Dissertations / Theses on the topic 'ELECTROENCEPHALOGRA'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'ELECTROENCEPHALOGRA.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Steffert, Tony. "Real-time electroencephalogram sonification for neurofeedback." Thesis, Open University, 2018. http://oro.open.ac.uk/57965/.
Full textNicolau, Nicoletta. "Automatic artefact removal from electroencephalograms." Thesis, University of Reading, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430848.
Full textNg, Cheng Man. "Electroencephalogram analysis based on empirical mode decomposition." Thesis, University of Macau, 2011. http://umaclib3.umac.mo/record=b2493507.
Full textAntoniu, Angela. "Localization of the sources of the electroencephalogram." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0001/MQ59772.pdf.
Full textFatoorechi, Mohsen. "Electroencephalogram signal acquisition in unshielded noisy environment." Thesis, University of Sussex, 2015. http://sro.sussex.ac.uk/id/eprint/55034/.
Full textTcheslavski, Gleb V. "Coherence and Phase Synchrony Analysis of Electroencephalogram." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/30186.
Full textPh. D.
Chang, Nathalie. "Dipole localization using simulated intracerebral electroencephalograms." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82475.
Full textCorradini, Paula L. "CLINICAL APPLICATIONS OF THE QUANTITATIVE ELECTROENCEPHALOGRAPH." Thesis, Laurentian University of Sudbury, 2014. https://zone.biblio.laurentian.ca/dspace/handle/10219/2154.
Full textLopez, de Diego Silvia Isabel. "Automated Interpretation of Abnormal Adult Electroencephalograms." Master's thesis, Temple University Libraries, 2017. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/463281.
Full textM.S.E.E.
Interpretation of electroencephalograms (EEGs) is a process that is still dependent on the subjective analysis of the examiner. The interrater agreement, even for relevant clinical events such as seizures, can be low. For instance, the differences between interictal, ictal, and post-ictal EEGs can be quite subtle. Before making such low-level interpretations of the signals, neurologists often classify EEG signals as either normal or abnormal. Even though the characteristics of a normal EEG are well defined, there are some factors, such as benign variants, that complicate this decision. However, neurologists can make this classification accurately by only examining the initial portion of the signal. Therefore, in this thesis, we explore the hypothesis that high performance machine classification of an EEG signal as abnormal can approach human performance using only the first few minutes of an EEG recording. The goal of this thesis is to establish a baseline for automated classification of abnormal adult EEGs using state of the art machine learning algorithms and a big data resource – The TUH EEG Corpus. A demographically balanced subset of the corpus was used to evaluate performance of the systems. The data was partitioned into a training set (1,387 normal and 1,398 abnormal files), and an evaluation set (150 normal and 130 abnormal files). A system based on hidden Markov Models (HMMs) achieved an error rate of 26.1%. The addition of a Stacked Denoising Autoencoder (SdA) post-processing step (HMM-SdA) further decreased the error rate to 24.6%. The overall best result (21.2% error rate) was achieved by a deep learning system that combined a Convolutional Neural Network and a Multilayer Perceptron (CNN-MLP). Even though the performance of our algorithm still lags human performance, which approaches a 1% error rate for this task, we have established an experimental paradigm that can be used to explore this application and have demonstrated a promising baseline using state of the art deep learning technology.
Temple University--Theses
Janwattanapong, Panuwat. "Connectivity Analysis of Electroencephalograms in Epilepsy." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3906.
Full textWang, Yuehe. "Model based dynamic analysis of human sleep electroencephalogram." Thesis, University of Leicester, 1997. http://hdl.handle.net/2381/30210.
Full textHenderson, Geoffrey T. "Early detection of dementia using the human electroencephalogram." Thesis, University of Plymouth, 2004. http://hdl.handle.net/10026.1/2356.
Full textThakkar, Kairavee K. "A Geometric Analysis of Time Varying Electroencephalogram Vectors." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613745734396658.
Full textLiu, Hui. "Online automatic epileptic seizure detection from electroencephalogram (EEG)." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0012941.
Full textDuta, Mihaela D. "The study of vigilance using neural networks analysis of EEG." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301454.
