Academic literature on the topic 'Electrodes, Oxide'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrodes, Oxide.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electrodes, Oxide"
Tanumihardja, Esther, Douwe S. de Bruijn, Rolf H. Slaats, Wouter Olthuis, and Albert van den Berg. "Monitoring Contractile Cardiomyocytes via Impedance Using Multipurpose Thin Film Ruthenium Oxide Electrodes." Sensors 21, no. 4 (February 18, 2021): 1433. http://dx.doi.org/10.3390/s21041433.
Full textHO, M. Y., P. S. KHIEW, D. ISA, T. K. TAN, W. S. CHIU, and C. H. CHIA. "A REVIEW OF METAL OXIDE COMPOSITE ELECTRODE MATERIALS FOR ELECTROCHEMICAL CAPACITORS." Nano 09, no. 06 (August 2014): 1430002. http://dx.doi.org/10.1142/s1793292014300023.
Full textSchlack, Sebastian, Hendrik Wulfmeier, and Holger Fritze. "Impact of electrode conductivity on mass sensitivity of piezoelectric resonators at high temperatures." Journal of Sensors and Sensor Systems 11, no. 2 (November 15, 2022): 299–313. http://dx.doi.org/10.5194/jsss-11-299-2022.
Full textHo, Mui Yen, Poi Sim Khiew, Dino Isa, and Wee Siong Chiu. "Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors." Functional Materials Letters 07, no. 06 (December 2014): 1440012. http://dx.doi.org/10.1142/s1793604714400128.
Full textChuma, Takeshi, Haruhiko Toda, Morihiro Saito, Jun Kuwano, and Hidenobu Shiroishi. "Oxygen Reduction Electrode Properties of Perovskite-Related Oxides Sr(Fe,Co,Ru)O3-δ at Low Temperatures." Key Engineering Materials 320 (September 2006): 243–46. http://dx.doi.org/10.4028/www.scientific.net/kem.320.243.
Full textGaire, Madhu, Najma Khatoon, and Douglas Chrisey. "Preparation of Cobalt Oxide–Reduced Graphitic Oxide Supercapacitor Electrode by Photothermal Processing." Nanomaterials 11, no. 3 (March 12, 2021): 717. http://dx.doi.org/10.3390/nano11030717.
Full textSon, Seong Ho, Do Won Chung, and Won Sik Lee. "Development of Noble Metal Oxide Electrode for Low Oxygen Evolution." Advanced Materials Research 47-50 (June 2008): 750–53. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.750.
Full textCirocka, Anna, Dorota Zarzeczańska, and Anna Wcisło. "Good Choice of Electrode Material as the Key to Creating Electrochemical Sensors—Characteristics of Carbon Materials and Transparent Conductive Oxides (TCO)." Materials 14, no. 16 (August 22, 2021): 4743. http://dx.doi.org/10.3390/ma14164743.
Full textRossini, Matteo, Fabrizio Ganci, Claudio Zanca, Bernardo Patella, Giuseppe Aiello, and Rosalinda Inguanta. "Nanostructured Lead Electrodes with Reduced Graphene Oxide for High-Performance Lead–Acid Batteries." Batteries 8, no. 11 (November 3, 2022): 211. http://dx.doi.org/10.3390/batteries8110211.
Full textBarnett, Scott A. "(High-Temperature Energy, Materials, & Processes Division Outstanding Achievement Award Address) Mechanisms of Oxide Exsolution and Electrode Applications in Solid Oxide Cells." ECS Meeting Abstracts MA2022-02, no. 47 (October 9, 2022): 1769. http://dx.doi.org/10.1149/ma2022-02471769mtgabs.
Full textDissertations / Theses on the topic "Electrodes, Oxide"
Nwosu, Nkem O. E. "Optimisation of electroless co-deposited solid oxide fuel cell electrodes." Thesis, Edinburgh Napier University, 2013. http://researchrepository.napier.ac.uk/Output/6448.
Full textAstuti, Yeni. "Bio-functionalised nanostructured metal oxide electrodes." Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429459.
Full textMakgae, Mosidi Elizabeth. "Environmental electrochemistry of organic compounds at metal oxide electrodes." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/49947.
Full textENGLISH ABSTRACT: This study investigates the electrochemical oxidation of phenol. Phenol is a major toxin and water pollutant. In addition, during water treatment it reacts with chlorine to produce carcinogenic chlorophenols. lts treatment down to trace levels is therefore of increasing concern. For this purpose, dynamically stable anodes for the breakdown of phenols to carbon dioxide or other less harmful substances were developed and characterized. The anodes were prepared from mixed oxides of tin (Sn) and the precious metals ruthenium (Ru), tantalum (Ta) and iridium (Ir), which in tum were prepared using sol-gel techniques. This involved dip-coating the aqueous salts of the respective metals onto titanium substrates and heating to temperatures of several hundreds of degree Celsius. The properties of these mixed oxide thin films were investigated and characterized using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM), elemental dispersive energy X-ray analysis (EDX), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), particle induced X-ray emission (PIXE) and electrochemical measurements. A variety of different electrode materials including Til Sn02-Ru02-Ir02, Ti/Ta20s-Ir02 and Ti/RhOx-Ir02 were developed and tested for their potential as oxidation catalysts for organic pollutants in wastewaters. Depending on the anode type, phenol was found to be electrochemically degraded, to different extents, on these surfaces during electrolysis. It was however found that the oxidation rate not only depended on the chemical composition but also on the oxide morphology revealed, resulting from the preparation procedure. The Ti/SnOz-Ru02-Ir02 film was found to be the most efficient surface for the electrolytic breakdown of phenol. This film oxidized phenol at a potential of 200 mV vs Ag/AgC!. The activity of the catalytic systems was evaluated both on the basis of phenol removal efficiency as well as the kinetics of these reactions. Phenol removal efficiency was more than 90% for all the film surfaces prepared and the rate of the reaction followed first order kinetics. A pathway for the electrochemical degradation of phenol was derived using techniques such as HPLC to identify the breakdown products. These pathway products included the formation of benzoquinone and the further oxidation of benzoquinone to the carboxylic acids malic, malonic and oxalic.
AFRIKAANSE OPSOMMING: Die onderwerp van hierdie studie is die elektrochemiese oksidasie van fenol deur nuwe gemengde-oksied elektrodes. Fenol is 'n belangrike gifstof en besoedelingsmiddel in water. Daarbenewens kan fenolook met chloor reageer tydens waterbehandeling om sodoende karsinogeniese chlorofenole te vorm. Dit is dus belangrik dat metodes ondersoek word wat die konsentrasie van fenol in water verminder. Hierdie studie behels die bereiding en karakterisering van nuwe dinamiese stabiele anodes (DSA) vir die afbreek van fenol tot koolstofdioksied en ander minder gevaarlike verbindings. Hierdie nuwe anodes is berei vanaf die gemengde-okside van die edelmetale tin (Sn), ruthenium (Ru), tantalum (Ta) en iridium (Ir), met behulp van sol-gel tegnieke. Die finale stap in die bereiding behels kalsinering van die oksides by temperature van "n paar honderd grade Celsius. Hierdie nuwe elektrodes is later gebruik om die oksidasie van fenol te evalueer. Die gemengde-oksied dunlae/anodes IS d.m.v. die volgende analitiesetegnieke gekarakteriseer: termiese-gravimetriese analise (TGA), skandeerelektronmikroskopie (SEM), atoomkragmikroskopie (AFM), elementverstrooiingsenergie- X-straalanalise (EDX), X-straaldiffraksie (XRD), Rutherford terug-verstrooiingspektroskopie (RBS), partikel-geinduseerde X-straal emissie (PIXE), en elektrochemiese metings. 'n Verskeidenheid elektrodes van verskillende materiale is berei en hul potensiaal as oksidasie-kataliste vir organiese besoedelingsmiddels in afloopwater bepaal. Hierdie elektrodes het die volgende ingesluit: Ti/Sn02-Ru02-Ir02, Ti/Ta20s-Ir02 en Ti/RhOx-Ir02. Gedurende elektrolise is fenol elektrochemies afgebreek tot verskillende vlakke, afhangende van die tipe elektrode. Die oksidasietempo het egter nie alleen van die chemiese samestelling van die elektrode afgehang nie, maar ook van die morfologie van die okside, wat op hulle beurt van die voorbereidingsprosedure afgehang het. Daar is bevind dat die Ti/Sn02-Ru02-Ir02 elektrode die mees effektiewe oppervlakke vir die afbreek van fenol is. Hier het die oksidasie van fenol by 'n potensiaal van 200 mV plaasgevind. Die aktiwiteite van die katalitiese sisteme IS bepaal op grond van hulle fenolverwyderingsdoeltreffendheid. Die kinetika van die reaksies is ook bepaal. Al die elektrodes het >90% fenolverwyderingsdoeltreffendheid getoon en die reaksietempos was van die eerste-orde. Deur van analitiese tegnieke soos hoëdrukvloeistofchromatografie (HPLC) gebruik te maak is die afbreekprodukte van fenol geïdentifiseer en 'n skema vir die elektrochemiese afbreek van fenol uitgewerk. Daar is bevind dat bensokinoon gevorm het, wat later oksidasie ondergaan het om karboksielsure te vorm.
Hernández, Rodríguez Elba María. "Solid Oxide Electrolysis Cells electrodes based on mesoporous materials." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/665269.
Full textUna de las principales desventajas de las fuentes de energías renovables es que producen energía eléctrica de forma discontinua. Los electrolizadores de alta temperatura basados en óxidos sólidos (SOEC) se presentan como una tecnología prometedora para el almacenamiento de energía eléctrica. Alcanzando eficiencias mayores de un 85%, los electrolizadores SOEC permite convertir energía eléctrica en energía química mediante la reducción de las moléculas de agua (H2O), dióxido de carbono (CO2), o la combinación de ambas; generándose hidrógeno (H2), monóxido de carbono (CO) o gas de síntesis (H2 +CO) como producto. El trabajo que se presenta en esta tesis tiene como objetico mejorar el rendimiento de los electrolizadores SOEC mediante la utilización de óxidos metálicos mesoporosos, caracterizados por poseer alta área superficial y ser estables a altas temperaturas. Esta tesis está organizada en ocho capítulos. Los capítulos 3, 4, 5, 6 y 7 presentan los resultados alcanzados: El capítulo 3 presenta la caracterización estructural de los materiales mesoporosos y de los electrodos fabricados. Además, la temperatura de adhesión del material mesoporoso ha sido optimizada y se ha fijado a 900 °C. El capítulo 4 compara electrolizadores fabricados soportados por el electrodo de combustible y por el electrolito. Los resultados muestran que las densidades de corriente más altas fueron inyectadas en los electrolizadores soportados por el electrodo de combustible, considerándose esta configuración la más apropiada. El capítulo 5 presenta la influencia de la microstructura de la intercara del electrodo de oxígeno en el rendimiento de los electrolizadores SOEC. La caracterización electroquímica, apoyada por la caracterización microestructural, ha demostrado que la máxima densidad de corriente ha sido inyectada por el electrolizador cuya barrera de difusión ha sido depositado por láser pulsado (PLD) y la capa funcional del electrodo de oxígeno mediante infiltración de materiales mesoporosos. El capítulo 6 estudia el electrodo de oxígeno optimizado. Durante 1400 h de operación continua y caracterización microstructural, se ha demostrado la estabilidad de este electrodo. Por último, el capítulo 7 muestra los resultados obtenidos del escalado de los electrodos mesoporosos en celdas de mayor área (25 cm2). La caracterización electroquímica muestra alta flexibilidad ante las composiciones de gases utilizadas, y estabilidad de los electrodos mesoporosos propuestos.
Koep, Erik Kenneth. "A Quantitative Determination of Electrode Kinetics using Micropatterned Electrodes." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10524.
Full textBaez, Baez Victor Antonio. "Metal oxide coated electrodes for oxygen reduction." Thesis, University of Southampton, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241271.
Full textGraves, John Edward. "The electrochemistry of titanium oxide ceramic electrodes." Thesis, University of Southampton, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305486.
Full textMacDonald, Gordon Alex. "Nanoscale Characterization of the Electrical Properties of Oxide Electrodes at the Organic Semiconductor-Oxide Electrode Interface in Organic Solar Cells." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/347338.
Full textLiu, Yujing. "Nanostructured transparent conducting oxide electrodes through nanoparticle assembly." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-149076.
Full textBaker, Priscilla G. L. "Sol-gel preparation, characterisation and electrochemistry of mixed metal tin oxide electrodes." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/50096.
Full textBooks on the topic "Electrodes, Oxide"
Sato, Norio. Electrochemistry at metal and semiconductor electrodes. Amsterdam: Elsevier, 1998.
Find full textHaschke, Sandra. Electrochemical Water Oxidation at Iron(III) Oxide Electrodes. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09287-0.
Full textInternational Conference on Oxide Materials for Electronic Engineering--Fabrication, Properties and Applications (2012 Lʹviv, Ukraine). Oxide materials for electronic engineering: Fabrication, properties and applications : selected, peer reviewed papers from the International Scientific Conference on Oxide Materials for Electronic Engineering - Fabrication, Properties and Applications (OMEE 2012), September 3-7, 2012, Lviv, Ukraine. Durnten-Zurich, Switzerland: TTP, Trans Tech Publications Ltd, 2013.
Find full textS, Licht, ed. Semiconductor electrodes and photoelectrochemistry. Weinheim: Wiley-VCH, 2002.
Find full textJacek, Lipkowski, and Ross P. N, eds. Adsorption of molecules at metal electrodes. New York, NY: VCH, 1992.
Find full textInternational Symposium on Solid Oxide Fuel Cells (10th 2007 Nara, Japan). Solid oxide fuel cells 10: (SOFC-X). Edited by Eguchi K and Electrochemical Society. Pennington, N.J: Electrochemical Society, 2007.
Find full textInternational Symposium on Solid Oxide Fuel Cells (6th 1999 Honolulu, Hawaii). Solid oxide fuel cells: (SOFC VI) : proceedings of the Sixth International Symposium. Edited by Singhal Subhash C, Dokiya M, Electrochemical Society. High Temperature Materials Division., Electrochemical Society Battery Division, and SOFC Society of Japan. Pennington, NJ: Electrochemical Society, 1999.
Find full textSzklarczyk, Marek. Fotokataliza na elektrodach półprzewodnikowych. Warszawa: Wydawnictwa Uniwersytetu Warszawskiego, 1990.
Find full textLluís, Miribel-Català Pere, and SpringerLink (Online service), eds. A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices: Three-Electrodes Amperometric Biosensor Approach. Dordrecht: Springer Science+Business Media B.V., 2011.
Find full textAma, Onoyivwe Monday, and Suprakas Sinha Ray, eds. Nanostructured Metal-Oxide Electrode Materials for Water Purification. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43346-8.
Full textBook chapters on the topic "Electrodes, Oxide"
Chiku, Masanobu. "Nickel Oxide Electrodes." In Encyclopedia of Applied Electrochemistry, 1366–68. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_512.
Full textWirtz, G. P., and H. S. Isaacs. "Oxide Electrodes at High Temperatures." In Solid State Batteries, 483–87. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_36.
Full textTrasatti, Sergio. "Hydrogen Evolution on Oxide Electrodes." In Modern Chlor-Alkali Technology, 281–94. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2880-3_24.
Full textIhlefeld, Jon F., Mark D. Losego, and Jon-Paul Maria. "Base Metal Bottom Electrodes." In Chemical Solution Deposition of Functional Oxide Thin Films, 571–92. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-211-99311-8_23.
Full textKaur, Gurbinder. "Interaction of Glass Seals/Electrodes and Electrolytes." In Solid Oxide Fuel Cell Components, 315–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25598-9_8.
Full textMogensen, Mogens, and Peter Holtappels. "Ni-Based Solid Oxide Cell Electrodes." In Solid Oxide Fuels Cells: Facts and Figures, 25–45. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4456-4_2.
Full textWroblowa, Halina S. "Rechargeable Manganese Oxide Electrodes and Cells." In Electrochemistry in Transition, 147–59. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-9576-2_11.
Full textChukwuneke, Chikaodili, Joshua O. Madu, Feyisayo V. Adams, and Oluwagbenga T. Johnson. "Application of Metal Oxides Electrodes." In Nanostructured Metal-Oxide Electrode Materials for Water Purification, 127–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43346-8_8.
Full textNiwa, Koichi, Jeffrey S. Cross, Mineharu Tsukada, Kazuaki Kurihara, and Nobuo Kamehara. "Properties of Fram Capacitors with Oxide Electrodes." In Ceramic Transactions Series, 311–17. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118408186.ch28.
Full textFourcade, Julien, and Olivier Citti. "New Tin Oxide Electrodes for Glass Melting." In 73rd Conference on Glass Problems, 183–99. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118710838.ch14.
Full textConference papers on the topic "Electrodes, Oxide"
Jadhav, S. L., A. L. Jadhav, V. S. Jamdade, K. R. Kharat, A. A. Deshmane, and A. V. Kadam. "Controlled Synthesis of Cobalt Oxide Electrode by Electrodeposition for Supercapacitor Application." In National Conference on Relevance of Engineering and Science for Environment and Society. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.118.56.
Full textGreene, Eric S., and Wilson K. S. Chiu. "Mass Transfer in Functionally Graded Solid Oxide Fuel Cell Electrodes." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82531.
Full textRecknagle, Kurtis P., Emily M. Ryan, and Moe A. Khaleel. "Numerical Modeling of the Distributed Electrochemistry and Performance of Solid Oxide Fuels Cells." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64232.
Full textSohal, M. S., J. E. O’Brien, C. M. Stoots, V. I. Sharma, B. Yildiz, and A. Virkar. "Degradation Issues in Solid Oxide Cells During High Temperature Electrolysis." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33332.
Full textDias, N. S., A. F. Silva, P. M. Mendes, and J. H. Correia. "Non-invasive iridium oxide biopotential electrodes." In IECON 2009 - 35th Annual Conference of IEEE Industrial Electronics (IECON). IEEE, 2009. http://dx.doi.org/10.1109/iecon.2009.5414851.
Full textChu, Sangwook, Konstantinos Gerasopoulos, and Reza Ghodssi. "Biotemplated hierarchical nickel oxide supercapacitor electrodes." In 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2015. http://dx.doi.org/10.1109/memsys.2015.7051160.
Full textAhmad, Mahmoud Al, and Shereen Hasan. "Stretchable ruthenium oxide nanoparticles coated electrodes." In 2016 18th Mediterranean Electrotechnical Conference (MELECON). IEEE, 2016. http://dx.doi.org/10.1109/melcon.2016.7495449.
Full textChakraborty, Bitan, Alexandra Joshi-Imre, and Stuart F. Cogan. "Sputtered Ruthenium Oxide Neural Stimulation Electrodes." In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021. http://dx.doi.org/10.1109/embc46164.2021.9630483.
Full textKim-Lohsoontorn, P., H. B. Yim, and J. M. Bae. "Electrochemical Performance of Ni-YSZ, Ni/Ru-GDC, LSM-YSZ, LSCF and LSF Electrodes for Solid Oxide Electrolysis Cells." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33017.
Full textJu, W. T., and S. H. Hong. "Development of Fabrication Processes for Tubular Solid Oxide Fuel Cell (SOFC) by Plasma Spraying." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p1067.
Full textReports on the topic "Electrodes, Oxide"
Sholklapper, Tal Zvi. Nanostructured Solid Oxide Fuel Cell Electrodes. Office of Scientific and Technical Information (OSTI), January 2007. http://dx.doi.org/10.2172/926313.
Full textWorrell, W. L. Zirconia-based electrodes for solid oxide fuel cells. Office of Scientific and Technical Information (OSTI), December 1989. http://dx.doi.org/10.2172/7022625.
Full textGorte, Raymond J., and John M. Vohs. The Development of Nano-Composite Electrodes for Solid Oxide Electrolyzers. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1124583.
Full textRitter, James A. Supercapacitors and Batteries from Sol-Gel Derived Carbon - Metal Oxide Electrodes. Fort Belvoir, VA: Defense Technical Information Center, February 2001. http://dx.doi.org/10.21236/ada392659.
Full textGopalan, Srikanth, and Ben Levitas. Core-Shell Heterostructures as Functional Materials for Solid Oxide Fuel Cell (SOFC) Electrodes. Office of Scientific and Technical Information (OSTI), June 2022. http://dx.doi.org/10.2172/1872369.
Full textProf. Anil V. Virkar. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/784599.
Full textVirkar, Anil V. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/788101.
Full textAnil V. Virkar. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/833838.
Full textAnil V. Virkar. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES. Office of Scientific and Technical Information (OSTI), March 2002. http://dx.doi.org/10.2172/833840.
Full textAnil V. Virkar. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/833876.
Full text