Academic literature on the topic 'Electrode electrolyte composite'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrode electrolyte composite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electrode electrolyte composite"

1

Park, Jung Eun, Seung Kyu Yang, Ji Hyun Kim, Mi-Jung Park, and Eun Sil Lee. "Electrocatalytic Activity of Pd/Ir/Sn/Ta/TiO2 Composite Electrodes." Energies 11, no. 12 (November 30, 2018): 3356. http://dx.doi.org/10.3390/en11123356.

Full text
Abstract:
This study compared the electrolytic refining process using different commercial Pd-based electrodes. The Pd-based electrode had an Ir:Sn molar ratio of 1:1 and contained 10% tantalum on a titanium substrate. The palladium weight ratio varied from 0 g to 1.8 g, 4.7 g, 8.6 g, and 15.4 g. Electrolytic refining was investigated for the Pd-based electrode in 3 M of H2SO4. The interfacial microstructure and components of the substrate were investigated using energy-dispersive X-ray analysis, and the electrochemical properties of the materials were measured using cyclic voltammetry, linear scan voltammetry, electrochemical impedance spectroscopy, and accelerated life tests. Of all the tested Pd-based electrodes, those with a palladium loading weight of 8.6 g showed the highest and most stable electrode activity at 3 M of H2SO4, with a capacitance retention of 96% of its initial value. The accelerated life test results for the 8.6 g Pd-Ir-Sn-Ta/TiO2 electrode showed a gradual slope with an efficiency of almost 100% at 1000 h in an aqueous solution of 3 M of H2SO4. After the test, the dissolved elements that caused resistance in the electrolyte increased with increasing palladium loading content. Thus, the 8.6 g Pd-Ir-Sn-Ta/TiO2 electrode demonstrated the optimum composition in 3 M of H2SO4 for electrolyte refining.
APA, Harvard, Vancouver, ISO, and other styles
2

Luo, Zhian, and Jian Zhong Xiao. "Preparation and Characterization of Pt/YSZ Composite Electrode." Advanced Materials Research 66 (April 2009): 202–5. http://dx.doi.org/10.4028/www.scientific.net/amr.66.202.

Full text
Abstract:
Substrates of ytrria stabilized zirconia electrolyte were prepared by the ceramic injection molding, and then composite electrode slurry was made of platinum powder and yttria stabilized zirconia powder by ball milling, and then was brushed on both surfaces of the zirconia substrate. After this, the Pt/YSZ composites were sintered on the YSZ substrate under various temperatures. The microstructure of the surface and interface of the electrodes was characterized by scanning electronic microscope, and the results showed that the sintering temperature of the electrode has a remarkable effect on the microstructure of the composite electrode, and that the electrode and substrate was interconnected and interpenetrated. The electrochemical properties of the as-prepared electrodes were investigated by electrochemical impedance spectroscopy (EIS). The EIS experimental results reveal that the Pt/YSZ composite electrodes show the favorable electrochemical catalysis performance compared with the Pt electrodes.
APA, Harvard, Vancouver, ISO, and other styles
3

Ureña-Torres, Violeta, Gelines Moreno-Fernández, Juan Luis Gómez-Urbano, Miguel Granados-Moreno, and Daniel Carriazo. "Graphene-Wine Waste Derived Carbon Composites for Advanced Supercapacitors." ChemEngineering 6, no. 4 (June 29, 2022): 49. http://dx.doi.org/10.3390/chemengineering6040049.

Full text
Abstract:
In this work, we investigate the potential of a novel carbon composite as an electrode for high-voltage electrochemical double-layer capacitors. The carbon composite was prepared following a sustainable synthetic approach that first involved the pyrolysis and then the activation of a precursor formed by winery wastes and graphene oxide. The composite prepared in this way shows a very high specific surface area (2467 m2·g−1) and an optimum pore size distribution for their use in supercapacitor electrodes. Graphene-biowaste-derived carbon composites are tested as active electrode materials in two different non-aqueous electrolytes, the ammonium salt-based conventional organic electrolyte and one imidazolium-based ionic liquid (1 M Et4NBF4/ACN and EMINTFSI). It was found that the presence of graphene oxide led to significant morphological and textural changes, which result in high-energy and power densities of ~27 W·h·kg−1 at 13,026 W·kg−1. Moreover, the devices assembled retain above 70% of the initial capacitance after 6000 cycles in the case of the organic electrolyte.
APA, Harvard, Vancouver, ISO, and other styles
4

Malmberg, Siret, Mati Arulepp, Krista Laanemets, Maike Käärik, Ann Laheäär, Elvira Tarasova, Viktoria Vassiljeva, Illia Krasnou, and Andres Krumme. "The Performance of Fibrous CDC Electrodes in Aqueous and Non-Aqueous Electrolytes." C 7, no. 2 (May 14, 2021): 46. http://dx.doi.org/10.3390/c7020046.

Full text
Abstract:
The aim of this study was to investigate the electrochemical behaviour of aqueous electrolytes on thin-layer (20 µm) nanoporous carbide-derived carbon (CDC) composite fibrous directly electrospun electrodes without further carbonisation. There have been previously investigated fibrous electrodes, which are produced by applying different post-treatment processes, however this makes the production of fibrous electrodes more expensive, complex and time consuming. Furthermore, in the present study high specific capacitance was achieved with directly electrospun nanoporous CDC-based fibrous electrodes in different neutral aqueous electrolytes. The benefit of fibrous electrodes is the advanced mechanical properties compared to the existing commercial electrode technologies based on pressure-rolled or slurry-cast powder mix electrodes. Such improved mechanical properties are preferred in more demanding applications, such as in the space industry. Electrospinning technology also allows for larger electrode production capacities without increased production costs. In addition to the influence of aqueous electrolyte chemical composition, the salt concentration effects and cycle stability with respect to organic electrolytes are investigated. Cyclic voltammetry (CV) measurements on electrospun electrodes showed the highest capacitance for asymmetrical cells with an aqueous 1 M NaNO3-H2O electrolyte. High CV capacitance was correlated with constant current charge–discharge (CC) data, for which a specific capacitance of 191 F g−1 for the positively charged electrode and 311 F g−1 for the negatively charged electrode was achieved. The investigation of electrolyte salt concentration on fibrous electrodes revealed the typical capacitance dependence on ionic conductivity with a peak capacitance at medium concentration levels. The cycle-life measurements of selected two-electrode test cells with aqueous and non-aqueous electrolytes revealed good stability of the electrospun electrodes.
APA, Harvard, Vancouver, ISO, and other styles
5

Gu, Zhenqi, Kai Wang, Feng Zhu, and Cheng Ma. "All-solid-state Li battery with atomically intimate electrode–electrolyte contact." Applied Physics Letters 121, no. 14 (October 3, 2022): 143904. http://dx.doi.org/10.1063/5.0116721.

Full text
Abstract:
Creating epitaxial interfaces has recently been discovered as an effective strategy for addressing the electrode–electrolyte contact issue in all-solid-state Li batteries. The solid–solid composite electrode fabricated using this approach not only exhibits atomically intimate solid–solid contact but also possesses excellent tolerance to repeated cycling. Nevertheless, so far such epitaxial composite electrodes have only been cycled in cells with liquid-electrolyte-soaked separators, instead of all-solid-state cells, because realizing a thorough contact between the epitaxial composite electrode and the solid-electrolyte separator layer is difficult. Here, an all-solid-state cell with decent cycling performance was constructed using the epitaxial composite electrode. By infiltrating the Li4Ti5O12–Li0.33La0.56TiO3 ceramic pellet with a poly(ethylene oxide)-based solid electrolyte, a flat, non-porous surface that can effectively contact the separator layer is created. When integrated into an all-solid-state Li4Ti5O12–Li0.33La0.56TiO3 | Li6PS5Cl | Li13Si4 cell, this composite electrode was stably cycled for 100 cycles under 0.1 C at 80 °C with a final discharge capacity of 174.5 mAh g−1.
APA, Harvard, Vancouver, ISO, and other styles
6

Okafor, Patricia, and Jude Iroh. "Electrochemical Properties of Porous Graphene/Polyimide-Nickel Oxide Hybrid Composite Electrode Material." Energies 14, no. 3 (January 23, 2021): 582. http://dx.doi.org/10.3390/en14030582.