Full textVigon, Laurence Celine. "Independent component analysis techniques and their performance evaluation for electroencephalography." Thesis, Sheffield Hallam University, 2002. http://shura.shu.ac.uk/20479/.
Full textRmeily, Patrick. "Reliable and efficient transmission of compressive-sensed electroencephalogram signals." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/50026.
Full textApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Lee, Pamela Wen-Hsin. "Mutual information derived functional connectivity of the electroencephalogram (EEG)." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/219.
Full textMcGroggan, N. "Neutral network detection of epileptic seizures in the electroencephalogram." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249426.
Full textMathew, Blesy Anu. "ENTROPY OF ELECTROENCEPHALOGRAM (EEG) SIGNALS CHANGES WITH SLEEP STATE." UKnowledge, 2006. http://uknowledge.uky.edu/gradschool_theses/203.
Full textWinski, R. "Adaptive techniques for signal enhancement in the human electroencephalogram." Thesis, Keele University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372829.
Full textSmith, Phillip James. "Complexity of the Electroencephalogram of the Sprague-Dawley Rat." Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1277913687.
Full textRiddington, Edward Peter. "Automated interpretation of the background EEG using fuzzy logic." Thesis, University of Plymouth, 1998. http://hdl.handle.net/10026.1/1109.
Full textSepeng, Goitsemang Gomolemo. "The diagnostic outcomes of electroencephalogram performed on adult psychiatric patients at Dr George Mukhari Hospital, Garankuwa” over a period of January 2006 to December 2008." Thesis, University of Limpopo (Medunsa Campus), 2010. http://hdl.handle.net/10386/398.
Full textINTRODUCTION: The yield of EEG amongst psychiatric patients has been reported to be low and the value of EEG in the practice of psychiatry is questionable.EEG is used as part of a diagnostic work up for patients with psychiatric disorders .Often the reason given for its use is to exclude epilepsy as a cause of psychiatric symptoms. Epilepsy is primarily a clinical diagnosis, but the EEG may provide strong support by the findings of inter – ictal Epileptogenic discharge METHOD: All the adult EEGs requested at Dr George Mukhari psychiatric hospital, over a 36 month period,were reviewed to describe the outcome of the requested EEG reports. The study is a simple retrospective analysis of 111 consecutive EEG requested to the department of Neurology at DGMH from psychiatric unit at DGMH. Subjects were both inpatients and outpatients. All the EEG was reported by a qualified Neurologist. Data were extracted from the EEG request form and the patients’ clinical files, which reported on the clinical reason for the EEG test, nature of psychiatric diagnosis of patients, the psychiatric treatment received prior to the EEG test and the nature of the EEG results RESULTS: There were 111 EEG reports analysed, and 69 EEG reports for males and 42 EEG reports for females. The reason for EEG request was dominated mainly by exclusion of epilepsy. Majority of the patients were diagnosed with a psychotic disorder , followed second by a mood disorder , all of which was attributed to GMC (epilepsy).About 62.73% of patients were on a combination of treatment of antipsychotic drug and anticonvulsants, whilst 34.55% were on antipsychotic monotherapy prior to the EEG test. Further analysis of the requested EEG form was carried out in whom the test was to determine whether or not the patients were suffering from epilepsy. EEG abnormalities were identified amongst 24% of the patients. About 11,7% of patients presented with non specific EEG results. Out of a total number of 111 patients whom an EEG test was requested and epilepsy was highly suspected from clinical presentation, only 14 patients (12.6%),presented with epileptiform discharge on their EEG results. However majority of the patients (76%) demonstrated normal EEG pattern, which doesn’t exclude a diagnosis of epilepsy. CONCLUSION: The yield of EEG in psychiatry is low. To diagnose epilepsy as a cause of psychiatric presentation,clinicians should continue to rely on the clinical history of attacks and not the EEG. In the practice of psychiatry it is not recommended to routinely order an EEG to exclude a diagnosis of epilepsy, more so to confirm a psychiatric diagnosis. The presence of a psychiatric symptoms in patients who presents with epilepsy, is rarely associated with meaningful EEG changes
Hegde, Anant. "Spatio-temporal dependency analysis of epileptic intracranial electroencephalograph." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0013522.
