Dissertations / Theses on the topic 'Électrolytes céramiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 16 dissertations / theses for your research on the topic 'Électrolytes céramiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Pirovano, Caroline. "Membranes céramiques BIMEVOX pour la séparation électrochimique de l'oxygène." Lille 1, 2000. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2000/50376-2000-248-249.pdf.
Full textSimone, Antonia. "Caractérisation microstructurale et électrique de couches céramiques obtenues par le dépôt électrophorétique (EPD) : Application à la zircone cubique." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2004. http://tel.archives-ouvertes.fr/tel-00813386.
Full textVar, Kethsovann. "Mesures des propriétés mécaniques d'un électrolyte tout solide et de la dégradation électro-mechano-chimique dans une batterie tout solide." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS611.
Full textMobility is a key issue, and the electric vehicle (EV) is advancing in response to environmental challenges. Currently relying on Li-Ion batteries, the EV faces certain limitations, such as the use of flammable solvents and low energy density, which reduces its range. A technological breakthrough is therefore necessary, and the all-solid-state battery is emerging as a promising solution. By replacing the liquid electrolyte with a solid electrolyte, it becomes possible to use metallic lithium, thereby increasing the energy density from 372 to 3862 mAh.g⁻¹. However, challenges remain, notably the volumetric changes in the electrodes, which cause mechanical degradation at the interfaces. Our study explores the relationships between the electrochemical and mechanical properties of all-solid-state batteries. We selected Li6PS5Cl argyrodite for its advantages, including its cold-pressing capability and high ionic conductivity (10⁻³ S.cm⁻¹). DFT simulations show that its Young's modulus is relatively low (22 GPa), making it more flexible than other solid materials. Our strategy to adjust its mechanical properties is based on three approaches: 1) modifying the particle size to influence defects, 2) adjusting the stoichiometry with Li6PS5X variants (X = Cl, Br, I, F) to modify chemical bonds, and 3) incorporating polymers to form a composite, thereby fine-tuning the overall mechanical properties. We investigated the impact of two synthesis routes, solution-based and dry, but neither method allowed effective control of particle size. Thanks to an innovative cryo-milling process, the particle size was reduced post-synthesis to as small as 2 µm. To address issues of air and moisture reactivity, we developed a setup to measure the Young's modulus of argyrodite. The method involves creating an argyrodite pellet in a steel mold under an inert atmosphere, applying mineral oil to ensure sealing, thus enabling nano-indentation analysis in ambient conditions. This method allows us to measure several material properties, such as Young's modulus (E), hardness (H), and viscoelasticity. The average E values, based on 400 indents, are around 20 GPa. The results reveal a limited elastic domain and a viscous behavior. Regarding Li6PS5X (X = Cl, Br, I, F), our experiments did not show significant changes in mechanical properties. However, the addition of PVDF polymer, at mass ratios of 20% and 50%, reduces the Young's modulus. We also studied the impact of solid electrolyte particle size (2 µm vs. 20 µm) on cycling performance in a full battery, as well as the effect of adding PVDF in the composite positive electrode. Several cells showed good cyclability over more than 200 cycles, with capacity retention above 85%. It appears that cell-forming processes influence performance more than particle size. At a 20% PVDF ratio, the cells exhibit similar performance to those without polymer addition. However, at higher ratios, PVDF hinders ionic conductivity, thus increasing cell polarization. The beneficial or detrimental effect of PVDF depending on the mass ratio is discussed in detail in the manuscript
Jarry, Angélique. "Optimisation et caractérisation des propriétés de transport de nouveaux électrolytes céramiques pour pile à combustible conductrice protonique et anionique dérivés de Baln0. 8Ti0. 2O2. 6-n(OH)2n(BIT02)." Nantes, 2012. http://archive.bu.univ-nantes.fr/pollux/show.action?id=df220054-12e8-467d-a71a-2976bae4ccba.