Full text
Abstract:
Polyimide-graphene nanosheet composite electrodes are rigid and dense and, therefore, exhibit moderate electrochemical properties. The electrochemical properties of polyimide-graphene nanosheet electrodes were remarkably improved by creating voids in the composite followed by the insertion of nickel oxide into the composites. Nickel oxide particles were electrodeposited onto the porous graphene/poly(amic acid) composite, containing poly (acrylic resin). The hybrid composite was then subjected to thermal treatment at ≥ 300 °C to simultaneously complete imidization and degrade the poly (acrylic resin). Cyclic Voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to study the eletrochemical properties of the composite electrode material. It is shown that remarkable improvement in the electrochemical behavior of the hybrid composite occurred due to the removal of poly(acrylic acid) and the insertion of NiO particles into the polyimide matrix. Fourier Transform Infrared Spectroscopy (FTIR) spectra of the hybrid composites show distinct characteristic peaks for polyimide and NiO in the hybrid composite electrode. Scanning Electron Microscopy, SEM images of the composites, show the presence of NiO aggregates in the composite material. Compared to neat graphene/polyimide composite electrode (GR/PI) composites, the specific capacitance of the hybrid composite electrode increased remarkably by over 250% due to the high interfacial surface area provided by NiO and the concomitant improvement in the electrode–electrolyte interaction.
APA, Harvard, Vancouver, ISO, and other styles
7

Won, Eun-Seo, and Jong-Won Lee. "Biphasic Solid Electrolytes with Homogeneous Li-Ion Transport Pathway Enabled By Metal-Organic Frameworks." ECS Meeting Abstracts MA2022-01, no. 55 (July 7, 2022): 2248. http://dx.doi.org/10.1149/ma2022-01552248mtgabs.

Full text
Abstract:
Solid-state batteries based on nonflammable inorganic solid electrolytes provide a promising technical solution that can resolve the safety issues of current lithium-ion batteries. Biphasic solid electrolytes comprising Li7La3Zr2O12 (LLZO) garnet and polymer have been attracting significant interest for solid-state Li batteries because of their mechanical robustness and enhanced Li+ conductivity, compared to conventional polymer electrolytes. Furthermore, the hybridization allows for the fabrication of thin and large-area electrolyte membranes without the need for high-temperature sintering of LLZO. However, the non-uniform distribution of LLZO particles and polymer species in biphasic electrolytes may cause uneven Li+ conduction, which results in poor interfacial stability with electrodes during repeated charge–discharge cycling. In this study, we report a biphasic solid electrolyte with homogeneous Li+ transport pathway achieved by a metal–organic framework (MOF) layer. To regulate and homogenize the Li+ flux across the interface between the electrolyte and electrode, a free-standing, biphasic solid electrolyte membrane is integrated with the MOF nanoparticle layer. A mixture of plastic crystal (PC) and polymeric phase is infused into porous networks of the MOF-integrated electrolyte membrane, producing the percolating Li+ conduction pathways. The MOF-integrated electrolyte membrane is found to form the smooth and uniform interface with nanoporous channels in contact with the electrodes, effectively facilitating homogeneous Li+ transport. A solid-state battery with the MOF-integrated electrolyte membrane shows the enhanced rate-capability and cycling stability in comparison to the battery with the unmodified biphasic electrolyte. This study demonstrates that the proposed electrolyte design provides an effective approach to improving the interfacial stability of biphasic electrolytes with electrodes for long-cycling solid-state batteries. [1] H.-S. Shin, W. Jeong, M.-H. Ryu, S.W. Lee, K.-N. Jung, J.-W. Lee, Electrode-to-electrode monolithic integration for high-voltage bipolar solid-state batteries based on plastic-crystal polymer electrolyte, Chem. Eng. J, published online. [2] T. Jiang, P. He, G. Wang, Y. Shen, C.-W. Nan, L.-Z. Fan, Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries, Adv. Energy Mater. 10 (2020) 1903376.
APA, Harvard, Vancouver, ISO, and other styles
8

Kimura, Yuta, Yasuhiro Domi, Hiroyuki Usui, and Hiroki Sakaguchi. "Improved Cycling Performance of Cr x V1−x Si2/Si Composite Electrode for Application to Lithium-Ion Battery Anodes." Journal of The Electrochemical Society 169, no. 1 (January 1, 2022): 010537. http://dx.doi.org/10.1149/1945-7111/ac4c78.

Full text
Abstract:
We have evaluated the anode properties of the silicide/Si composite electrodes for lithium-ion batteries and revealed that ternary silicide made by elemental substitution improved the electrochemical performance of the electrodes. In particular, a Cr0.5V0.5Si2/Si composite electrode exhibited a good cycle stability. Herein, we attempted mechanical grinding of the Cr0.5V0.5Si2/Si composite and addition of fluoroethylene carbonate (FEC) into the electrolyte to further improve the performance of the electrode. The electrode showed a superior cycling performance by these attempts as expected. The mechanical grinding should cause the formation of amorphous Si phase and fine dispersion of Cr0.5V0.5Si2 in the Si phase, which suppresses the pulverization of the Cr0.5V0.5Si2/Si composite particle during charge-discharge. It is considered that the addition of FEC suppresses the continuous reductive decomposition of the electrolyte, which contributes to the improvement in the cyclability.
APA, Harvard, Vancouver, ISO, and other styles
9

Tron, Artur, Raad Hamid, Ningxin Zhang, and Alexander Beutl. "Rational Optimization of Cathode Composites for Sulfide-Based All-Solid-State Batteries." Nanomaterials 13, no. 2 (January 12, 2023): 327. http://dx.doi.org/10.3390/nano13020327.

Full text
Abstract:
All-solid-state lithium-ion batteries with argyrodite solid electrolytes have been developed to attain high conductivities of 10−3 S cm−1 in studies aiming at fast ionic conductivity of electrolytes. However, no matter how high the ionic conductivity of the electrolyte, the design of the cathode composite is often the bottleneck for high performance. Thus, optimization of the composite cathode formulation is of utmost importance. Unfortunately, many reports limit their studies to only a few parameters of the whole electrode formulation. In addition, different measurement setups and testing conditions employed for all-solid-state batteries make a comparison of results from mutually independent studies quite difficult. Therefore, a detailed investigation on different key parameters for preparation of cathodes employed in all-solid-state batteries is presented here. Employing a rational approach for optimization of composite cathodes using solid sulfide electrolytes elucidated the influence of different parameters on the cycling performance. First, powder electrodes made without binders are investigated to optimize several parameters, including the active materials’ particle morphology, the nature and amount of the conductive additive, the particle size of the solid electrolyte, as well as the active material-to-solid electrolyte ratio. Finally, cast electrodes are examined to determine the influence of a binder on cycling performance.
APA, Harvard, Vancouver, ISO, and other styles
10

Kimura, Teiichi, and Takashi Goto. "Preparation of Ru-C Nano-Composite Film by MOCVD and Electrode Properties for Oxygen Gas Sensor." Materials Science Forum 534-536 (January 2007): 1485–88. http://dx.doi.org/10.4028/www.scientific.net/msf.534-536.1485.

Full text
Abstract:
Ru-C nano-composite films were prepared by metal-organic chemical vapor deposition (MOCVD), and their microstructures and their electrode properties for oxygen gas sensors were investigated. Deposited films contained Ru particles of 5-20 nm in diameter dispersed in amorphous C matrix. The AC conductivities associating to the interface charge transfer between Ru-C composite electrode and YSZ electrolyte were 1000-10000 times higher than that of conventional paste-Pt electrodes. The electro-motive-force (emf) values of the oxygen gas concentration cell constructed from the nano-composite electrodes and YSZ electrolyte showed the Nernstian theoretical values at low temperatures around 500 K. The response time of the concentration cell at 500 K was 900 s.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Electrode electrolyte composite"

1

Morana, Roberto. "The influence of particle type and process conditions on electrodeposited composite coatings." Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/8045.