Full textPascual-Marqui, Roberto Domingo. "Functional imaging of the human brain based on the electroencephalogram /." Zürich, 2003. http://opac.nebis.ch/cgi-bin/showAbstract.pl?sys=000253398.
Full textCabrerizo, Mercedes. "Subdural electroencephalogram analysis for extracting discriminating measures in epileptogenic data." FIU Digital Commons, 2006. http://digitalcommons.fiu.edu/etd/1960.
Full textChander, Rahul. "Algorithms to detect High Frequency Oscillations in human intracerebral electroencephalogram." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18767.
Full textLes chercheurs ont découvert récemment des oscillations haute fréquence de courte durée, dans la bande 100-450 Hz, en utilisant des électrodes intracérébrales sur des patients épileptiques (candidats à la chirurgie). Des nouveaux outils ont été développés pour étudier ces phénomènes. Le nombre élevé de ces oscillations rapides fait de leur identification visuelle une tache fastidieuse. La détection automatique est plus efficace, reproductible et objective. Nous avons mis en place une méthode de sélection originale de la ligne de base et amélioré deux algorithmes de détection basés sur l'utilisation de filtres et d'ondelettes. Nous avons par la suite fait la comparaison entre la performance des algorithmes et celle d'un expert. Dix minutes d'électroencéphalogramme de cinq patients ont été enregistrés avec un filtrage de 0.5 à 500 Hz et une fréquence d'échantillonnage de 2000 Hz. Une revue par un neurophysiologiste des oscillations détectées a permis de mesurer les performances des deux algorithmes. La sensibilité et le pourcentage de fausses détections de la méthode avec filtre sont respectivement de 75.9% et 10.6%, alors que pour la méthode avec ondelettes, la sensibilité et le pourcentage de fausses détections sont respectivement de 70.8% et 13.1%. Notre méthode donne des résultats satisfaisants pour la détection d'oscillations haute fréquence.
Vennelaganti, Swetha. "AGING AND SLEEP STAGE EFFECTS ON ENTROPY OF ELECTROENCEPHALOGRAM SIGNALS." UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_theses/553.
Full textSong, Yuedong. "Electroencephalogram machine learning to assist diagnosis and treatment of epilepsy." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709318.
Full textBorges, Ana Filipa Teixeira. "Spectral and coherence estimates on electroencephalogram recordings during arithmetical tasks." Master's thesis, Faculdade de Ciências e Tecnologia, 2009. http://hdl.handle.net/10362/10556.
Full textD'ROZARIO, Angela Louise. "Electroencephalogram (EEG) biomarkers of neurobehavioural dysfunction in obstructive sleep apnea." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/9886.
Full textYoung, Andrew Coady. "A Consensus Model for Electroencephalogram Data Via the S-Transform." Digital Commons @ East Tennessee State University, 2012. https://dc.etsu.edu/etd/1424.
Full textLi, Jiewei, and 李杰威. "Electroencephalograph feature extraction of somatosensory event related potential (ERP)." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206587.
Full textpublished_or_final_version
Orthopaedics and Traumatology
Master
Master of Medical Sciences
Jakaite, Livija. "Bayesian assessment of newborn brain maturity from sleep electroencephalograms." Thesis, University of Bedfordshire, 2012. http://hdl.handle.net/10547/293806.
Full textWard, Christian Radcliffe. "Applications and Statistical Modeling of Electroencephalograms using Identity Vectors." Diss., Temple University Libraries, 2019. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/564773.
Full textPh.D.
