Journal articles on the topic 'Electrochemistry of enzymes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Electrochemistry of enzymes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bernhardt, Paul V. "Enzyme Electrochemistry — Biocatalysis on an Electrode." Australian Journal of Chemistry 59, no. 4 (2006): 233. http://dx.doi.org/10.1071/ch05340.
Full textLin, Chuhong, Lior Sepunaru, Enno Kätelhön, and Richard G. Compton. "Electrochemistry of Single Enzymes: Fluctuations of Catalase Activities." Journal of Physical Chemistry Letters 9, no. 11 (May 11, 2018): 2814–17. http://dx.doi.org/10.1021/acs.jpclett.8b01199.
Full textGUO, L. H., and H. A. O. HILL. "ChemInform Abstract: Direct Electrochemistry of Proteins and Enzymes." ChemInform 22, no. 50 (August 22, 2010): no. http://dx.doi.org/10.1002/chin.199150345.
Full textHill, H. A. O. "Making Use of the Direct Electrochemistry of Enzymes." Portugaliae Electrochimica Acta 19, no. 3 (2001): 165–70. http://dx.doi.org/10.4152/pea.200103165.
Full textPeterbauer, Clemens K. "Pyranose dehydrogenases: Rare enzymes for electrochemistry and biocatalysis." Bioelectrochemistry 132 (April 2020): 107399. http://dx.doi.org/10.1016/j.bioelechem.2019.107399.
Full textDavis, Connor, Stephanie X. Wang, and Lior Sepunaru. "What can electrochemistry tell us about individual enzymes?" Current Opinion in Electrochemistry 25 (February 2021): 100643. http://dx.doi.org/10.1016/j.coelec.2020.100643.
Full textGulaboski, Rubin, and Valentin Mirceski. "Application of voltammetry in biomedicine - Recent achievements in enzymatic voltammetry." Macedonian Journal of Chemistry and Chemical Engineering 39, no. 2 (November 12, 2020): 153. http://dx.doi.org/10.20450/mjcce.2020.2152.
Full textKASAI, Nahoko, Yasuhiko JIMBO, Osamu NIWA, Tomokazu MATSUE, and Keiichi TORIMITSU. "Multichannel Glutamate Monitoring by Electrode Array Electrochemically Immobilized with Enzymes." Electrochemistry 68, no. 11 (November 5, 2000): 886–89. http://dx.doi.org/10.5796/electrochemistry.68.886.
Full textSchachinger, Franziska, Hucheng Chang, Stefan Scheiblbrandner, and Roland Ludwig. "Amperometric Biosensors Based on Direct Electron Transfer Enzymes." Molecules 26, no. 15 (July 27, 2021): 4525. http://dx.doi.org/10.3390/molecules26154525.
Full textShukla, Alka, Elizabeth M. Gillam, Deanne J. Mitchell, and Paul V. Bernhardt. "Direct electrochemistry of enzymes from the cytochrome P450 2C family." Electrochemistry Communications 7, no. 4 (April 2005): 437–42. http://dx.doi.org/10.1016/j.elecom.2005.02.021.
Full textBernhardt, Paul V. "Exploiting the versatility and selectivity of Mo enzymes with electrochemistry." Chem. Commun. 47, no. 6 (2011): 1663–73. http://dx.doi.org/10.1039/c0cc03681a.
Full textSorrentino, Ilaria, Ilaria Stanzione, Yannig Nedellec, Alessandra Piscitelli, Paola Giardina, and Alan Le Goff. "From Graphite to Laccase Biofunctionalized Few-Layer Graphene: A “One Pot” Approach Using a Chimeric Enzyme." International Journal of Molecular Sciences 21, no. 11 (May 26, 2020): 3741. http://dx.doi.org/10.3390/ijms21113741.
Full textCurulli, Antonella, and Daniela Zane. "Gold and Nanostructurated Surfaces for Assembling of Electrochemical Biosensors." Research Letters in Nanotechnology 2008 (2008): 1–4. http://dx.doi.org/10.1155/2008/789153.