Full text
Abstract:
Composite materials are usually multi-phase materials, made up from two or more phases, which are combined to provide properties that the individual constituents cannot. This technology represents an economical way to improve product performances avoiding the use of expensive materials. Composite materials can be obtained as films by means of the electrolysis of electroplating solutions in which micrometre- or submicrometre-size particles are suspended: variable amounts of these particles become incorporated in the electrochemically produced solid phase, to which they impart enhanced properties. The main aims of the present work contributing to this thesis are the study of different parameters influencing the electroco-deposition process in order to promote and improve the applicability of such a technology in the high speed electroplating industry. Following a comprehensive review on the electroco-deposition of composite coatings, the phenomena have been analysed moving from a microscopic point of view i. e. the role of the metal ions present in the electrolyte and adsorption on the inert particles and their interactions with the growing metal layer, to a macroscopic point of view i. e. the electrolyte agitation, its influence on particle motion and all the issues related to the presence of particles in an electrolyte during electroplating. In particular the inert particle influence in terms of geometry, dimension and chemical nature (spherical polystyrene particles vs. irregular alumina particles with different dimensions), the metal matrix influence (nickel, copper and zinc), the influence of electrolyte agitation (using a Rotating Cylinder Electrode cell system) and the influence of the coating thickness on particle content in the final coating, using different deposition times, have been examined. The importance of the particle shape has been highlighted showing how incorporating irregular geometries gave higher particle incorporation densities than regular geometries. The influence of the substrate finishing in terms of imperfections has been related to the particle incorporation rate showing how small surface imperfections enhanced the incorporation of particles. Different hydrodynamic regimes have been analysed resulting three different regimes being discerned: laminar, transitional and turbulent. The consequence, in terms of particle incorporation levels, has been found showing how the amount of particles in the coating changed from one regime to another. Different rate-determining steps were related to the hydrodynamics: when the regime is laminar, particles were incorporated as agglomerates and the process was under particle transfer control, whilst in the turbulent zone, the rate determining step was the velocity of reduction of the ions adsorbed on the particle surface.
APA, Harvard, Vancouver, ISO, and other styles
2

Yin, Yijing. "An Experimental Study on PEO Polymer Electrolyte Based All-Solid-State Supercapacitor." Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_dissertations/440.

Full text
Abstract:
Supercapacitors are one of the most important electrochemical energy storage and conversion devices, however low ionic conductivity of solid state polymer electrolytes and the poor accessibility of the ions to the active sites in the porous electrode will cause low performance for all-solid-state supercapacitors and will limit their application. The objective of the dissertation is to improve the performance of all-solid-state supercapactor by improving electrolyte conductivity and solving accessibility problem of the ions to the active sites. The low ionic conductivity (10-8 S/cm) of poly(ethylene oxide) (PEO) limits its application as an electrolyte. Since PEO is a semicrystal polymer and the ion conduction take place mainly in the amorphous regions of the PEO/Lithium salt complex, improvements in the percentage of amorphous phase in PEO or increasing the charge carrier concentration and mobility could increase the ionic conductivity of PEO electrolyte. Hot pressing along with the additions of different lithium salts, inorganic fillers and plasticizers were applied to improve the ionic conductivity of PEO polymer electrolytes. Four electrode methods were used to evaluate the conductivity of PEO based polymer electrolytes. Results show that adding certain lithium salts, inorganic fillers, and plasticizers could improve the ionic conductivity of PEO electrolytes up 10-4 S/cm. Further hot pressing treatment could improve the ionic conductivity of PEO electrolytes up to 10-3 S/cm. The conductivity improvement after hot pressing treatment is elucidated as that the spherulite crystal phase is convert into the fringed micelle crystal phase or the amorphous phase of PEO electrolytes. PEO electrolytes were added into active carbon as a binder and an ion conductor, so as to provide electrodes with not only ion conduction, but also the accessibility of ion to the active sites of electrodes. The NaI/I2 mediator was added to improve the conductivity of PEO electrolyte and provide pseudocapacitance for all-solid-state supercapacitors. Impedance, cyclic voltammetry, and gavalnostatic charge/discharge measurements were conducted to evaluate the electrochemical performance of PEO polymer electrolytes based all-solid-state supercapacitors. Results demonstrate that the conductivity of PEO electrolyte could be improved to 0.1 S/cm with a mediator concentration of 50wt%. A high conductivity in the PEO electrolyte with mediator is an indication of a high electron exchange rate between the mediator and mediator. The high electron exchange rates at mediator carbon interface and between mediator and mediator are essential in order to obtain a high response rate and high power. This automatically solves the accessibility problem. With the addition of NaI/I2 mediator, the specific capacitance increased more than 30 folds, specific power increased almost 20 folds, and specific energy increased around 10 folds. Further addition of filler to the electrodes along with the mediator could double the specific capacitor and specific power of the all-solid-state supercapacitor. The stability of the corresponded supercapacitor is good within 2000 cycles.
APA, Harvard, Vancouver, ISO, and other styles
3

Bodén, Andreas. "The anode and the electrolyte in the MCFC." Doctoral thesis, KTH, Kemiteknik, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4382.

Full text
Abstract:
A goal of the Swedish government is to increase the usage of renewable fuels and biomass-based fuels. Fuel cells, and especially the MCFC, are useful for these types of fuels. The Swedish market may benefit from the MCFC in two ways: increased efficiency of the biofuels and also utilisation of produced heat in district heating. Most of the commercial MCFC systems today are optimised for use with methane. The possibility to utilise biomass in Sweden makes it important to study how the MCFC may be adapted or optimised for good performance and low degradation with gas produced from biomass or other renewable fuels. This thesis is focused on methods that may be used to investigate and evaluate MCFC electrodes and electrolytes with renewable fuels i.e. CO2-containing gases. The methods and results are both experimental and mathematically modelled. The objectives of this thesis are to better understand how the performance of the anode is dependent on different fuels. Anode kinetics and the water-gas shift reaction have been investigated as well as the possibility to increase cell lifetime by increasing the initial electrolyte amount by having the anode as a reservoir. The effect of segregation of cations in the electrolyte during operation has also been studied. It was found that if the gas composition at the current collector inlet is in equilibrium according to the water gas-shift reaction the gas composition inside the electrode is almost uniform. However, if the gas is not in equilibrium then the concentration gradients inside the current collector have a large effect on the gas composition inside the electrode. The conversion of the gas in the gas flow channels according to the water-gas shift reaction depends on the gas flow rate. For an anode used in a gas mixture of humidified hydrogen and carbon dioxide that are not in equilibrium some solubility of Ni in a (Li/Na)2CO3 mixture was found. To have the anode act as an electrolyte reservoir to prolong cell lifetime the anode pore size should be carefully matched with that of the cathode and a bimodal pore-size distribution for the anode is preferable to have as good performance as possible for as large electrolyte filling degree interval as possible. Modelling results of segregation of cations in the electrolyte during operation indicate that the electrolyte composition changes during operation and that the lithium ions are enriched at the anode for both types of electrolyte used for the MCFC. The electrolyte composition changes are small but might have to be considered in long-time operation. The results from this thesis may be used to better understand how the MCFC may be used for operation with renewable fuels and how electrodes may be designed to prolong cell lifetime.
Ett av den svenska regeringens mål är att öka användandet av förnyelsebara bränslen och bränslen från biomassa. Bränsleceller och framförallt MCFC är användbara för dessa typer av bränslen. Den svenska marknaden kan dra fördelar av MCFC på två sätt; ökad bränsleutnyttjandegrad och utnyttjande av producerad värme för fjärrvärme. De flesta kommersiella MCFC-systemen idag är optimerade för användning av metan. Möjligheten att använda biomassa på den svenska marknaden gör det viktigt att studera hur MCFC kan anpassas eller optimeras för bra prestanda och låg degradering för användning med gas från biomassa eller andra förnyelsebara bränslen. Fokus i denna avhandling är på metoder som kan användas för att undersöka och utvärdera MCFC-elektroder och -elektrolyter med förnyelsebara bränslen, dvs. gaser innehållande CO2. Metoderna och resultaten är både experimentella och matematiskt modellerade. Målet med denna avhandling är att bättre förstå hur anodens prestanda beror på användningen av olika bränslen. Anodens kinetik och vattengasskiftreaktionen har studerats liksom möjligheten att förlänga cellens livstid genom att öka den initiala mängden elektrolyt medelst användning av anoden som reservoar. Effekten av segregation av katjoner i elektrolyten under last har också undersökts. Om gassammansättningen är i jämvikt enligt vattengasskiftreaktionen vid inloppet till strömtilledaren kommer gassammansättningen att vara nära uniform inuti elektroden. Om ingående gas inte är i jämvikt kommer stora koncentrationsgradienter uppkomma i strömtilledaren och påverka gassammansättningen i elektroden. Omsättningen med avseende på vattenskiftreaktionen av gasen i flödeskanalen verkar vara beroende av gasens flödeshastighet. För en anod som används i en uppfuktad blandning av vätgas och koldioxid som inte är i jämvikt befanns det att Ni har en viss löslighet i (Li/Na)2CO3. För att kunna använda anoden som reservoar för elektrolyt för att förlänga livstiden för MCFC skall anodens porstorleksfördelning överensstämma med katodens och ha en bimodal porstorleksfördelning för att ge en tillräckligt god prestanda i ett så stort elektrolytfyllnadsgradsintervall som möjligt. Modelleringsresultat för segregering av katjoner i elektrolyten under drift visar att litiumjoner anrikas i anoden för båda typerna av elektrolyt som används i MCFC. Elektrolytkoncentrationsförändringarna är små men kan behövas tas i beaktande vid långa driftstider. Denna avhandlings resultat kan användas för att bättre förstå hur MCFC skall anpassas för drift med förnyelsebara bränslen och hur elektroder kan utformas för att förlänga livstiden.
QC 20100630
APA, Harvard, Vancouver, ISO, and other styles
4

Токарева, Е. С., and E. S. Tokareva. "Получение и функциональные свойства сложнооксидных материалов на основе Ca3Co4O9+δ как перспективных катодов для среднетемпературных ТОТЭ : магистерская диссертация." Master's thesis, б. и, 2021. http://hdl.handle.net/10995/99985.