In recent years, electroencephalograms (EEGs) have been the subject of intense signal processing research. The ability of software to group, cluster, or identify trends in EEG data has applications that range from clinical support tools for neurologists to brain-computer interfaces. However, a persistent limitation in the development of EEG classification algorithms has been a lack of clinician labeled data which is necessary to train the supervised neural networks and deep learning systems. This work addresses this issue by presenting an unsupervised technique for classifying EEGs and elucidating common data modes that do not depend on labeled data. Specifically, this work introduces the application of Identity Vectors (I-Vectors) to EEG signals. I-Vectors were originally developed in the speech processing community to parse multiple facets of speaker data (speaker, language, accent, age, etc). The similarities between EEG and speech data suggest that I-Vectors are a strong candidate for developing data models that can differentiate between subjects, channels, and medical conditions. I-Vectors work by building a Universal Background Model (UBM) of signal features that is based on weighted Gaussian clusters. This UBM is then projected into a lower dimensional space through a Total Variability Matrix which seeks to maximize the differences between the UBM and a group of “enrollment” signals. Optionally, further dimensionality reduction can typically be achieved through linear discriminant analysis (LDA) before generating the final I-Vectors. This work develops the application of I-Vectors to EEGs by addressing three key research aims. First: can the I-Vector technique be used to classify EEG data with equivalent performance to other machine learning classifiers. Secondly: how should I-Vector parameters be tuned to optimize performance on EEG data. And thirdly: What properties of EEG data do I-Vectors take advantage of, and can this knowledge be used to inform the EEG classification process. I-Vector performance was rigorously evaluated using larger and more diverse data sets than have been used in comparable published literature, specifically various blends of the PhysioNet Motor Movement Database and the Temple University Hospital EEG Corpus. Benchmark comparisons were made against well-known classifiers in the EEG domain, namely the Mahalanobis Distance and Gaussian Mixture Model-Universal Background Model (GMMUBM) classifiers. Performance was also evaluated using three different EEG feature sets as system inputs, namely Power Spectral Density, Spectral Coherence, and Cepstral Coefficients. Ultimately, the I-Vectors exceeded the performance of the MD classifier and reported an equal error rate 5% higher higher than the GMMUBMs. This was achieved using I-Vectors that were one to two orders of magnitude smaller than those in the GMMUBM classifier and half the size of the MD classifier. These results Indicated the technique was robust and has the potential to scale for use on large datasets such as the Temple University Hospital EEG Corpus.
Temple University--Theses
Löfhede, Johan. "Classification of Burst and Suppression in the Neonatal EEG." Licentiate thesis, Högskolan i Borås, Institutionen Ingenjörshögskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-3448.
Full textKnoblauch, Vera. "Circadian and homeostatic modulation of sleep spindles in the human electroencephalogram." Basel : Universität Basel, 2004. http://www.unibas.ch/diss/2004/DissB_6791.htm.
Full textWerth, Esther. "Human Sleep: Homeostatic regulation and topographic differences of the sleep electroencephalogram /." Zürich, 1997. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=12326.
Full textJames, Christopher J. "Detection of epileptiform activity in the electroencephalogram using artificial neural networks." Thesis, University of Canterbury. Electrical and Electronic Engineering, 1997. http://hdl.handle.net/10092/6760.
Full textFauvel, Simon. "Energy-efficient compressed sensing frameworks for the compression of electroencephalogram signals." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45359.
Full textKander, Veena. "Validation of a pediatric guideline on basic electroencephalogram interpretation for clinicians." Thesis, Bloemfontein : Central University of Technology, Free State, 2013. http://hdl.handle.net/11462/172.