Full textA major limitation of the perovskite type H+-SOFC electrolyte performance is the actual competition between a high level of ionic conductivity and a good stability in CO2 containing atmosphere. A compromise must be found between a low basicity to avoid decomposition by reaction with CO2 and a good proton and/or O2- diffusion associated with a high crystallographic symmetry. With an optimization of those key features, we expect to obtain the best conductivity/stability couple. Such strategies were carried out on BaIn0. 8Ti0. 2O2. 6-n(OH)2n by Zr,Ln,Sc→In,Ti substitutions, leading to BaIn0. 6Ln0. 2Ti0. 2O2. 6-n(OH)2n with Ln = Yb, Lu or Dy and BaIn1-x-yTixZryO2. 6-n with x+y ≤ 0. 2 for the best candidates. They demonstrate promising protonic and anionic conductivities respectively σH+400°C ~1. 5 mS. Cm-1 and σO2-700°C ~10 mS. Cm-1 and good chemical stability under 3% CO2 atmosphere. Even though the strong correlations between perovskite crystal phase and transport properties are well known, a better fundamental understanding at an atomic scale of conduction mechanisms is necessary to enhance the likelihood of tailoring electrolyte performance. In this work, we attempt to quantify and to localize the oxygen and proton species and to study their motions upon hydration in BaIn0. 6Yb0. 2Ti0. 2O2. 6-n(OH)2n by combining thermal X-ray, electron and neutron diffractions, neutron time-of-flight scattering data, MAS NMR, TGA and IR spectroscopy. A particular attention was paid on the structural determination as well as on hydration mechanism understanding
Delbos, Cédric. "Contribution à la compréhension de l'injection par voie liquide de céramiques (Y. S. Z. ; Pérovskite,. . . ) ou métaux (Ni,. . . ) dans un plasma d'arc soufflé afin d'élaborer des dépôts finement structurés pour S. O. F. Cs." Limoges, 2004. http://aurore.unilim.fr/theses/nxfile/default/e9f63d07-0a8c-400d-8f58-adc4585d61e6/blobholder:0/2004LIMO0035.pdf.
Full textThe aim of this PhD work is the elaboration, by a same process, of the different constituents (electrolyte / anode / cathode) of Solid Oxyde Fuell Cells (S. O. F. Cs ). The yttria stabilised zirconia electrolyte (Y. S. Z. ) should present a dense microstructure (gas impervious) with a thickness included betwen 5 and 20 µm, whereas the electrodes shoud be porous and thicker (200-500 µm), in Ni-Y. S. Z. (anode) and LaMnO 3 (cathode). The chosen process to reach these goals is the direct current plasma jet projection, under atmospheric pressure, of ceramics or metals by liquid injection (liquid precursor or micronic or submicronic powder suspensions). To bring this work to a successful conclusion, a good understanding of the acting event (plasma parameters, liquid injection, plasma liquid jet penetration and plasma suspension treatment, kind and granulometry of the powder used for the suspension production,…) is necessary, and simple models have been used in order to determine some magnitudes and explain experimental results. These works have also allowed the elaboration of dense electrolytes with a thickness included between 5 and 20 µm and finely structured porous electrodes. Moreover, the first results on multi layered production of the fuel cell constituent (electrolyte-cathode and electrolyte-anode) are likely
Li, Rong. "Preparation and ion conductivity of nano to micron grains size Bi2O3-Ln2O3 (Ln=Dy, Y, Er) ceramics." Thesis, Lille 1, 2009. http://www.theses.fr/2009LIL10141/document.
Full textThe aim of this work was the study of the effect of the grain size of bismuth based oxide ceramics on the ionic properties. With the aim to prepare dense ceramics with controlled grain size at the nano-scale, nano-powders of (Bi2O3)0.75(Dy2O3)0.25, (Bi2O3)0.75(Er2O3)0.25, (Bi2O3)0.75(Y2O3)0.25 and (Bi2O3)0.75(Er2O3)0.125(Y2O3)0.125 compositions were successfully prepared by a reverse chemical titration method. As shown by XRD and TEM, after annealing for 3 hours at 500°C, powders with single crystal grains with size of about 20nm were obtained. At that stage, a b-form was evidenced for all compositions.Then, conditions of sintering were optimized. Two techniques were used: pressureless sintering in a conventional furnace and Spark Plasma Sintering (SPS). In both methods, it led to ceramics with relative density higher than 94%. The grain size was only 20nm by SPS. It ranges from 60nm to 500nm by conventional sintering, for which it was shown that the grain growth was controlled by mass transport through the grain boundaries. The effect of grain size on total ionic conductivity was studied by impedance spectroscopy for all compositions. For most compositions, a decrease of total ionic conductivity with grain size was observed due to a predominant blocking effect of grain boundary when grain size decreases. However (Bi2O3)0.75(Y2O3)0.25 with grain size of 22nm showed a better conductivity than ceramics with grain size of 62nm and a better separation of bulk and grain boundary response. At such a low size, the space charge layers effect between grains can not be neglected anymore and the observed increase in conductivity is likely the results of an increase of the conductivity in this space charge layers
Khani, Emani Zohreh. "Elaboration et caractérisation physico-chimiques des matériaux céramiques conducteurs protoniques pour une application comme électrolyte en pile à combustible aux températures de fonctionnement 400-700°C." Montpellier 2, 2009. http://www.theses.fr/2009MON20001.