Full text
Abstract:
Объектами исследования настоящей работы являются катодные материалы на основе сложного оксида Сa3Co4O9+δ. Цель работы – апробация материалов на основе Сa3Co4O9+δ, которые могут быть использованы в качестве катодов для среднетемпературных твердооксидных топливных элементов с протон-проводящими электролитами BaCe0.5Zr0.3Y0.1Yb0.1O3- и BaCe0.7Zr0.1Y0.1Yb0.1O3-. Методом пиролиза цитрат-солевых композиций проведен синтез сложных оксидов Сa3Co4O9+δ, Ca3Co4-xCuxO9 (х = 0.05; 0.1; 0.15; 0.2), BaCe0.5Zr0.3Y0.1Yb0.1O3-δ и BaCe0.7Zr0.1Y0.1Yb0.1O3-. При помощи комплекса современных методов исследования выполнена фазовая, структурная и микроструктурная аттестация оксидов Сa3Co4O9+δ, Ca3Co4 xCuxO9 (х = 0.05; 0.1; 0.15; 0.2), BaCe0.5Zr0.3Y0.1Yb0.1O3-δ и BaCe0.7Zr0.1Y0.1Yb0.1O3-. Термогравиметрическим методом исследована термическая устойчивость Сa3Co4O9+δ на воздухе и в атмосфере аргона. Термическое расширение оксидов Сa3Co4O9+δ и BaCe0.5Zr0.3Y0.1Yb0.1O3-δ изучено методом дилатометрии, доказана их термическая совместимость. Изучена химическая совместимость оксида Сa3Co4O9+δ с электролитными материалами Ba2In1.8W0.2O5.15, 0.7Ba2In2O5·0.3Ba2InNbO6, Ba3Ca1.18Nb1.82O9 δ, BaCe0.5Zr0.3Y0.1Yb0.1O3 δ, а также материалами коллекторных слоев La0.6Sr0.4MnO3-δ и LaNi0.6Fe0.4О3 δ, установлена оптимальная температура припекания катодного материала Сa3Co4O9+δ к электролиту BaCe0.5Zr0.3Y0.1Yb0.1O3-δ. Исследованы температурные зависимости электропроводности Сa3Co4O9+δ и BaCe0.5Zr0.3Y0.1Yb0.1O3-δ на воздухе. Сформированы электроды на основе композитов с различным массовым содержанием Сa3Co4O9+δ и BaCe0.5Zr0.3Y0.1Yb0.1O3-δ на подложках из BaCe0.5Zr0.3Y0.1Yb0.1O3-δ, а также электроды на основе Ca3Co4-xCuxO9 (х = 0; 0.05; 0.1; 0.15) на подложках из BaCe0.7Zr0.1Y0.1Yb0.1O3-δ. Методом импедансной спектроскопии на симметричных ячейках измерены поляризационные характеристики полученных электродов, а также электродов с оксидным коллектором состава La0.6Sr0.4MnO3-δ+2 масс.% CuO.
The object of study in this work is a cathode material based on the Сa3Co4O9+δ. The aim of the work is to study the electrochemical behavior of electrodes based on the Сa3Co4O9+δ with the electrolyte materials BaCe0.5Zr0.3Y0.1Yb0.1O3- and BaCe0.7Zr0.1Y0.1Yb0.1O3-. The synthesis of the Сa3Co4O9+δ, Ca3Co4-xCuxO9 (х = 0.05; 0.1; 0.15; 0.2), BaCe0.5Zr0.3Y0.1Yb0.1O3-δ and BaCe0.7Zr0.1Y0.1Yb0.1O3- complex oxides was carried out by pyrolysis of citrate-salt compositions. Using a complex of modern research methods, phase, structural and microstructural attestation of the Сa3Co4O9+δ, Ca3Co4-xCuxO9 (х = 0.05; 0.1; 0.15; 0.2), BaCe0.5Zr0.3Y0.1Yb0.1O3-δ and BaCe0.7Zr0.1Y0.1Yb0.1O3- oxides were carried out. The thermal stability of the Сa3Co4O9+δ in air and in the argon atmosphere was studied by the thermo gravimetrical method. The thermal expansion of the Сa3Co4O9+δ and BaCe0.5Zr0.3Y0.1Yb0.1O3-δ oxides was studied by dilatometry, and their thermal compatibility was proved. The chemical compatibility of the Сa3Co4O9+δ oxide with the electrolyte materials Ba2In1.8W0.2O5.15, 0.7Ba2In2O5·0.3Ba2InNbO6, Ba3Ca1.18Nb1.82O9 δ, BaCe0.5Zr0.3Y0.1Yb0.1O3-δ, Lа0.6Sr0.4MnO3-δ and LaNi0.6Fe0.4О3-δ collector materials was studied, the optimal temperature of the cathode material Сa3Co4O9+δ annealing to the BaCe0.5Zr0.3Y0.1Yb0.1O3-δ electrolyte was established. The temperature dependences of the electrical conductivity of the Сa3Co4O9+δ and BaCe0.5Zr0.3Y0.1Yb0.1O3-δ in air were investigated. Electrodes based on composites with different mass contents of Сa3Co4O9+δ and BaCe0.5Zr0.3Y0.1Yb0.1O3-δ on substrates of BaCe0.5Zr0.3Y0.1Yb0.1O3-δ, as well as electrodes based on Ca3Co4-xCuxO9 (х = 0; 0.05; 0.1; 0.15) on substrates of BaCe0.7Zr0.1Y0.1Yb0.1O3  were formed. The polarization characteristics of the obtained electrodes, including those with an La0.6Sr0.4MnO3-δ+2 wt.% CuO oxide collector, were studied by the method of impedance spectroscopy on the symmetric cells.
APA, Harvard, Vancouver, ISO, and other styles
5

Inaba, Minoru. "Electrochemical Reactions on Polymer Electrolyte Membrane/Electrode Composites." Kyoto University, 1994. http://hdl.handle.net/2433/74664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Caldeira, Vincent. "Développement d'électrodes composites architecturées à base de zinc pour accumulateurs alcalins rechargeables." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI065.

