntomprougkidis, Vitalios. "Étude de l'interaction micro-décharges / surfaces métalliques pour une meilleure compréhension des mécanismes de croissance lors du procédé PEO." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0077.
Full textPlasma electrolytic oxidation (PEO) is an electrochemical surface processing technique that allows the growth of protective oxide films on lightweight metals (Al, Ti, Mg). Contrary to conventional anodising, PEO operates at high current density and voltage which results in the ignition of micro-discharges (MDs) over the processed surface The aim of this work was to investigate the characteristics of the MDs under different processing parameters and to correlate these characteristics with the microstructure of the produced oxide layers in order to better understand the oxide growth mechanisms. Firstly, PEO sequenced treatments were conducted by changing the electrical parameters in the course of a treatment. Results revealed a particular behaviour of the MDs which depends not only on the applied electrical parameters but also on the morphology of the growing layer. Results also evidenced an earlier transition to the beneficial “soft” sparking regime, contributing to a significant improvement of the microstructure of the oxide layer as well as process energy consumption. Time-resolved optical characterizations of the PEO process pointed out a correlation between ignition of MDs and the dynamic of the surrounding gas bubbles at the oxide / electrolyte interface. Particularly, results proved the existence of inner MDs during the “soft” sparking regime. Secondly, a multi-scale characterization of the typical “pancake” structure formed during the transition to the “soft” regime revealed the formation of a lamellar nanocomposite structure consisting of periodical alternations of alumina and metastable 1:1 mullite lamellae. Finally, two new opportunities for the PEO process were explored. The feasibility of duplex treatment involving cold-spray and PEO technologies was demonstrated and the possibility to produce metallic oxide (nano-) particles was proposed
Tousch, Corentin. "Incorporation de nanotubes de carbone dans les couches d’oxyde formées par le procédé d’oxydation par plasma électrolytique de l’aluminium en vue d’élaborer des couches d’oxyde conductrices." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0282.
Full textThe most common method to enhance the surface properties of aluminum is acid-based anodization, forming a protective layer of aluminum oxide on the metal surfaces. This imparts improved wear and corrosion resistances due to alumina's high hardness and chemical stability. However, aluminum oxide is a strong electrical insulator, substantially increasing contact resistance in anodized components. Traditional electrolytic surface treatments involving nickel, cadmium, and chromium maintain electrical conductivity but involve heavy metal-containing electrolytes, including carcinogenic hexavalent chromium, a substance facing European Union import restrictions. Consequently, alternative treatments are sought, leading to electrolytic plasma oxidation. This electrochemical conversion process differs from acid anodization, using higher current/voltage and dilute basic electrolytes. The resulting oxide layer is porous, enabling the incorporation of solid particles. These particles are dispersed in the electrolyte and gradually incorporated within the growing oxide layer. By adding conductive particles it is conceivable to create percolation paths, forming a composite aluminum oxide-particle layer that protects the underlying aluminum while maintaining low electrical contact resistance.Carbon nanotubes were chosen for their excellent electrical conductivity and high form factor, enabling percolation at low volume concentration. The study aims at incorporating carbon nanotubes into the oxide layer generated during aluminum plasma electrolytic oxidation to produce conductive oxide layers. Experimental investigations establish fundamental insights into incorporation mechanisms, impact of electrical parameters, the influence of carbon nanotubes on the process, and coating properties, especially electrical behavior. Results reveal that carbon nanotubes accelerate layer growth and increase oxide coating porosity. High concentrations yield excessively porous layers with defects (cracks, delamination), compromising layer integrity. Carbon nanotubes in both the electrolyte and the growing oxide substantially affect the process. Transition to "soft" micro-discharge regime shifts earlier with higher nanotube concentrations under suitable electrical conditions. Excessive nanotube concentrations inhibit the process, preventing oxide layer formation. "Arc" regime treatments favor nanotube incorporation in the oxide compared to "soft" regime treatments. Although carbon nanotube incorporation significantly enhances oxide layer electrical conductivity, the percolation threshold isn't reached, and layers remain insulating for now. Despite this, the results are highly promising, prompting further research to optimize electrical conductivity in these composite coatings, building upon the findings reported here