Academic literature on the topic 'Electrolyte flow'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrolyte flow.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electrolyte flow"
Wu, Xiongwei, Jun Liu, Xiaojuan Xiang, Jie Zhang, Junping Hu, and Yuping Wu. "Electrolytes for vanadium redox flow batteries." Pure and Applied Chemistry 86, no. 5 (May 19, 2014): 661–69. http://dx.doi.org/10.1515/pac-2013-1213.
Full textMazúr, Petr, Jiří Charvát, Jindřich Mrlík, Jaromír Pocedič, Jiří Akrman, Lubomír Kubáč, Barbora Řeháková, and Juraj Kosek. "Evaluation of Electrochemical Stability of Sulfonated Anthraquinone-Based Acidic Electrolyte for Redox Flow Battery Application." Molecules 26, no. 9 (April 24, 2021): 2484. http://dx.doi.org/10.3390/molecules26092484.
Full textDabrowski, L., M. Marciniak, and T. Szewczyk. "Analysis of Abrasive Flow Machining with an Electrochemical Process Aid." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 220, no. 3 (March 1, 2006): 397–403. http://dx.doi.org/10.1243/095440506x77571.
Full textKüttinger, Michael, Paulette A. Loichet Torres, Emeline Meyer, Peter Fischer, and Jens Tübke. "Systematic Study of Quaternary Ammonium Cations for Bromine Sequestering Application in High Energy Density Electrolytes for Hydrogen Bromine Redox Flow Batteries." Molecules 26, no. 9 (May 6, 2021): 2721. http://dx.doi.org/10.3390/molecules26092721.
Full textProkhorov, Konstantin, Alexander Burdonov, and Peter Henning. "Study of flow regimes and gas holdup in a different potentials medium in an aerated column." E3S Web of Conferences 192 (2020): 02013. http://dx.doi.org/10.1051/e3sconf/202019202013.
Full textRoznyatovskaya, Nataliya, Jens Noack, Heiko Mild, Matthias Fühl, Peter Fischer, Karsten Pinkwart, Jens Tübke, and Maria Skyllas-Kazacos. "Vanadium Electrolyte for All-Vanadium Redox-Flow Batteries: The Effect of the Counter Ion." Batteries 5, no. 1 (January 18, 2019): 13. http://dx.doi.org/10.3390/batteries5010013.
Full textIvanova, A. M., P. A. Arkhipov, A. V. Rudenko, O. Yu Tkacheva, and Yu P. Zaikov. "Formation of ledge in aluminum electrolyzer." Izvestiya Vuzov. Tsvetnaya Metallurgiya (Universities' Proceedings Non-Ferrous Metallurgy), no. 5 (October 25, 2019): 23–31. http://dx.doi.org/10.17073/0021-3438-2019-5-23-31.
Full textZhang, Wenhong, Le Liu, and Lin Liu. "An on-line spectroscopic monitoring system for the electrolytes in vanadium redox flow batteries." RSC Advances 5, no. 121 (2015): 100235–43. http://dx.doi.org/10.1039/c5ra21844f.
Full textRincón Castrillo, Erick Daniel, José Ricardo Bermúdez Santaella, Luis Emilio Vera Duarte, and Juan José García Pabón. "Modeling and simulation of an electrolyser for the production of HHO in Matlab- Simulink®." Respuestas 24, no. 2 (May 1, 2019): 6–15. http://dx.doi.org/10.22463/0122820x.1826.
Full textDresp, Sören, Trung Ngo Thanh, Malte Klingenhof, Sven Brückner, Philipp Hauke, and Peter Strasser. "Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds." Energy & Environmental Science 13, no. 6 (2020): 1725–29. http://dx.doi.org/10.1039/d0ee01125h.
Full textDissertations / Theses on the topic "Electrolyte flow"
Kerekes, Rudolf. "Electrolyte flow rate control for Hydrogen Bromine Flow Batteries." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263240.