Full text
Abstract:
Ces travaux de thèse résultent d’une étude multidisciplinaire dont l’objectif final était d’élaborer une électrode négative à base de zinc pour accumulateur alcalin rechargeable. L’origine de l’étude tient en la découverte surprenante, par la société EASYL, d’un nouveau procédé de synthèse du zincate de calcium (CAZN), matière électrochimiquement active et connue pour ses bonnes caractéristiques de cyclabilité en générateur alcalin rechargeable. L’intérêt de cette découverte réside dans ses caractéristiques avantageuses : la synthèse ultra-rapide se fait en continu, n’utilise aucun système de chauffe ni de solution alcaline et conduit à une granulométrie et une pureté contrôlée du zincate de calcium ; la rendant compatible avec une production industrielle de ce matériau.L’utilisation de CAZN en batterie prismatique de 4 Ah a permis la découverte d’un fonctionnement des électrodes de type cœur-coquille, leur cœur actif étant riche en zinc et leur surface jouant le rôle de couche protectrice ; si la capacité nominale est choisie inférieure à la capacité théorique de la batterie, l’activité à cœur de l’électrode est maintenue sans que sa surface ne soit altérée, ce qui permet d’éviter (ou de ralentir) la formation de dendrite, un effet très bénéfique sur la cyclabilité de l’électrode.Cependant, l’utilisation du zincate de calcium comme seule source de matière active ne semble pas appropriée. En effet, la formation du cœur de zinc conduit à l’apparition d’une couche résistive d’hydroxyde de calcium à sa périphérie, diminuant les performances électrochimiques des électrodes. Aussi surprenant que cela puisse paraitre, il est cependant possible de régénérer une électrode vieillie ayant formé une couche riche en hydroxyde de calcium par un simple repos, soit un arrêt pur et simple de la batterie. La formation de cette couche résistive peut en outre être évitée par l’ajout d’oxyde de zinc sacrificiel au zincate de calcium, additif actif qui s’est avérée efficace tant d’un point de vue morphologique qu’électrochimique.En revanche, la formation contrôlée d’un cœur riche en zinc conduit à la densification du zinc sur lui-même, et diminue la surface de contact matière active/électrolyte et donc les performances électrochimiques. Partant de ce constat, la structure de l’électrode a été intégralement repensée pour permettre la formation, non pas d’un cœur de zinc, mais de plusieurs d’entre eux, par l’emploi de collecteurs de courant multicouches ; cette méthodologie, aussi simple qu’efficace, conduit à d’excellentes performances pratiques et une cyclabilité optimale de la batterie
The work presented in this document results from a multidisciplinary study, the unique goal of which is to develop a negative electrode for alkaline rechargeable batteries. At the origin of this thesis, is the surprising discovery by EASYL of a new way to synthesize calcium zincate (CAZN), an electrochemically active material known for its good cycling characteristics in alkaline batteries. The advantage of such a discovery resides in its unique characteristics: the ultra-fast synthesis is carried out continuously, uses neither heating system nor alkaline solutions, yields pure and tailored CAZN crystals; it is therefore compatible with an industrial production of this material.Its use in a 4 Ah prismatic batteries allowed to unveil a core-shell operation mechanism, in which the electrode evolves towards an active zinc-core surrounded by a protective shell. So, if the nominal capacity remains below the theoretical one, the core of the electrode can be kept active while the surface is maintained, thus avoiding (or at least slowing down) possible dendrite formation and yielding prolonged cycle life.However, the use of calcium zincate as the only active material source is not appropriate, because the formation of the zinc-core leads to the appearance of a resistive layer of calcium hydroxide at its periphery, which reduces the overall electrochemical performance. As surprising as it may seem, it is possible to regenerate an electrode having formed such a calcium hydroxide-rich layer by a simple rest such as a stop of the battery. Nevertheless, it is preferable to avoid the formation of this resistive layer and to do so, the use of a mixture of sacrificial zinc oxide combined with calcium zincate has proven very effective, both from a morphological and an electrochemical point-of-view.However, the controlled formation of a zinc-rich core leads to zinc densification on itself; this decreases the surface of contact between the active material and the electrolyte, and thus the electrochemical performance. This negative effect has been overcome by drastically rethinking the structure of the electrode, in order to allow the formation of multiple and tailored zinc cores. To that goal, multilayers of current collector were employed, which proved simple and effective to reach high-performance and high cyclability zinc electrodes for alkaline batteries
APA, Harvard, Vancouver, ISO, and other styles
7

Anderson, Jordan. "Electrochemical Studies of Nanoscale Composite Materials as Electrodes in Direct Alcohol Fuel Cells." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5104.

Full text
Abstract:
Polymer electrolyte membrane fuel cells (PEMFCs) have recently acquired much attention as alternatives to combustion engines for power conversion. The primary interest in fuel cell technology is the possibility of 60% power conversion efficiency as compared to the 30% maximum theoretical efficiency limited to combustion engines and turbines. Although originally conceived to work with hydrogen as a fuel, difficulties relating to hydrogen storage have prompted much effort in using other fuels. Small organic molecules such as alcohols and formic acid have shown promise as alternatives to hydrogen in PEMFCs due to their higher stability at ambient conditions. The drawbacks for using these fuels in PEMFCs are related to their incomplete oxidation mechanisms, which lead to the production of carbon monoxide (CO). When carbon monoxide is released in fuel cells it binds strongly to the platinum anode thus limiting the adsorption and subsequent oxidation of more fuel. In order to promote the complete oxidation of fuels and limit poisoning due to CO, various metal and metal oxide catalysts have been used. Motivated by promising results seen in fuel cell catalysis, this research project is focused on the design and fabrication of novel platinum-composite catalysts for the electrooxidation of methanol, ethanol and formic acid. Various Pt-composites were fabricated including Pt-Au, Pt-Ru, Pt-Pd and Pt-CeO2 catalysts. Electrochemical techniques were used to determine the catalytic ability of each novel composite toward the electrooxidation of methanol, ethanol and formic acid. This study indicates that the novel composites all have higher catalytic ability than bare Pt electrodes. The increase in catalytic ability is mostly attributed to the increase in CO poison tolerance and promotion of the complete oxidation mechanism of methanol, ethanol and formic acid. Formulations including bi- and tri-composite catalysts were fabricated and in many cases show the highest catalytic oxidation, suggesting tertiary catalytic effects. The combination of bi-metallic composites with ceria also showed highly increased catalytic oxidation ability. The following dissertation expounds on the relationship between composite material and the electrooxidation of methanol, ethanol and formic acid. The full electrochemical and material characterization of each composite electrode is provided.
Ph.D.
Doctorate
Chemistry
Sciences
Chemistry
APA, Harvard, Vancouver, ISO, and other styles
8

Tihli, Mustapha. "Relations entre electrosorption et insertion electrochimique dans les carbones : application au stockage d'energie electrique." Reims, 1987. http://www.theses.fr/1987REIMS008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Engstrom, Allison Michelle. "Vanadium Oxide Electrochemical Capacitors| An Investigation into Aqueous Capacitive Degradation, Alternate Electrolyte-Solvent Systems, Whole Cell Performance and Graphene Oxide Composite Electrodes." Thesis, University of California, Berkeley, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3616666.

Full text
Abstract:

Vanadium oxide has emerged as a potential electrochemical capacitor material due to its attractive pseudocapacitive performance; however, it is known to suffer from capacitive degradation upon sustained cycling. In this work, the electrochemical cycling behavior of anodically electrodeposited vanadium oxide films with various surface treatments in aqueous solutions is investigated at different pH. Quantitative compositional analysis and morphological studies provide additional insight into the mechanism responsible for capacitive degradation. Furthermore, the capacitance and impedance behavior of vanadium oxide electrochemical capacitor electrodes is compared for both aqueous and nonaqueous electrolyte-solvent systems. Alkali metal chloride and bromide electrolytes were studied in aqueous systems, and nonaqueous systems containing alkali metal bromides were studied in polar aprotic propylene carbonate (PC) or dimethyl sulfoxide (DMSO) solvents. The preferred aqueous and nonaqueous systems identified in the half-cell studies were utilized in symmetric vanadium oxide whole-cells. An aqueous system utilizing a 3.0 M NaCl electrolyte at pH 3.0 exhibited an excellent 96% capacitance retention over 3000 cycles at 10 mV s-1. An equivalent system tested at 500 mV s-1 displayed an increase in capacitance over the first several thousands of cycles, and eventually stabilized over 50,000 cycles. Electrodes cycled in nonaqueous 1.0 M LiBr in PC exhibited mostly non-capacitive charge-storage, and electrodes cycled in LiBr-DMSO exhibited a gradual capacitive decay over 10,000 cycles at 500 mV s-1. Morphological and compositional analyses, as well as electrochemical impedance modeling, provide additional insight into the cause of the cycing behavior. Lastly, reduced graphene oxide and vanadium oxide nanowire composites have been successfully synthesized using electrophoretic deposition for electrochemical capacitor electrodes. The composite material was found to perform with a higher capacitance than electrodes containing only vanadium oxide nanowires by a factor of 4.0 at 10 mV s-1 and 7.5 at 500 mV s-1. The thermally reduced composite material was examined in both symmetric and asymmetric whole cell electrochemical capacitor devices, and although the asymmetric cell achieved both higher energy and power density, the symmetric cell retained a higher capacitance over 50,000 cycles at 200 mV s-1.

APA, Harvard, Vancouver, ISO, and other styles
10

Barchasz, Céline. "Développement d'accumulateurs Li/S." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00681504.