Full textYin, Yajing, Yafen Lü, Ping Wu, and Chenxin Cai. "Direct Electrochemistry of Redox Proteins and Enzymes Promoted by Carbon Nanotubes." Sensors 5, no. 4 (April 27, 2005): 220–34. http://dx.doi.org/10.3390/s5040220.
Full textLéger, Christophe, and Patrick Bertrand. "Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies." Chemical Reviews 108, no. 7 (July 2008): 2379–438. http://dx.doi.org/10.1021/cr0680742.
Full textSun, Dongmei, Chenxin Cai, Wei Xing, and Tianhong Lu. "Immobilization and direct electrochemistry of copper-containing enzymes on active carbon." Chinese Science Bulletin 49, no. 23 (December 2004): 2452–54. http://dx.doi.org/10.1007/bf03183712.
Full textOYAMATSU, Daisuke, Norihiro KANAYA, Yu HIRANO, Matsuhiko NISHIZAWA, and Tomokazu MATSUE. "Area-selective Immobilization of Multi Enzymes by Using the Reductive Desorption of Self-assembled Monolayer." Electrochemistry 71, no. 6 (June 5, 2003): 439–41. http://dx.doi.org/10.5796/electrochemistry.71.439.
Full textChirkov, Yu G., and V. I. Rostokin. "Porous Electrodes with Immobilized Enzymes: The Problem of Development of Nanocomposites with High Concentrations of Molecules of Active Enzymes." Russian Journal of Electrochemistry 41, no. 11 (November 2005): 1221–30. http://dx.doi.org/10.1007/s11175-005-0206-9.
Full textAddo, Paul K, Robert L Arechederra, and Shelley D Minteer. "Evaluating Enzyme Cascades for Methanol/Air Biofuel Cells Based on NAD+-Dependent Enzymes." Electroanalysis 22, no. 7-8 (March 24, 2010): 807–12. http://dx.doi.org/10.1002/elan.200980009.
Full textHitaishi, Vivek, Romain Clement, Nicolas Bourassin, Marc Baaden, Anne De Poulpiquet, Sophie Sacquin-Mora, Alexandre Ciaccafava, and Elisabeth Lojou. "Controlling Redox Enzyme Orientation at Planar Electrodes." Catalysts 8, no. 5 (May 4, 2018): 192. http://dx.doi.org/10.3390/catal8050192.
Full textJohnson, D. L., A. J. Conley, and L. L. Martin. "Direct electrochemistry of human, bovine and porcine cytochrome P450c17." Journal of Molecular Endocrinology 36, no. 2 (April 2006): 349–59. http://dx.doi.org/10.1677/jme.1.01971.
Full textVannoy, Kathryn J., Andrey Ryabykh, Andrei I. Chapoval, and Jeffrey E. Dick. "Single enzyme electroanalysis." Analyst 146, no. 11 (2021): 3413–21. http://dx.doi.org/10.1039/d1an00230a.
Full textKASHIWAGI, Yoshitomo, Qinghai PAN, Yoshinori YANAGISAWA, Norihiko SHIBAYAMA, and Tetsuo OSA. "The Effects of Chain Length of Ferrocene Moiety on Electrical Communication of Mediators-and Enzymes-modified Electrodes." Denki Kagaku oyobi Kogyo Butsuri Kagaku 62, no. 12 (December 5, 1994): 1240–46. http://dx.doi.org/10.5796/electrochemistry.62.1240.
Full textBernhardt, Paul V. "ChemInform Abstract: Exploiting the Versatility and Selectivity of Mo Enzymes with Electrochemistry." ChemInform 42, no. 21 (April 28, 2011): no. http://dx.doi.org/10.1002/chin.201121252.
Full textE. Ferapontova, Elena, and Lo Gorton. "Direct electrochemistry of heme multicofactor-containing enzymes on alkanethiol-modified gold electrodes." Bioelectrochemistry 66, no. 1-2 (April 2005): 55–63. http://dx.doi.org/10.1016/j.bioelechem.2004.04.004.
Full textJenner, Leon P., and Julea N. Butt. "Electrochemistry of surface-confined enzymes: Inspiration, insight and opportunity for sustainable biotechnology." Current Opinion in Electrochemistry 8 (March 2018): 81–88. http://dx.doi.org/10.1016/j.coelec.2018.03.021.
Full textRüdel, Ulrich, Oliver Geschke, and Karl Cammann. "Entrapment of enzymes in electropolymers for biosensors and graphite felt based flow-through enzyme reactors." Electroanalysis 8, no. 12 (December 1996): 1135–39. http://dx.doi.org/10.1002/elan.1140081212.
Full textFlanagan, Lindsey A., and Alison Parkin. "Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases." Biochemical Society Transactions 44, no. 1 (February 9, 2016): 315–28. http://dx.doi.org/10.1042/bst20150201.
Full textBartlett, P. N., and R. G. Whitaker. "Electrochemical immobilisation of enzymes." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 224, no. 1-2 (June 1987): 27–35. http://dx.doi.org/10.1016/0022-0728(87)85081-7.
Full textBartlett, P. N., and R. G. Whitaker. "Electrochemical immobilisation of enzymes." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 224, no. 1-2 (June 1987): 37–48. http://dx.doi.org/10.1016/0022-0728(87)85082-9.
Full textMelanori, B. A. "Covalent Catalysis by Enzymes." Bioelectrochemistry and Bioenergetics 15, no. 1 (February 1986): 142. http://dx.doi.org/10.1016/0302-4598(86)80018-6.
Full textSUN, Dongmei. "Immobilization and direct electrochemistry of cop-per-containing enzymes on ac-tive carbon." Chinese Science Bulletin 49, no. 23 (2004): 2452. http://dx.doi.org/10.1360/04wb0070.
Full textYang, Chi, Chunxiang Xu, and Xuemei Wang. "ZnO/Cu Nanocomposite: A Platform for Direct Electrochemistry of Enzymes and Biosensing Applications." Langmuir 28, no. 9 (February 22, 2012): 4580–85. http://dx.doi.org/10.1021/la2044202.
Full textde Poulpiquet, A., A. Ciaccafava, R. Gadiou, S. Gounel, M. T. Giudici-Orticoni, N. Mano, and E. Lojou. "Design of a H2/O2 biofuel cell based on thermostable enzymes." Electrochemistry Communications 42 (May 2014): 72–74. http://dx.doi.org/10.1016/j.elecom.2014.02.012.
Full textMcMillan, Duncan G. G., Sophie J. Marritt, Gemma L. Kemp, Piers Gordon-Brown, Julea N. Butt, and Lars J. C. Jeuken. "The impact of enzyme orientation and electrode topology on the catalytic activity of adsorbed redox enzymes." Electrochimica Acta 110 (November 2013): 79–85. http://dx.doi.org/10.1016/j.electacta.2013.01.153.
Full textSUGIMOTO, Yu, Yuki KITAZUMI, Osamu SHIRAI, and Kenji KANO. "Effects of Mesoporous Structures on Direct Electron Transfer-Type Bioelectrocatalysis: Facts and Simulation on a Three-Dimensional Model of Random Orientation of Enzymes." Electrochemistry 85, no. 2 (2017): 82–87. http://dx.doi.org/10.5796/electrochemistry.85.82.
Full textHan, Lianhuan, Wei Wang, Jacques Nsabimana, Jia-Wei Yan, Bin Ren, and Dongping Zhan. "Single molecular catalysis of a redox enzyme on nanoelectrodes." Faraday Discussions 193 (2016): 133–39. http://dx.doi.org/10.1039/c6fd00061d.
Full textYehezkeli, Omer, Oded Ovits, Ran Tel-Vered, Sara Raichlin, and Itamar Willner. "Reconstituted Enzymes on Electropolymerizable FAD-Modified Metallic Nanoparticles: Functional Units for the Assembly of Effectively “Wired” Enzyme Electrodes." Electroanalysis 22, no. 16 (August 2010): 1817–23. http://dx.doi.org/10.1002/elan.201000197.
Full textRapson, Trevor D., Ulrike Kappler, and Paul V. Bernhardt. "Direct catalytic electrochemistry of sulfite dehydrogenase: Mechanistic insights and contrasts with related Mo enzymes." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1777, no. 10 (October 2008): 1319–25. http://dx.doi.org/10.1016/j.bbabio.2008.06.005.
Full textZebda, A., L. Renaud, M. Cretin, F. Pichot, C. Innocent, R. Ferrigno, and S. Tingry. "A microfluidic glucose biofuel cell to generate micropower from enzymes at ambient temperature." Electrochemistry Communications 11, no. 3 (March 2009): 592–95. http://dx.doi.org/10.1016/j.elecom.2008.12.036.
Full textLiu, Jinping, Chunxian Guo, Chang Ming Li, Yuanyuan Li, Qingbo Chi, Xintang Huang, Lei Liao, and Ting Yu. "Carbon-decorated ZnO nanowire array: A novel platform for direct electrochemistry of enzymes and biosensing applications." Electrochemistry Communications 11, no. 1 (January 2009): 202–5. http://dx.doi.org/10.1016/j.elecom.2008.11.009.
Full textGorton, L. "Carbon paste electrodes modified with enzymes, tissues, and cells." Electroanalysis 7, no. 1 (January 1995): 23–45. http://dx.doi.org/10.1002/elan.1140070104.
Full textLobo, Maria Jesús, Arturo J. Miranda, and Paulino Tuñón. "Amperometric biosensors based on NAD(P)-dependent dehydrogenase enzymes." Electroanalysis 9, no. 3 (February 1997): 191–202. http://dx.doi.org/10.1002/elan.1140090302.
Full textLohmann, Wiebke, and Uwe Karst. "Electrochemistry meets enzymes: instrumental on-line simulation of oxidative and conjugative metabolism reactions of toremifene." Analytical and Bioanalytical Chemistry 394, no. 5 (January 13, 2009): 1341–48. http://dx.doi.org/10.1007/s00216-008-2586-7.
Full textSandeep, S., A. S. Santhosh, N. K. Swamy, G. S. Suresh, and J. S. Melo. "Detection of Catechol Using a Biosensor Based on Biosynthesized Silver Nanoparticles and Polyphenol Oxidase Enzymes." Portugaliae Electrochimica Acta 37, no. 4 (2019): 257–70. http://dx.doi.org/10.4152/pea.201904257.
Full textStoytcheva, Margarita, Roumen Zlatev, Zdravka Velkova, Velizar Gochev, Alan Ayala, Gisela Montero, and Benjamín Valdez. "Diazirine‐functionalized Nanostructured Platform for Enzymes Photografting and Electrochemical Biosensing." Electroanalysis 31, no. 8 (May 22, 2019): 1526–34. http://dx.doi.org/10.1002/elan.201900086.
Full textBrown, D. E. "Enzymes in Industry — Production and Applications." Biosensors and Bioelectronics 6, no. 8 (January 1991): 709. http://dx.doi.org/10.1016/0956-5663(91)87026-8.
Full textMottola, Horacio A. "Enzymes as analytical reagents: substrate determinations with soluble and with immobilised enzyme preparations. Plenary lecture." Analyst 112, no. 6 (1987): 719. http://dx.doi.org/10.1039/an9871200719.
Full textIMABAYASHI, Shin-ichiro, Miki KASHIWA, and Masayoshi WATANABE. "Immobilization of Horseradish Peroxidase on Binary Self-assembled Monolayers with Carboxyl- and Hydroxyl-terminal Groups: Dependence of the Amount of Immobilized Enzymes and Their Electrocatalytic Activity on the Monolayer Composition." Electrochemistry 74, no. 2 (2006): 186–88. http://dx.doi.org/10.5796/electrochemistry.74.186.
Full textEsposti, M. Degli. "Enzymes, Receptors and Carriers of Biological Membranes." Bioelectrochemistry and Bioenergetics 15, no. 1 (February 1986): 141–42. http://dx.doi.org/10.1016/0302-4598(86)80017-4.
Full text