Full textThe incidence of epilepsy is high in sub-Saharan Africa and resource poor countries (RPCs). There are few neurologists and paediatric neurologists to manage people with epilepsy (PWE). Health care is often limited, particularly technological services, including electroencephalogram (EEG), video EEG monitoring, and Neuroradiology services. All these are important in the management of PWE. Since 2008, informal electrophysiology training has been provided at the Red Cross War Memorial Hospital, in the Department of Paediatric Neurology. The Principal Investigator (PI) elected to develop a formal teaching course on EEG interpretation at the Red Cross War Memorial Hospital. A study was designed to evaluate the practical use of a handbook entitled “Handbook of Paediatric Electroencephalography: A guide to basic paediatric electroencephalogram interpretation.” This has been developed to fulfill the need for basic understanding and interpretation of EEG amongst clinicians caring for children in sub-Saharan Africa who may not have access to, or be able to afford, training at a recognized facility or on-line. In 2008, the department of Paediatric Neurology at the Red Cross War Memorial Hospital had their first African fellow from Kenya. By 2011, seven participants had undergone EEG training. A quantitative research approach and design was used in order to evaluate the handbook in terms of the accessibility of the contents and its practical use. Quantification included the recruitment of participants who constituted the population sample, a pilot study, and the collection of data from comparative assessments of participants’ use of the handbook, and from questionnaires completed by participants. This provided the researcher with the opportunity to improve and validate her knowledge of training in EEG interpretation. The researcher was able to quantify and compare the scores of participants using the handbook, as well as to compare their evaluative responses to its content and practical use. Eleven of thirteen participants completed the study. The pre-training results showed a median percentage of 50 which increased to 70 percent post-test. A comparison of the scores of trained versus not-trained revealed that those participants who had undergone one-on-one training on site at the unit fared much better both in their interpretations, conclusions, and reporting of EEG findings. The responses from the evaluative and comparative survey between the two groups showed no significant difference across all questions, the majority of the questions on the relative usefulness of the handbook being rated ‘agree’ and ‘strongly agree’, thus supporting the finding that all participants found the handbook useful whether they had received one-on-one training or not. The post-training results in EEG interpretation showed a stronger trend towards statistical significance (p<0.06) with trained participants and with the not-trained. These findings lend support to the success and usefulness of the handbook as a basic guide to paediatric EEG interpretation. The handbook was not aimed at making the electroencephalography reader an expert at a specialist level, but rather to maximize the reliability of the reading of EEG when screening electroencephalograms for important key diagnostic markers which would alter the child’s management. This is the first published handbook on paediatric EEG in South Africa. The results of this study strongly suggest that the handbook is useful as a learning and reference tool in interpretation of paediatric EEG, both for individuals with access to one-on-one training as well as those without. It is intended that the handbook, in conjunction with one-on-one training, will form part of a post-graduate diploma course offered by the University of Cape Town on “basic electrophysiology and the management of children with epilepsy” for training neurologists and child neurologists, paediatricians and health care workers in sub-Saharan Africa.
Estepp, Justin Ronald. "An improved adaptive filtering approach for removing artifact from the electroencephalogram." Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1433244703.
Full textSnyder, Selena Tyr. "Time Series Modeling of Clinical Electroencephalogram Data - An Information Theory Approach." Ohio University Honors Tutorial College / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors1524830090342372.
Full textZak, Francis Anthony Jr. "Effects of lithium on auditory evoked potential and electroencephalogram spectral edges." Diss., The University of Arizona, 1992. http://hdl.handle.net/10150/185782.
Full textGale, Amy Ash 1960. "An analytical study of the electroencephalogram in sevoflurane and enflurane anesthesia." Thesis, The University of Arizona, 1993. http://hdl.handle.net/10150/278297.
Full textLevan, Pierre. "A system for automatic artifact removal in ictal scalp electroencephalograms /." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98986.
Full textProposed is a system to automate this process, using a Bayesian framework to classify the components as either brain activity or artifact. The system identified EEG components with 87.6% sensitivity and 70.2% specificity. Most misclassified components were mixtures of EEG and artifactual activity. The classification error rate was comparable to the human intra-expert variability observed in EEG classification tasks. The value of system lies in its ability to remove simultaneously and automatically several types of artifacts from the EEG.
El, Sayed Hussein Jomaa Mohamad. "Signal processing of electroencephalograms with 256 sensors in epileptic children." Thesis, Angers, 2019. http://www.theses.fr/2019ANGE0028.
Full textIn this thesis, our focus is to develop signal processing methods to be used on electroencephalography (EEG) signals recorded from epileptic patients. The aim of these methods is to be able to quantify the state of the patient with epilepsy and to study the progress of the neurological disorder over time. The methods we developed are based on entropy. From previous permutation entropy methods we introduce the multivariate Improved Weighted Multi-scale Permutation Entropy (mvIWMPE). This method is applied on EEG signals of both healthy and epileptic children and gives promising results. We also introduce a new multivariate approach for sample entropy and, when tested and compared with the existing multivariate approach, we find that the introduced approach is much betterin handling a larger numbers of channels. We also introduce a time-varying time frequency complexity measure based on Singular Value Decomposition and Rényi Entropy. These measures are applied on EEG of epileptic children before and after 4-6 weeks of treatment. The results come in correspondence with the clinical diagnosis from the hospital on whether the patients improve or not. The final part of the thesis focuses on functional connectivity measures. We introduce a new functional connectivity method based on mvIWMPE and Mutual Information. The method is applied on EEG signals of healthy children at rest. Using network measures, we are able to identify regions in the brain that are active in networks previously found using functional magnetic resonance imaging. The method is also used to study the networks of epileptic children at several points throughout the treatment
Orellana, Marco Antônio Pinto. "Seizure detection in electroencephalograms using data mining and signal processing." Universidade Federal de Viçosa, 2017. http://www.locus.ufv.br/handle/123456789/11589.
Full textMade available in DSpace on 2017-08-22T13:26:59Z (GMT). No. of bitstreams: 1 texto completo.pdf: 5760621 bytes, checksum: f90e38633fae140744262e882dc7ae5d (MD5) Previous issue date: 2017-03-10
Agencia Boliviana Espacial
A epilepsia é uma das doenças neurológicas mais comuns definida como a predisposição a sofrer convulsões não provocadas. A Organização Mundial da Saúde estima que 50 milhões de pessoas estão sofrendo esta condição no mundo inteiro. O diagnóstico de epilepsia implica em um processo caro e longo baseado na opinião de especialistas com base em eletroencefalogramas (EEGs) e gravações de vídeo. Neste trabalho, foram desenvolvidos dois métodos para a predição automática de convulsões usando EEG e mineração de dados. O primeiro sistema desenvolvido é um método específico para cada paciente (patient-specific) que consiste em extrair características espectro-temporais de todos os canais de EEG, aplicar um algoritmo de redução de dimensão, recuperar o envelope do sinal e criar um modelo usando um classificador random forest. Testando este sistema com um grande banco de dados de epilepsia, atingimos 97% de especificidade e 99% de sensibilidade. Assim, a primeira proposta mostrou ter um grande potencial para colaborar com o diagnóstico em um contexto clínico. O segundo sistema desenvolvido é um método não específico do paciente (non-patient specific) que consiste em selecionar o sinal diferencial de dois eletrodos, aplicar um vetor de bancos de filtros para esse sinal, extrair atributos de séries temporais e criar um modelo preditivo usando uma árvore de decisão CART. O desempenho deste método foi de 95% de especificidade e 87% de sensibilidade. Estes valores não são tão altos quanto os de métodos propostos anteriormente. No entanto, a abordagem que propomos apresenta uma viabilidade muito maior para implementação em dispositivos que possam ser efetivamente utilizados por pacientes em larga escala. Isto porque somente dois elétrodos são utilizados e o modelo de predição é computacionalmente leve. Note-se que, ainda assim, o modelo xigerado apresenta um poder preditivo satisfatório e generaliza melhor que em trabalhos anteriores já que pode ser treinado com dados de um conjunto de pacientes e utilizado em pacientes distintos (non-patient specific). Ambas as propostas apresentadas aqui, utilizando abordagens distintas, demonstram ser alternativas de predição de convulsões com performances bastante satisfatórias sob diferentes circunstâncias e requisitos.
Epilepsy is one of the most common neurological diseases and is defined as the pre- disposition to suffer unprovoked seizures. The World Health Organization estimates that 50 million people are suffering this condition worldwide. Epilepsy diagnosis im- plies an expensive and long process based on the opinion of specialist personnel about electroencephalograms (EEGs) and video recordings. We have developed two meth- ods for automatic seizure detection using EEG and data mining. The first system is a patient-specific method that consists of extracting spectro-temporal features of 23 EEG channels, applying a dimension reduction algorithm, recovering the envelope of the signal, and creating a model using a random forest classifier. Testing this system against a large dataset, we reached 97% of specificity and 99% of sensitivity. Thus, our first proposal showed to have a great potential for diagnosis support in clinical context. The other developed system is a non-patient specific method that consists of selecting the differential signal of two electrodes, applying an array of filter banks to that signal, extracting time series features, and creating a predictive model using a decision tree. The performance of this method was 95% of specificity, and 87% of sensitivity. Although the performance is lower than previous propos- als, due to the design conditions and characteristics, our method allows an easier implementation with low hardware requirements. Both proposals presented here, using distinct approaches, demonstrate to be seizure prediction alternatives with very satisfactory performances under different circumstances and requirements.
Zelmann, Rina. "Automatic detection and analysis of high frequency oscillations in the human electroencephalogram." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114313.
Full textLes oscillations de haute fréquence (OHF; 80-500 Hz) constituent des évènements EEG spontanés de courte durée et de faible amplitude qui émergent en tant que biomarqueur du tissu pouvant générer les crises épileptiques. Afin de promouvoir l'utilisation clinique et l'étude systématique des OHF, il est important de développer des détecteurs automatiques fiables et de fournir un cadre visant à garantir la stabilité de leurs résultats. Il s'agit là du premier objectif de la présente thèse. Les OHF ont principalement été étudiées à partir d'électrodes intracrâniennes, mais elles ont également été enregistrées à l'aide d'électrodes placées sur le cuir chevelu. Il convient alors de comprendre comment l'on peut observer ces évènements de faible envergure du fait de l'atténuation importante du crâne, ce qui constitue le second objectif de cette thèse. Pour répondre au premier objectif, nous avons conçu une procédure visant à systématiser l'étude des OHF et avons élaboré un détecteur automatique. Ainsi, nous présentons d'abord une procédure permettant d'assurer l'uniformité entre les lecteurs et d'évaluer si un intervalle choisi offre des renseignements stables pour un repérage visuel et automatique des OHF. À l'heure actuelle, cette procédure est communément utilisée quand les OHF interictales sont repérées. Cette étude est la première à évaluer la durée minimale nécessaire à l'obtention de renseignements cohérents pour le marquage des EEG et elle a démontré que l'analyse de 5 minutes d'EEG interictal offre la même information que des intervalles de plus longue durée. Cette approche est applicable à tout type d'évènements EEG. Nous avons ensuite décrit un détecteur automatique d'OHF, qui suit une approche originale en détectant d'abord des segments de base dénués d'activités oscillatoires avant d'utiliser un seuil statistique obtenu à partir de ces valeurs de base locales pour déterminer les OHF. Ce détecteur est plus efficace que d'autres détecteurs, notamment pour les canaux actifs et les canaux sans valeur de base claire. Une comparaison entre les détecteurs existants pour le même ensemble de données est présentée afin d'analyser leur performance respective, de démontrer que l'optimisation d'un certain type de données améliore l'efficacité de tous les détecteurs et de mettre en évidence les problèmes en jeu dans la validation. Le second objectif de la présente thèse est d'étudier la distribution spatiale de l'activité corticale au moment des OHF enregistrées sur le cuir chevelu. Dans la mesure où les OHF sont produites par de petites régions cérébrales et que l'EEG est fortement atténué avant d'arriver au cuir chevelu, les OHF sont surtout enregistrées à l'aide d'électrodes intracrâniennes. Il est étonnant que dernièrement, des OHF aient également été observées sur des EEG enregistrés sur le cuir chevelu. En se basant sur les enregistrements simultanés sur le cuir chevelu et intracrâniens, nous avons démontré que, même si les régions génératrices d'OHF sont faiblement étendues sur le plan spatial, les OHF peuvent être observées à l'aide d'électrodes placées sur le cuir chevelu avec une faible amplitude et une étendue focale. Nous avons établi que ces évènements de faible étendue sont sous-échantillonnés sur le cuir chevelu avec la densité des systèmes standards d'électrodes et sur les grilles corticales avec l'espacement standard de 1 cm entre les électrodes. Il semble nécessaire d'avoir une répartition dense des électrodes sur le cuir chevelu afin de représenter spatialement de façon exhaustive les OHF enregistrées sur le cuir chevelu. Cela ouvrirait la voie à une étude systématique non invasive des OHF. Avec l'élaboration de méthodes de détection et d'analyse des OHF, nous souhaitons améliorer l'étude systématique des OHF intracrâniennes et du cuir chevelu, dans l'optique d'une application clinique en tant que biomarqueur du tissu épileptogène.