Full text
Abstract:
Ces travaux ont permis d'approfondir les connaissances du mécanisme de déchargepeu conventionnel de l'accumulateur Li/S et de ses limitations. L'ensemble desrésultats a convergé vers une unique conclusion, à savoir que le système Li/S estprincipalement limité par le phénomène de passivation de l'électrode positive en finde décharge. Les polysulfures de lithium à chaines courtes précipitent à la surface del'électrode positive de soufre. Isolants électroniques, ils sont responsables de la perteprogressive de surface active de l'électrode et de la fin prématurée de la décharge.Ainsi, les performances électrochimiques ont pu être significativement améliorées entravaillant sur la morphologie de l'électrode positive, et sur la composition del'électrolyte. En augmentant la surface spécifique de l'électrode, la quantité depolysulfures de lithium qui peut précipiter en fin de décharge est augmentée, et lapassivation totale de l'électrode est retardée. En augmentant la solubilité despolysulfures de lithium dans l'électrolyte, la précipitation des espèces est retardée etla décharge prolongée. Dans cette optique, les solvants de type PEGDME semblentêtre les plus prometteurs à ce jour. Enfin, un mécanisme possible de réduction dusoufre en électrolyte de type éther a pu être proposé.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Electrode electrolyte composite"

1

Composite Electrolyte & Electrode Membranes for Electrochemical Energy Storage & Conversion Devices. MDPI, 2021. http://dx.doi.org/10.3390/books978-3-0365-0739-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tess, Mark E. Voltammetry in sol-gel materials: Solid-state electrolytes and composite electrodes. 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tess, Mark E. Voltammetry in sol-gel materials: Solid-state electrolytes and composite electrodes. 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electrode electrolyte composite"

1

Nakamura, Hideya, and Satoru Watano. "Dry Coating of Electrode Particle with Solid Electrolyte for Composite Electrode of All-Solid-State Battery." In Next Generation Batteries, 93–105. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Haridas, Vijayasree, Zahira Yaakob, and Binitha N. Narayanan. "Green Preparation of Fe2O3 Doped Gum Acacia Derived Porous Carbon/Graphene Ternary Nanocomposite as a Supercapacitor Electrode." In Green Chemistry - New Perspectives. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.103080.

Full text
Abstract:
The extended applications of the supercapacitor are possible with the attainment of a wide potential window since then it can exhibit high energy density too. Thus, organic electrolytes are more feasible in supercapacitors due to the accessibility of wide potential windows and the resultant higher storage/release of energy. A high-performance supercapacitor electrode material is prepared here via an eco-friendly procedure using a combination of Fe2O3, gum acacia derived porous carbon, and a ball-mill synthesized graphene for the first time. The synergistic action of the metal oxide and the carbon materials provided excellent specific capacitance values to the ternary nanocomposite. An appreciable specific capacitance of 433 F/g has been displayed by the composite coated glassy carbon electrode at a current density of 6 A/g in tetraethylammonium tetrafluoroborate—acetonitrile electrolyte at a wide potential window of 2.5 V. The material showed outstanding cyclic stability of 109% of the initial specific capacitance after 5000 repeated cycles.
APA, Harvard, Vancouver, ISO, and other styles
3

Manna, Alakesh. "Taguchi, Fuzzy Logic and Grey Relational Analysis Based Optimization of ECSM Process during Micro Machining of E-Glass-Fibre-Epoxy Composite." In Computational Methods for Optimizing Manufacturing Technology, 242–61. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-0128-4.ch010.

Full text
Abstract:
In this chapter, the use of Taguchi method, Fuzzy logic, and Grey relational analysis based on an L16 (45) orthogonal array for optimizing the multi response process characteristics during electrochemical spark machining (ECSM) of electrically non-conductive e-glass-fibre-epoxy composite (e-glass-FEC) is reported. An electrochemical spark machining setup has been designed and fabricated for micro machining of e-glass-FEC and experimental results are utilized for optimizing the process parameter (DC supply voltage, Electrolyte concentration, and Gap between tool and auxiliary electrode) with considerations of the multiple responses such as material removal rate and over cut on hole radius effectively. From the analysis, it is found that at higher setting value of DC supply voltage (e.g. 70 volts) and at moderate setting value of electrolytic concentration (e.g. 80 g/l) and 180 mm gap between tool and auxiliary electrode the material removal rate (MRR) is maximum. Utilizing the test results, mathematical models for MRR and overcut on hole radius are developed to predict the setting value of ECSM parameters in advance.
APA, Harvard, Vancouver, ISO, and other styles
4

Dindune, Antonija, Jānis Ronis, Dagnija Valdniece, Antanas Orliukas, Tomas Salkus, and Vilma Venckute. "Synthesis and research of electrode and solid electrolyte materials for lithium ion batteries." In Nanostructured Composite Materials for Energy Storage and Conversion: collection of articles, 25–53. Latvijas Universitātes Akadēmiskais apgāds, 2019. http://dx.doi.org/10.22364/ncmesc.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Iriyama, Yasutoshi. "Room Temperature Fabrication of Electrode-Solid Electrolyte Composite for All-Solid-State Rechargeable Lithium Batteries." In Nanoparticle Technology Handbook, 517–23. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-444-64110-6.00028-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

P. Mardikar, Satish, Sagar D. Balgude, and Santosh J. Uke. "Supercapacitor Supported by Nickel, Cobalt and Conducting Polymer Based Materials: Design Techniques and Current Advancement." In Supercapacitors [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98355.

Full text
Abstract:
The recent advanced electronic appliances demand special high power devices with lightweight, flexible, inexpensive, and environment friendly in nature. In addition, for many industrial and automotive applications, we need energy storage systems that can store energy in a short time and deliver an intense pulse of energy for long duration. Till date the Li-ion battery is the only choice for fulfilling all our energy storage demands. However, the high cost, limited availability and non-environmental nature of electrodes and electrolyte material of Li-ion battery limits its applicability. Hence, the world demands an alternative replacement for the Li-ion battery. In this regard, the supercapacitor is one of the most emerging and potential energy storage devices. The electrode plays an important role in supercapacitors. The nickel and cobalt based oxide, hydroxides, and their composites with conducting polymer are promising and highly appreciated electrode materials for supercapacitors. This chapter covers the recent advances in supercapacitors supported by nickel, cobalt and conducting polymer based materials and their applications predominantly described in the recent literature. Recent advances are reviewed including new methods of synthesis, nanostructuring, and self-assembly using surfactant and modifiers. This chapter also covered the applications of supercapacitors in powering the light weight, flexible and wearable electronics.
APA, Harvard, Vancouver, ISO, and other styles
7

"Quantum Dots based Materials for New Generation Supercapacitors Application: A Recent Overview." In Materials Research Foundations, 216–50. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901250-9.

Full text
Abstract:
The need of energy storage and related devices are increasing day by day, due to the expansion of global population. To deal with such universal crisis, current energy storage devices like supercapacitors need to be improved in their performances and qualities. In this regard, quantum dots (QDs) are extensively being studied, especially due to their excellent properties. The utilization of QDs in supercapacitors is huge as electrode material as well as for fluorescent electrolytes. Various QDs based composites have been made for the same, which includes doping with various metals, non-metals and carbon nanomaterials (CNMs) like graphene, carbon nanotubes (CNTs) etc. In the present chapter the current advancement and futuristic possibilities of supercapacitors have been mentioned extensively.
APA, Harvard, Vancouver, ISO, and other styles
8

Zindani, Divya, Nadeem Faisal, and Kaushik Kumar. "Optimization of Process Parameters for Electro-Chemical Machining of EN19." In Handbook of Research on Green Engineering Techniques for Modern Manufacturing, 127–42. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-5445-5.ch008.

Full text
Abstract:
Electrochemical machining (ECM) is a non-conventional machining process that is used for machining of hard-to-machine materials. The ECM process is widely used for the machining of metal matrix composites. However, it is very essential to select optimum values of input process parameters to maximize the machining performance. However, the optimization of the output process parameters and hence the machining performance is a difficult task. In this chapter an attempt has been made to carry out single and multiple optimization of the material removal rate (MRR) and the surface roughness (SR) for the ECM process of EN19 using the particle swarm optimization (PSO) technique. The input parameter considered for the optimization are electrolyte concentration (%), voltage (V), feed rate (mm/min), and inter-electrode gap (mm). The optimum value of MRR and SR as found using the PSO algorithm are 0.1847 cm3/min and 25.0612, respectively.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electrode electrolyte composite"

1

Fang, Xudong, and Donggang Yao. "An Overview of Solid-Like Electrolytes for Supercapacitors." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64069.