Full textWe have developed different synthesis methods to prepare the nanoparticulated proton conducting perovskites for the application as electrolyte in a proton ceramic fuel cell (PCFC). Barium cerate and barium zirconate doped with yttrium, core-shell structure materials (core: BZY10, shell: BCY10), barium calcium niobium oxide and barium calcium niobium oxide doped with zirconium were prepared by hydrogelation of acrylates, auto-combustion and reveres micelles routes. These nanopowders were densified as compressed disks. Water uptake, proton conductivity and chemical stability of these ceramics against carbonate formation were determined between 400-700 °C
Horwat, David. "Synthèse par pulvérisation cathodique magnétron et caractérisation de films minces dédiés au développement d'un dispositif électrochrome "tout céramique" à électrolyte NASICON." Vandoeuvre-les-Nancy, INPL, 2006. http://docnum.univ-lorraine.fr/public/INPL/2006_HORWAT_D.pdf.
Full textThe development of a “fully ceramic” electrochromic device based on a thin films stack represents a technological jump that could allow a mass production of electrochromic systems. The main difficulty consists in synthesising a well suited electrolyte and in the compatibility of the various elements. After a description of the experimental device and the presentation of the methods used to characterise the deposited layers, we present the limitations of the classical magnetron sputtering technique to synthesise thin NASICONs (Na3Zr2Si2PO12) films and propose a new method based on the reactive co-sputtering of Zr-Si and Na3PO4 targets. The films, amorphous in their as deposited state, present a good chemical homogeneity on large areas and cristallise under a NASICONs structure after annealing at temperatures lower than 750°C. The ionic conductivity evolves with the structural organisation and shows values close to the characteristic ones of bulk NASICONs. A study of the relations between the elaboration parameters and the optical and electrical properties of ZnO: Al transparent electrodes shows the possibility to synthesise this material under thin highly conducting and transparent films form on large scale in a short interval of experimental conditions. Finally, electrochromic tests on ITO-WO3 and ITO-WO3-NASICON evidenced the validity of the concept of an electrochromic device based on a Na+ conducting ceramic electrolyte
Etchegoyen, Grégory. "Développement d'une membrane céramique conductrice mixte pour la production de gaz de synthèse." Limoges, 2005. http://aurore.unilim.fr/theses/nxfile/default/d4efe5f3-0cbb-4d2b-a68b-376d3b959e27/blobholder:0/2005LIMO0026.pdf.
Full text. Natural gas conversion into syngas (H2+CO) is very attractive for hydrogen and clean fuel production via GTL technology by providing an alternative to oil products and reducing greenhouse gas emission. Syngas production, using a mixed ionic-electronic conducting ceramic membrane, is thought to be particularly promising. The purpose of this PhD thesis was to develop this type of membrane. Mixed-conducting oxide was synthesized, characterized and then, shaped via tape casting and co-sintered in order to obtain multilayer membranes with controlled architectures and microstructures. Oxygen permeation fluxes were measured with a specific device to evaluate membrane performances. As a result, the optimisation of architecture and microstructure made it possible to increase oxygen permeation flux by a factor 30. Additional researches were focused on the oxide composition in order to achieve higher dimensional stability
Calabretta, Daniel Louis. "Theoretical and experimental investigations related to electrolytic reverse complete oxidation within the Na-B-H-O system." Thèse, Université de Sherbrooke, 2012. http://hdl.handle.net/11143/6119.
Full textCorso, Stéphanie. "Élaboration et caractérisation de céramiques à base de ferrites de nickel : étude de leurs propriétés en vue de la conception d'anodes inertes de type oxydes ou cermets destinées à l'électrolyse de l'aluminium." Toulouse 3, 2004. http://www.theses.fr/2004TOU30305.
Full textBen, Miled Marwan. "Synthèse in situ de nanoparticules métalliques dans une matrice céramique dérivées de polymères précéramiques pour l'électrolyse de l'eau en milieu alcalin." Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0083.