Full textBehovet av energilagringslösningar blev mer betydande med den ökande penetrationen av förnybara energikällor i elnätet. Under de senaste decennierna har flödesbatterierna fått ökad uppmärksamhet. De harflera fördelar jämfört med konventionella batteriteknologier. Då väte och brom finns i stora mängder i haven, erbjuder vätebromflödesbatterier en billig lösning för energilagring genom att använda globalt rikligt förekommande material. Denna studie genomfördes för att ta reda på sambandet mellan elektrolytflödeshastighet och elektrokemisk cellprestanda och för att ge ett förslag för dynamisk flödeshastighetskontroll för att maximera batterisystemets prestanda. Först byggdes en teoretisk modell för att beskriva systemets beteende under olika förhållanden. Emellertid ledde bristen på information om parametrarna forskningen mot experimentell analys. Ett småskaligt system med celleffektintervall från 10till 14 W och pumpeffektintervall på 2.6 till 6.8 W byggdes för experimenten för att analysera celleffekten vid olika flödeshastighetsvärden (122 ml / min, 185 ml / min och 230 ml / min). Syftet var också att observera vinsterna med att använda dynamisk flödeshastighet (122 ml / min och 230 ml / min använd vidspecifika perioder av cyklerna). Resultaten visar att för småskaliga system finns det ingen nettopositiv energivinst på grund av batteriets lilla effekt jämfört med pumpens effekt. Det fanns emellertid förbättringari batterikapacitet med en ökning på 28% och i Coulombic effektivitet med en ökning på 2.47% om den större flödeshastigheten användes. Det uppnåddes även en energibesparing på 55% om den dynamiska flödeshastigheten användes istället för konstant maximal flödeshastighet. Dessutom utformades ett storskaligt system som skulle kunna integrera ett PID-kontrollkoncept för dynamisk flödeshastighetskontroll i kW-skalbatterier. Ytterligare arbete kommer att krävas för att bygga och testa det föreslagna storskaliga systemet, som tenderar att modellera ett kommersiellt vätebromflödesbatteri.
Feser, Joseph P. "Convective flow through polymer electrolyte fuel cells." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 1.77 Mb., 93 p, 2005. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:1428199.
Full textChivengwa, Tapiwa. "Microchannel flow fields for polymer electrolyte fuel cells." Master's thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/13674.
Full textElfrink, Gideon. "Computer simulations of an all-organic electrolyte flow-battery." Thesis, Uppsala universitet, Nanoteknologi och funktionella material, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-438609.
Full textMelane, Xolani. "Visualisation of electrolyte flow fields in an electrolysis cell." Diss., University of Pretoria, 2015. http://hdl.handle.net/2263/57492.
Full textDissertation (MEng)--University of Pretoria, 2015.
tm2016
Chemical Engineering
MEng
Unrestricted
Leahy, Scott B. "Active Flow Control of Lab-Scale Solid Polymer Electrolyte Fuel Cells." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5188.
Full textTakeuchi, Junichi. "Experimental investigation of magnetohydrodynamic turbulent pipe flow of aqueous electrolyte solution." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1835497681&sid=3&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textDuranti, Mattia. "Bromine-Based Electrolyte Properties for a Semi-Organic Redox Flow Battery." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/276465.
Full textPrifti, Helen Chemical Sciences & Engineering Faculty of Engineering UNSW. "Electrolyte and membrane studies of the novel vanadium bromide redox flow cell." Awarded by:University of New South Wales. Chemical Sciences & Engineering, 2008. http://handle.unsw.edu.au/1959.4/41478.
Full textKramer, Denis. "Mass transport aspects of polymer electrolyte fuel cells under two-phase flow conditions." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2009. http://nbn-resolving.de/urn:nbn:de:bsz:105-6973937.
Full textBooks on the topic "Electrolyte flow"
Najibi, Seyed Hesam. Heat transfer and heat transfer fouling during subcooled flow boiling for electrolyte solutions. 1997.
Find full textPhysical modeling of bubble phenomena, electrolyte flow and mass transfer in simulated advanced Hall cells. U.S. Dept. of Energy, 1990.
Find full textHo, Kwok M. Kidney and acid–base physiology in anaesthetic practice. Edited by Jonathan G. Hardman. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199642045.003.0005.
Full textSchetz, Miet, and Andrew Davenport. Continuous renal replacement therapy. Edited by Norbert Lameire. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0234.
Full textFahey, Jefferson Vincent. Electrochemistry at a reticulated vitreous carbon flow electrode. 1989.
Find full textHasegawa, T., K. Terabe, T. Sakamoto, and M. Aono. Nanoionics and its device applications. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.8.
Full textLanger, Thomas, and Pietro Caironi. Pathophysiology and therapeutic strategy of respiratory alkalosis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0114.
Full textBook chapters on the topic "Electrolyte flow"
Rahi, Dhruv Kant, Avanish Kumar Dubey, and Nisha Gupta. "Analysis of Electrolyte Flow Effects in Surface Micro-ECG." In Lecture Notes in Mechanical Engineering, 371–79. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8542-5_32.
Full textKim, Hyung-Man, and Vinh Duy Nguyen. "Electrochemical Promotional Role of Under-Rib Convection-Based Flow-Field in Polymer Electrolyte Membrane Fuel Cells." In Organic-Inorganic Composite Polymer Electrolyte Membranes, 241–310. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52739-0_10.
Full textWang, Hongdan, Wentang Xia, Wenqiang Yang, and Bingzhi Ren. "Improving Current Efficiency Through Optimizing Electrolyte Flow in Zinc Electrowinning Cell." In The Minerals, Metals & Materials Series, 239–45. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-65133-0_29.
Full textWang, Hongdan, Wentang Xia, Wenqiang Yang, and Bingzhi Ren. "Improving Current Efficiency Through Optimizing Electrolyte Flow in Zinc Electrowinning Cell." In CFD Modeling and Simulation in Materials Processing 2016, 239–45. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119274681.ch29.
Full textGupta, Nisha, Avanish Kumar Dubey, and Dhruv Kant Rahi. "Analysis of Electrolyte Flow in IEG During Electrochemical Grinding of MMC." In Advances in Mechanical Engineering, 307–15. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3639-7_36.
Full textBuikis, A., and H. Kalis. "Electrolyte Flow and Temperature Calculations in Finite Cylinder Caused by Alternating Current." In Progress in Industrial Mathematics at ECMI 2004, 119–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-28073-1_12.
Full textBaiteche, Mounir, Seyed Mohammad Taghavi, Donald Ziegler, and Mario Fafard. "LES Turbulence Modeling Approach for Molten Aluminium and Electrolyte Flow in Aluminum Electrolysis Cell." In Light Metals 2017, 679–86. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51541-0_83.
Full textAndreev, O., A. Kobzev, Yu Kolesnikov, and A. Thess. "Optical visualisation of the flow around a cylinder in electrolyte under strong axial magnetic field." In Springer Proceedings in Physics, 833–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03085-7_200.
Full textSawaguchi, Akiko, Jun-ichi Kotani, Nobuko Nakada, and Toshiko Sawguchi. "Studies on Examples of Drowning with Fresh Water Inhalation — Cerebral Blood Flow and Blood Electrolyte Levels." In Acta Medicinæ Legalis Vol. XLIV 1994, 293–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79523-7_97.
Full textSevero, Dagoberto S., Vanderlei Gusberti, Elton C. V. Pinto, and Ronaldo R. Moura. "Modeling the Bubble Driven Flow in the Electrolyte as a Tool for Slotted Anode Design Improvement." In Essential Readings in Light Metals, 409–14. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118647851.ch58.
Full textConference papers on the topic "Electrolyte flow"
Berning, T., and S. K. Kær. "Modelling multiphase flow inside the porous media of a polymer electrolyte membrane fuel cell." In MULTIPHASE FLOW 2011. Southampton, UK: WIT Press, 2011. http://dx.doi.org/10.2495/mpf110251.
Full textMonrós-Andreu, G., R. Martínez-Cuenca, S. Torró, J. L. Muñoz-Cobo, and S. Chiva. "Influence of temperature and electrolyte concentration on regime maps in vertical-adiabatic two-phase pipe flow." In MULTIPHASE FLOW 2015. Southampton, UK: WIT Press, 2015. http://dx.doi.org/10.2495/mpf150121.
Full textShrestha, Pranay, Rupak Banerjee, Jongmin Lee, and Aimy Bazylak. "Hydrophilic Microporous Layer Coatings for Polymer Electrolyte Membrane Fuel Cells." In International Conference of Fluid Flow, Heat and Mass Transfer. Avestia Publishing, 2017. http://dx.doi.org/10.11159/ffhmt17.137.
Full textY. B, Zeng, Zhu D, Qu N. S, Li H. S, and Wang S. H. "Micro Wire Electrochemical Machining with Axial Electrolyte Flow." In 9th International Conference on Multi-Material Micro Manufacture. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-3353-7_281.
Full textBanerjee, Rupak, Chuzhang Han, Nan Ge, and Aimy Bazylak. "Transient Changes in Liquid Water Distribution in Polymer Electrolyte Membrane Fuel Cells." In International Conference of Fluid Flow, Heat and Mass Transfer. Avestia Publishing, 2017. http://dx.doi.org/10.11159/ffhmt17.136.
Full textIhara, Tadashi, Yoshito Ikada, Taro Nakamura, Toshiharu Mukai, and Kinji Asaka. "Solid polymer electrolyte membrane flow sensor for tracheal tube." In Smart Structures and Materials, edited by Daniele Inaudi, Wolfgang Ecke, Brian Culshaw, Kara J. Peters, and Eric Udd. SPIE, 2006. http://dx.doi.org/10.1117/12.658928.
Full textKonig, Sebastian, Michael R. Suriyah, and Thomas Leibfried. "Volumetric electrolyte flow rate control in vanadium redox flow batteries using a variable flow factor." In 2015 Sixth International Renewable Energy Congress (IREC). IEEE, 2015. http://dx.doi.org/10.1109/irec.2015.7110861.
Full textCho, Sung Chan, and Yun Wang. "Two-Phase Flow in a Gas Flow Channel of Polymer Electrolyte Fuel Cells." In ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/fuelcell2011-54118.
Full textBucci, Brian A., Jeffrey S. Vipperman, William Clark, J. Peter Hensel, Jimmy Thornton, and Sungwhan Kim. "Piezoelectric Microvalve for Flow Control in Polymer Electrolyte Fuel Cells." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14064.
Full textVasilyan, Suren, and Thomas Frohlich. "Direct force compensation on Lorentz force flowmeters for electrolyte flow measurements." In 2015 IEEE/OES Eleventh Current, Waves and Turbulence Measurement (CWTM). IEEE, 2015. http://dx.doi.org/10.1109/cwtm.2015.7098115.
Full textReports on the topic "Electrolyte flow"
Leung, Kevin, and Ray Shan. Modeling Electric Double Layer Effects on Charge Transfer at Flow Battery Electrode/Electrolyte Interfaces. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1562830.
Full textSmall, Leo J., Harry Pratt, Chad Staiger, Rachel Irene Martin, Travis Mark Anderson, Babu Chalamala, Thiagarajan Soundappan, Monika Tiwari, and Venkat R. Subarmanian. Vanadium Flow Battery Electrolyte Synthesis via Chemical Reduction of V2O5 in Aqueous HCl and H2SO4. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1342368.
Full textEvans, J., and R. Shekhar. Physical modeling of bubble phenomena, electrolyte flow and mass transfer in simulated advanced Hall cells. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/6927204.
Full textShadday, M. HYDROGEN ELECTROLYZER FLOW DISTRIBUTOR MODEL. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/892721.
Full text