Full text
Abstract:
Supercapacitors with an electric double-layer design have attracted great attention in the recent years because they are promising energy storage devices for a number of applications, particularly for portable electronics and electric automobiles. They utilize the interface between the electrode and the electrolyte to store energy, resulting in energy storage devices with high power density but low energy density compared to batteries. To improve the performance and reduce the cost, researchers have made significant progress in increasing energy density, electrode voltage, and cycle life. The increase of the energy density is considered to be achieved mainly by increasing the effective specific interface between the electrodes and the electrolyte. Various electrodes with porous structure have been attempted to increase the specific surface area. The increase of electrode voltage is realized primarily via the change of liquid electrolytes to gel, solid and composite ones. In this overview, they are summarized as solid-like electrolytes. This paper reviews the materials adopted and the processing methods developed for solid-like electrolytes, as well as the general characteristics of supercapacitors employing such electrolytes.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhu, Bin, Juncai Sun, Xueli Sun, Song Li, Wenyuan Gao, Xiangrong Liu, and Zhigang Zhu. "Compatible Cathode Materials for High Performance Low Temperature (300–600°C) Solid Oxide Fuel Cells." In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97279.

Full text
Abstract:
We have made extensive efforts to develop various compatible electrode materials for the ceria-based composite (CBC) electrolytes, which have been, reported as most advanced LTSOFC electrolyte materials (Zhu, 2003). The electrode materials we have investigated can be classified as four categories: i) LSCCF (LaSrCoCaFeO) and BSCF perovskite oxides applied for our CBC electrolyte LTSOFCs; ii) LFN (LaFeO-based oxides, e.g. LaFe0.8Ni0.2O3) perovskite oxides; iii) lithiated oxides: e.g. LiNiOx, LiVOx or LiCuOx are typical cathode examples for the CBC LTSOFCs; iv) other mixed oxide systems, most common in a mixture of two-oxide phases, such CuOx-NiOx, CuO-ZnO etc. systems with or without lithiation are developed for the CBC systems, especially for direct alcohol LTSOFCs. These cathode materials used for the CBC electrolyte LTSOFCs have demonstrated excellent performances at 300–600°C, e.g. 1000 mWcm−2 was achieved at 580°C. The LTSOFCs can be operated with a wide range of fuels, e.g. hydrogen, methanol, ethanol etc with great potential for applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Krishnaswamy, Arvind, and D. Roy Mahapatra. "Hydrodynamic Energy Harvesting Using an Ionic Polymer-Metal Composite Stack for Underwater Applications." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39549.

Full text
Abstract:
Ionic Polymer Metal Composites (IPMCs) are a class of Electro-Active Polymers (EAPs) consisting of a base polymer (usually Nafion), sandwiched between thin films of electrodes and an electrolyte. Apart from fuel cell like proton exchange process in Nafion, these IPMCs can act both as an actuator and a sensor. Typically, IPMCs have been known for their applications in fuel cell technology and in artificial muscles for robots. However, more recently, sensing properties of IPMC have opened up possibilities of mechanical energy harvesting. In this paper, we consider a bi-layer stack of IPMC membranes where fluid flow induced cyclic oscillation allows collection of electronic charge across a pair of functionalized electrode on the surface of IPMC layers/stacks. IPMCs work well in hydrated environment; more specifically, in presence of an electrolyte, and therefore, have great potential in underwater applications like hydrodynamic energy harvesting. Hydrodynamic forces produce bending deformation, which can induce transport of cations via polymer chains of the base polymer of Nafion or PTFE. In our experimental set-up, the deformation is induced into the array of IPMC membranes immersed in electrolyte by water waves caused by a plunger connected to a stepper motor. The frequency and amplitude of the water waves is controlled by the stepper motor through a micro-controller. The generated electric power is measured across a resistive load. Few orders of magnitude increase in the harvested power density is observed. Analytical modeling approach used for power and efficiency calculations are discussed. The observed electro-mechanical performance promises a host of underwater energy harvesting applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Liao, G. Y., S. Geier, T. Mahrholz, P. Wierach, and M. Wiedemann. "Temperature Influence on Electrical Properties of Carbon Nanotubes Modified Solid Electrolyte-Based Structural Supercapacitor." In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3908.

Full text
Abstract:
In the present work, we report on structural supercapacitors which are based on NASICON-type solid electrolyte Li1.4Al0.4Ti1.6(PO4)3 (LATP). The nanostructured electrodes incorporate single-wall carbon nanotubes (SWCNTs) mixed with the LATP electrolyte. The complete energy storage devices are manufactured in a sandwich structure consisting of two nanostructured electrode layers which are separated by a pure LATP layer. The as-prepared specimens are embedded in composite materials with Airstone 880/886H epoxy resin as matrix. Their electrical properties are characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). At ambient temperature, the addition of 6.5 wt. % SWCNTs results in a distinct improvement by reducing the total resistance of the embedded devices and enhances the capacitance from 0.025 mF g−1 to 3.160 mF g−1 at a scan rate of 5 mV s−1. Electrical measurements of two types of specimens are then applied under different temperatures from ambient temperature to 80 °C. It is observed that the equivalent series resistance (ESR) of device with SWCNTs decreases greatly and capacitance increases comparing with the device without SWCNTs. As a conclusion, the structural supercapacitors acquire excellent performance through high efficient double layer effects realized by nanostructured electrode/electrolyte interphase (large surface electrode areas).
APA, Harvard, Vancouver, ISO, and other styles
5

Milobar, Daniel G., Peiwen Li, and James E. O’Brien. "Analytical Study, 1-D Optimization Modeling, and Testing of Electrode Supported Solid Oxide Electrolysis Cells." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18261.

Full text
Abstract:
The need for an infrastructure to provide hydrogen as a next generation energy carrier is ever increasing. High temperature solid oxide electrolysis cells (SOECs) have been proven to be a viable technology in the production of hydrogen [1]. With the increasing use of SOECs in various operating environments it is important to be able to specify the best SOEC for any given situation. We have developed a straightforward model to estimate cell performance in a timely and inexpensive manner. Composite electrode planer type SOEC models have been developed previously. It is a common assumption that all electrochemical reactions in these cells occur at the interface of the electrolyte and the electrode [2]. It has been shown by S. Gewies et al. [3] that the reactions occurring throughout a Ni/YSZ cermet electrode occur in a nonlinear fashion. Our one dimensional model has been developed to optimize SOECs with composite electrodes. This model takes into account ohmic, activation, and concentration polarizations. The electrochemical reaction that occurs within the electrode functional layers has been accounted for in the calculation of the concentration polarization. This is believed to give a more realistic view of the mass transfer that occurs in SOECs with composite electrodes via a simple and straightforward 1-D model.
APA, Harvard, Vancouver, ISO, and other styles
6

Recknagle, Kurtis P., Emily M. Ryan, and Moe A. Khaleel. "Numerical Modeling of the Distributed Electrochemistry and Performance of Solid Oxide Fuels Cells." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64232.

Full text
Abstract:
A cell-level distributed electrochemistry (DEC) modeling tool has been developed to enable predicting trends in solid oxide fuel cell performance by considering the coupled and spatially varying multi-physics that occur within the tri-layer. The approach calculates the distributed electrochemistry within the electrodes, which includes the charge transfer and electric potential fields, ion transport throughout the tri-layer, and gas distributions within the composite and porous electrodes. The thickness of the electrochemically active regions within the electrodes is calculated along with the distributions of charge transfer. The DEC modeling tool can examine the overall SOFC performance based on electrode microstructural parameters, such as particle size, pore size, porosity, electrolyte- and electrode-phase volume fractions, and triple-phase-boundary length. Recent developments in electrode fabrication methods have lead to increased interest in using graded and nano-structured electrodes to improve the electrochemical performance of SOFCs. This paper demonstrates how the DEC modeling tool can be used to help design novel electrode microstructures by optimizing a graded anode for high electrochemical performance.
APA, Harvard, Vancouver, ISO, and other styles
7

Xie, X., and X. Xue. "A Modeling Study of Porous Electrode Property Effects on Solid Oxide Fuel Cell Performance." In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85244.