Full textGlobal warming caused by human activity and the use of fossil fuels, urges the need to find new sources of carbon free energy. Dihydrogen (H2) more known as “hydrogen” is rapidly emerging as a technically viable and benign energy vector according to its ability to produce a higher density of combustion than fossil fuels and to produce only water as a waste product when used in a fuel cell. Moreover, its use generates no noise pollution, unlike the combustion engines currently in use. Nevertheless, it requires a very high degree of purity in order to avoid pollution of the catalytic materials contained in the cells. Nowadays, nearly 95% of the hydrogen produced is obtained by catalytic reforming of methane, and therefore requires purification processes that are often complex and costly. One way of avoiding these purification steps would be to produce hydrogen directly by electrolysis of water more known as water splitting. This process consists of separating a molecule of water under the action of an electric current (produced in a renewable way) to produce hydrogen and dioxygen (O2) at the electrodes of an electrolyser. Unfortunately, this reaction has kinetic limitations due to a very complex Oxygen Evolution Reaction (OER) mechanism, including several electrons and several reaction intermediates. The emergence of new anion exchange membrane technologies has paved the way for the use of electrolysis in alkaline media, thus allowing the use of non-noble transition metals as catalysts, which are less expensive than the metals traditionally used (Ir and Ru). Within this context, this PhD thesis has explored the synthesis of catalytic materials to reduce the energy and kinetic barriers of OER. In order to propose materials that are performant, stable over time and resistant to the aggressive environments imposed by the electrolysis of water in an alkaline medium, the polymer-derived ceramics (PDC) route has been selected as a synthesis method of choice. The interest of this method is to implement organosilicon polymers (here a polysilazane) serving as a molecular platform for the growth of non-noble metals via the use of metal complexes such as chlorides and acetylacetonates of nickel (Ni), iron (Fe) or cobalt (Co). This polymer modified by these metals serves as a precursor for the in situ formation of metal nanoparticles in a porous matrix based on the elements silicon (Si), carbon (C), oxygen (O) and nitrogen (N) allowing their accessibility and stability after heat treatment at 500 ° C under argon. This manuscript illustrated through five chapters describes works dedicated to the synthesis and characterization of Ni (chapter 3), Ni-Fe (chapter 4) and medium and high entropy alloys (chapter 5) nanoparticles which complete a state of the art (chapter 1) and a description of the materials and methods implemented during this thesis (chapter 2). The materials which have been prepared were studied at each stage of their synthesis through the implementation of complementary characterization tools before assessing their electrochemical performances; in particular by measuring the anodic overpotential during OER, in order to determine the best metal combinations. Post mortem tests were carried out to evaluate the potential of the prepared materials. Considering the simplicity of the synthesis route, and the low cost of reactants used, this work leads to a new family of materials and to several promising perspectives, not only for the development of efficient and stable catalysts for the OER but more generally for numerous applications in electrochemistry. These opportunities are now being addressed
Basso-Bert, Thomas. "Etude de l'élaboration et des performances électrochimiques de séparateurs électrolytiques composites polymère-céramique pour des batteries au Lithium métal." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALI036.
Full textTo boost the energy density of lithium-based accumulators, two levers are commonly studied: the energy density and the potential of electrode materials. The use of Li metal as a negative electrode is undoubtedly an appropriate solution to address these challenges since it has the highest gravimetric capacity (3860mAh/g) and very low reducing potential (-3.04 V vs. Standard Hydrogen Electrode). However, a couple of harmful phenomena prevent from using this ideal negative electrode, such as the dendritic growth during the electrodeposition of Lithium metal when a conventional organic liquid electrolyte is used. As a result, the research has been focusing on the development of numerous solid-state electrolytes (SSE) materials, having high Li+ ionic conductivity, high Li+ transport number, large electrochemical stability window, low cost, recyclable. Despite of breakthroughs for both ceramics or polymers fields (and even composites of both), no room temperature SSE has been developed at industrial scale so far [1].In that context, a new concept [2] of composite polymer/ceramic membrane is studied to be implemented within a Lithium Metal battery. It consists of an electrolytic separator where the Li1.3Al0,3Ti1,7(PO4)3 (LATP) ceramic forms one mono layer of monocrystalline and monodispersed grains bonded with a Poly(ethylene)-based matrix. The LATP grains are the Li+ conducting media allowing the Li+ percolation from one side to another while the Poly(ethylene)-based matrix which is ionically and electronically insulating, and, above all, impermeable to most of conventional Li-ion batteries solvents and Li salts, ensuring both the membrane tightening and very good flexibility (figure 1.a.). Herein, this composite membrane is elaborated via a low cost, solvent free process thanks to extrusion and calendering which can be industrially upscaled unlike the very complex and multistep processes suggested in the literature so far [2,3]. The microstructure of the composite separators was characterized by SEM and X-ray Tomography imaging to better understand the influences of the ceramic, the polymer type, and the elaboration process parameters. The Li+ ionic conductivity of the composite membranes as a function of the ceramic content have been studied by electrochemical impedance spectroscopy (EIS) and a high conductivity of 0.49 mS/cm has been measured at 25°C (50vol% LATP, figure 1.b.). Acting as a chemical barrier, this composite membrane allows the optimization of electrolyte chemistries at both the anode side and the cathode sides. Hence, the ionic charge transfer mechanisms in symmetric electrolyte/membrane/electrolyte systems have been also studied by EIS to determine the driving parameters such as the solvent type, the Li salt type and concentration [4].References:[1] Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 1–4 (2016)[2] Aetukuri, N. B. et al. Flexible Ion-Conducting Composite Membranes for Lithium Batteries. Adv. Energy Mater. 5, 1–6 (2015)[3] Samuthira Pandian, A. et al. Flexible, Synergistic Ceramic-Polymer Hybrid Solid-State Electrolyte for Secondary Lithium Metal Batteries. ACS Appl. Energy Mater. 3, 12709–12715 (2020)[4] Isaac, J. A., Mangani, L. R., Devaux, D. & Bouchet, R. Electrochemical Impedance Spectroscopy of PEO-LATP Model Multilayers: Ionic Charge Transport and Transfer. ACS Appl. Mater. Interfaces 14, 13158–13168 (2022)
Shen, Yan. "Synthèse de poudres nanocomposites et dépôts de cathodes pour les piles à combustible à température moyenne." Mémoire, Université de Sherbrooke, 2011. http://savoirs.usherbrooke.ca/handle/11143/1620.
Full textDenoyelle, Quentin. "Microbatteries lithium(-ion) tout solide pour applications haute température." Thesis, Bordeaux, 2021. http://www.theses.fr/2021BORD0007.
Full textThe development of microelectronics has led to the manufacture of sensors able to operate at high temperatures (150 - 250 °C). For this kind of application, available power sources (conventional batteries, ZEBRA batteries etc.) are poorly or not adapted at all to this kind of applications. The use of LiPON, a ceramic electrolyte stable until high temperature, suggests that microbatteries could be used for high temperature current supplying. The aim of this work is to estimate the sustainability of standard microbatteries LiCoO2/LiPON/Li at high temperature. The first part of the study focuses on the thermal stability of the different materials of the stack, especially on delithiated compounds Li1-xCoO2. In parallel, the second part of the study is devoted to the interfaces between the different materials, focusing on the LiCoO2/LiPON interface. Given the results obtained on the thermal stability of the positive electrode material and its reactivity with the electrolyte, the third part deals with the electrode material substitution in order to make a more robust stack at high temperature. The study of Li2FeS2 and its interface with the electrolyte leads to promising results with regard to the aimed application
Osenciat, Nicolas. "Propriétés de transport dans les oxydes à haute entropie." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF005.
Full textThe aim of this thesis is to assess the potential of a new material for solid-state electrolyte applications in all-solid-state batteries and/or micro-batteries. This new compound, which exhibits remarkable Li+ and Na+ ionic conductivity, belongs to a new class of oxides, recently discovered by Rost et al. (Nature Communication, 2015). This new family is formed through configuration entropy stabilisation, at high temperature, into a simple single phase, from a complex mixture of binary oxides (in our case NaCl-Rocksalt structure). We have studied the charge compensation mechanisms involved in the synthesis of the (MgCoNiCuZn)1−xLixO series and the influence of their composition on their ionic conductivity properties. We have attempted to densify these compounds at low temperature using the original Cold Sintering Process, without succeeding in obtaining defect-free ceramics. Finally, we have also developed and described the crystallographic structure and the electrochemical behaviour of a new anode material (possibly compatible with these entropy-stabilised oxides), the Li2(Mg,Co,Ni,Cu,Zn)Ti3O8 multicationic lithium titanate