Full text
Abstract:
A two-dimensional isothermal mathematical model is developed for an anode-supported planar solid oxide fuel cell (SOFC). The model takes into account the complex coupling effects of multi-physics processes including mass transfer, charge (ion/electron) transport, and electrochemical reaction. The SOFC multi-physics processes are numerically linked to SOFC global performance such as polarization curve. The model is validated using polarization curve as a metric with the experimental data from open literature. Since triple phase boundary reaction zone may vary from the vicinity of the electrolyte all the way to the entire electrode depending on selected materials and fabrication process, the effects of anode active reaction zone with different volumes are investigated comprehensively for a generic button cell using the developed mathematical model. The tradeoff design between active reaction zone volumes and other design parameters such as porosity and tortuosity of electrodes are also examined. Results show that porous composite electrode properties have very complex effects on SOFC performance. The results may provide a valuable guidance for high performance SOFC design and fabrication.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, H. O., Y. Z. Yang, G. L. Wang, and D. W. Sun. "Digital Fabrication of Functionally Graded PEN for SOFC by APS." In ITSC2007, edited by B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and G. Montavon. ASM International, 2007. http://dx.doi.org/10.31399/asm.cp.itsc2007p0329.

Full text
Abstract:
Abstract Atmosphere plasma spray and robot digital fabricating were integrated and presented to prepare the planar PEN and MOLB-type PEN SOFCs. On the basis of the spraying conditions optimized previously and the self-developed functionally graded powder feed system, two kinds of PEN cells were prepared. Then the microstructure and material components of the PEN cells were analyzed. The results show that graded layers were formed between the electrodes and electrolyte. Moreover, the material components and the porosity of the graded layers vary gradually. In particular, the porosities of the anode and cathode reach 32.74%, 32.24%, respectively. Using the AC complex impedance technology, the conductivity of the MOLB-type composite electrode is tested. As a comparison, the electrical conductivity of the MOLB-type composite electrode with the graded layers is larger than that without the graded layers.
APA, Harvard, Vancouver, ISO, and other styles
9

Daun, K. J., S. B. Beale, F. Liu, and G. J. Smallwood. "Radiation Heat Transfer in SOFC Electrolytes." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72158.

Full text
Abstract:
Due to their high operating temperature, there has been speculation that thermal radiation may play an important role in the overall heat transfer within the electrode and electrolyte layers of solid oxide fuel cells (SOFCs). This paper presents a detailed characterization of the thermophysical and radiative properties of the composite materials, which are then used to define a simple 2-D model incorporating the heat transfer characteristics of the electrode and electrolyte layers of a typical planar SOFC. Subsequently, the importance of thermal radiation is assessed by comparing the temperature field obtained using a conduction model with fields obtained using coupled conduction/radiation models. Contrary to some published literature, these results show that radiation heat transfer has a negligible effect on the temperature field within these components, and does not need to be accommodated in comprehensive thermal models of planar SOFCs.
APA, Harvard, Vancouver, ISO, and other styles
10

Martinez, Andrew, and Jacob Brouwer. "Monte Carlo Investigation of Particle Properties Affecting TPB Formation and Conductivity in Composite Solid Oxide Fuel Cell Electrode-Electrolyte Interfaces." In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85191.

Full text
Abstract:
A previously-developed microstructure model of the Solid Oxide Fuel Cell (SOFC) electrode-electrolyte interface has been applied to the study of particle properties in these devices through the use of the Monte Carlo simulation method. Previous findings that have demonstrated the necessity of accounting for the gaseous phase percolation have been re-emphasized through the current investigation. In particular, the effects of three-phase percolation critically affect the dependence of TPB formation and electrode conductivity on: 1) conducting phase particle size distributions, 2) electronic:ionic conduction phase contrast, and 3) the amount of Mixed Electronic-Ionic Conductor (MEIC) included in the electrode. In particular, the role of differing percolation effectiveness between electronic and ionic phases has been shown to counteract and influence the role of the phase contrast. Porosity, however, has been found to not be a significant factor for the range studied, but does not obviate the necessity of modeling the gas phase. In addition, the current work has investigated the inconsistencies in experimental literature results concerning the optimal particle size distribution. It has been found that utilizing smaller particles with a narrow size distribution is the preferable situation for electrode manufacturing. These findings stress the property-function relationships of fuel cell electrode materials.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Electrode electrolyte composite"

1

Creager, Stephen. Final Report for Project DE-FG02-05ER15718 Fluoropolymers, Electrolytes, Composites and Electrodes. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1358278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova, and Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604286.bard.

Full text
Abstract:
The overall goal of this project was to elucidate the role of dissolved organic matter (DOM) in soil retention, bioavailability and plant uptake of silver and cerium oxide NPs. The environmental risks of manufactured nanoparticles (NPs) are attracting increasing attention from both industrial and scientific communities. These NPs have shown to be taken-up, translocated and bio- accumulated in plant edible parts. However, very little is known about the behavior of NPs in soil-plant system as affected by dissolved organic matter (DOM). Thus DOM effect on NPs behavior is critical to assessing the environmental fate and risks related to NP exposure. Carbon-based nanomaterials embedded with metal NPs demonstrate a great potential to serve as catalyst and disinfectors. Hence, synthesis of novel carbon-based nanocomposites and testing them in the environmentally relevant conditions (particularly in the DOM presence) is important for their implementation in water purification. Sorption of DOM on Ag-Ag₂S NPs, CeO₂ NPs and synthesized Ag-Fe₃O₄-carbon nanotubebifunctional composite has been studied. High DOM concentration (50mg/L) decreased the adsorptive and catalytic efficiencies of all synthesized NPs. Recyclable Ag-Fe₃O₄-carbon nanotube composite exhibited excellent catalytic and anti-bacterial action, providing complete reduction of common pollutants and inactivating gram-negative and gram-positive bacteria at environmentally relevant DOM concentrations (5-10 mg/L). Our composite material may be suitable for water purification ranging from natural to the industrial waste effluents. We also examined the role of maize (Zeamays L.)-derived root exudates (a form of DOM) and their components on the aggregation and dissolution of CuONPs in the rhizosphere. Root exudates (RE) significantly inhibited the aggregation of CuONPs regardless of ionic strength and electrolyte type. With RE, the critical coagulation concentration of CuONPs in NaCl shifted from 30 to 125 mM and the value in CaCl₂ shifted from 4 to 20 mM. This inhibition was correlated with molecular weight (MW) of RE fractions. Higher MW fraction (> 10 kDa) reduced the aggregation most. RE also significantly promoted the dissolution of CuONPs and lower MW fraction (< 3 kDa) RE mainly contributed to this process. Also, Cu accumulation in plant root tissues was significantly enhanced by RE. This study provides useful insights into the interactions between RE and CuONPs, which is of significance for the safe use of CuONPs-based antimicrobial products in agricultural production. Wheat root exudates (RE) had high reducing ability to convert Ag+ to nAg under light exposure. Photo-induced reduction of Ag+ to nAg in pristine RE was mainly attributed to the 0-3 kDa fraction. Quantification of the silver species change over time suggested that Cl⁻ played an important role in photoconversion of Ag+ to nAg through the formation and redox cycling of photoreactiveAgCl. Potential electron donors for the photoreduction of Ag+ were identified to be reducing sugars and organic acids of low MW. Meanwhile, the stabilization of the formed particles was controlled by both low (0-3 kDa) and high (>3 kDa) MW molecules. This work provides new information for the formation mechanism of metal nanoparticles mediated by RE, which may further our understanding of the biogeochemical cycling and toxicity of heavy metal ions in agricultural and environmental systems. Copper sulfide nanoparticles (CuSNPs) at 1:1 and 1:4 ratios of Cu and S were synthesized, and their respective antifungal efficacy was evaluated against the pathogenic activity of Gibberellafujikuroi(Bakanae disease) in rice (Oryza sativa). In a 2-d in vitro study, CuS decreased G. fujikuroiColony- Forming Units (CFU) compared to controls. In a greenhouse study, treating with CuSNPs at 50 mg/L at the seed stage significantly decreased disease incidence on rice while the commercial Cu-based pesticide Kocide 3000 had no impact on disease. Foliar-applied CuONPs and CuS (1:1) NPs decreased disease incidence by 30.0 and 32.5%, respectively, which outperformed CuS (1:4) NPs (15%) and Kocide 3000 (12.5%). CuS (1:4) NPs also modulated the shoot salicylic acid (SA) and Jasmonic acid (JA) production to enhance the plant defense mechanisms against G. fujikuroiinfection. These results are useful for improving the delivery efficiency of agrichemicals via nano-enabled strategies while minimizing their environmental impact, and advance our understanding of the defense mechanisms triggered by the NPs presence in plants.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography