Academic literature on the topic 'Electrochemical analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrochemical analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Electrochemical analysis"
Wang, Qiong, Weiting Ye, Dongling Li, Jiangwei Zhu, Chenghang Liu, Cheng-Te Lin, Li Fu, and Zenglai Xu. "Analysis of Electrochemically Active Substances in Malvaceae Leaves via Electroanalytical Sensing Technology for Species Identification." Micromachines 14, no. 2 (January 18, 2023): 248. http://dx.doi.org/10.3390/mi14020248.
Full textFan, Boyuan, Qiong Wang, Weihong Wu, Qinwei Zhou, Dongling Li, Zenglai Xu, Li Fu, Jiangwei Zhu, Hassan Karimi-Maleh, and Cheng-Te Lin. "Electrochemical Fingerprint Biosensor for Natural Indigo Dye Yielding Plants Analysis." Biosensors 11, no. 5 (May 14, 2021): 155. http://dx.doi.org/10.3390/bios11050155.
Full textElmasly, Saadeldin E. T., Luca Guerrini, Joseph Cameron, Alexander L. Kanibolotsky, Neil J. Findlay, Karen Faulds, and Peter J. Skabara. "Synergistic electrodeposition of bilayer films and analysis by Raman spectroscopy." Beilstein Journal of Organic Chemistry 14 (August 21, 2018): 2186–89. http://dx.doi.org/10.3762/bjoc.14.191.
Full textZhang, Hong Bo, Yong Sheng Li, Ting Ting Ning, and Ying Ying Zhu. "Analysis of Electrochemical Mechanism of Electrolyte and Coal." Advanced Materials Research 962-965 (June 2014): 837–42. http://dx.doi.org/10.4028/www.scientific.net/amr.962-965.837.
Full textUeda, Tadaharu. "Recent Achievements in the Analysis of the Electrochemical Properties of Polyoxometalates." Review of Polarography 61, no. 1 (2015): 11–19. http://dx.doi.org/10.5189/revpolarography.61.11.
Full textZhou, Xiao-Dong. "(Keynote) Theoretical Analysis of Electrochemical Stability in a Solid Oxide Cell." ECS Meeting Abstracts MA2022-01, no. 38 (July 7, 2022): 1670. http://dx.doi.org/10.1149/ma2022-01381670mtgabs.
Full textSlepushkin, V. V., Yu V. Rublinetskaya, and B. M. Stifatov. "Local electrochemical surface analysis." Journal of Analytical Chemistry 60, no. 2 (February 2005): 103–6. http://dx.doi.org/10.1007/pl00021912.
Full textKaradurmus, Leyla, Duru Kır, Sevinc Kurbanoglu, and Sibel A. Ozkan. "Electrochemical Analysis of Antipsychotics." Current Pharmaceutical Analysis 15, no. 5 (May 23, 2019): 413–28. http://dx.doi.org/10.2174/1573412914666180710114458.
Full textBucher, Elizabeth S., and R. Mark Wightman. "Electrochemical Analysis of Neurotransmitters." Annual Review of Analytical Chemistry 8, no. 1 (July 22, 2015): 239–61. http://dx.doi.org/10.1146/annurev-anchem-071114-040426.
Full textParsons, Roger. "Fundamentals of electrochemical analysis." Journal of Electroanalytical Chemistry 371, no. 1-2 (June 1994): 293. http://dx.doi.org/10.1016/0022-0728(94)03416-8.
Full textDissertations / Theses on the topic "Electrochemical analysis"
Sobocinski, Raymond Louis. "Electrochemical and Raman spectroscopic investigations of in situ and emersed silver-alcohol electrochemical interfaces." Diss., The University of Arizona, 1991. http://hdl.handle.net/10150/185476.
Full textSong, Peng. "Microengineered electrochemical reactors." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709449.
Full textAlvarez, de Eulate Diaz de San Martin Eva Maria. "Electrochemical studies toward proteomic analysis." Thesis, Curtin University, 2014. http://hdl.handle.net/20.500.11937/702.
Full textParrilla, Pons Marc. "New Electrochemical Sensors for Decentralized Analysis." Doctoral thesis, Universitat Rovira i Virgili, 2016. http://hdl.handle.net/10803/396297.
Full textNuevos sensores electroquímicos para analisis decentralizados es una tesis que enmarca diferentes aspectos del desarrollo de sensores potenciométricos, desde su fabricación, el diseño adecuado, i finalmente, su aplicabilidad en escenarios reales. En el contexto actual, la evolución de la tecnología, especialmente la aparición a nivel global de internet, y la disponibilidad de esta a bajo coste han permitido la creación de herramientas que nos permiten conectar el mundo físico y, en el caso de esta tesis, el mundo químico a la red. Esta conexión aporta un nuevo grado dentro la escala de valor para la sociedad actual. Concretamente, esta aportación tecnológica va dirigida a superar los nuevos retos de la actualidad, como pueden ser la sostenibilidad del sistema sanitario a causa del envejecimiento de la poblacion, el control medioambiental, así como también mantener la seguridad para la sociedad del bienestar del futuro. Entonces, esta tesis presenta soluciones efectivas para el desarrollo de herramientas de captación de información que servirán para nutrir a la sociedad de un mayor conocimiento. Por consiguiente, produciendo nuevos negocios alrededor, de la fabricación, procesado i creación de valor en los datos obtenidos. La investigación y desarrollo de sensores potenciométricos integrados en la ropa para detectar los niveles de electrolitos y sensores simples en papel para la determinación de biomoléculas, como la glucosa, son algunos de los objetivos conseguidos en esta tesis. Además, sensores integrados en globos permiten el estudio de sus propiedades mecánicas y electroquímicas, así como, aportando nuevas soluciones a problemas reales. Todas estas aplicaciones sirven de portales de captación de información química hacia la integración dentro de la nueva sociedad de la información.
ew Electrochemical Sensors for Decentralized Analysis is a thesis that wisely discuss the developments of potentiometric sensors, from the fabrication step, the use of a suitable design, to the applicability in real scenarios. Nowadays, the evolution of technology, specially the creation of the global internet network, and the low-cost availability of such technology have allowed the development of tools that connect the physical world and, addressed in this thesis, the chemical world into the network. This connection adds a new level in the value chain for the present society. Precisely, this technology approach is focus on circumvent new present challenges of society. For instance, sustainability of the healthcare system caused by the population aging, environmental monitoring, as well as, keep security and safety to the welfare of society of the future. Therefore, this thesis presents successful solutions for the development of tools to gather chemical information. This information will nurture society with high-value knowledge. Accordingly, new business development from, sensing products, data treatment and information management are going to be created. Research and development of potentiometric sensors integrated into garments for electrolyte detection and simple sensors built in paper for biomolecules determination, such as glucose, and liquid monitoring, such as sweat, are some of the accomplished objectives from this thesis. Furthermore, balloon-embedded sensors allow the study of the mechanical and electrochemical properties of the electrodes, as well as, contributing with new solutions to real problems. All the applications developed in this thesis are utilized as gateways for chemical information acquisition towards the integration into the new information society.
Chu, Kevin Taylor. "Asymptotic analysis of extreme electrochemical transport." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33669.
Full textIncludes bibliographical references (p. 237-244).
In the study of electrochemical transport processes, experimental exploration currently outpaces theoretical understanding of new phenomena. Classical electrochemical transport theory is not equipped to explain the behavior of electrochemical systems in the extreme operating conditions required by modern devices. In this thesis, we extend the classical theory to examine the response of two electrochemical systems that form the basis for novel electrochemical devices. We first examine the DC response of an electrochemical thin film, such as the separator in a micro-battery, driven by current applied through reactive electrodes. The model system consists of a binary electrolyte between parallel-plate electrodes, each possessing a compact Stern layer which mediates Faradaic reactions with Butler-Volmer kinetics. Our analysis differs from previous studies in two significant ways. First, we impose the full nonlinear, reactive boundary conditions appropriate for electrolytic/galvanic cells.
(cont.) Since surface effects become important for physically small systems, the use of reactive boundary conditions is critical in order to gain insight into the behavior of actual electrochemical thin films that are sandwiched between reactive electrodes, especially at high current densities. For instance, our analysis shows that reaction rate constants and the Stern-layer capacitance have a strong influence on the response of the thin film. Second, we analyze the system at high current densities (far beyond the classical diffusion-limited current) which may be important for high power-density applications. At high currents, we obtain previously unknown characterizations of two interesting features at the cathode end of the cell: (i) a nested boundary layer structure and (ii) an extended space charge region. Next, we study the response of a metal (i.e., polarizable) colloid sphere in an electrolyte solution over a range of applied electric fields.
(cont.) This problem, which underlies novel electrokinetically driven microfluidic devices, has traditionally been analyzed using circuit models which neglect bulk concentration variations that arise due to double layer charging. Our analysis, in contrast, is based on the Nernst-Planck equations which explicitly allow for bulk concentration gradients. A key feature of our analysis is the use of surface conservation laws to provide effective boundary conditions that couple the double layer charging dynamics, surface transport processes, and bulk transport processes. The formulation and derivation of these surface conservation laws via boundary layer analysis is one of the main contributions of this thesis. For steady applied fields, our analysis shows that bulk concentrations gradients become significant at high applied fields and affect both bulk and double layer transport processes. We also find that surface transport becomes important for strong applied fields as a result of enhanced absorption of ions by the double layer.
(cont.) Unlike existing theoretical studies which focus on weak applied fields (so that both of these effects remain weak), we explore the response of the system to strong applied fields where both bulk concentration gradients and surface transport contribute at leading order. For the unsteady problem at applied fields that are not too strong, we find that diffusion processes, which are necessary for the system to relax to steady-state, are suppressed at leading-order but appear as higher-order corrections. This result is derived in a novel way using time-dependent matched asymptotic analysis. Unfortunately, the dynamic response of the system to large applied fields seems to introduce several complications that make the analysis (both mathematical and numerical) quite challenging; the resolution of these challenges is left for future work. Both of these problems require the use of novel techniques of asymptotic analysis (e.g., multiple parameter asymptotic expansions, surface conservation laws, and time-dependent asymptotic matching) and advanced numerical methods (e.g., pseudospectral methods, Newton-Kantorovich method, and direct matrix calculation of Jacobians) which may be applicable elsewhere.
by Kevin Taylor Chu.
Ph.D.
Ding, Wenwu Carleton University Dissertation Chemistry. "Electrochemical hydride generation for ultratrace analysis." Ottawa, 1995.
Find full textD'Arcy, Karen Ann. "Electrochemical methods for speciation of inorganic arsenic." PDXScholar, 1986. https://pdxscholar.library.pdx.edu/open_access_etds/524.
Full textWengenack, Nancy L. "Design and testing of a computer-controlled square wave voltammetry instrument /." Online version of thesis, 1987. http://hdl.handle.net/1850/8853.
Full textJagannathan, Sudhakar. "Process, structure and electrochemical." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29713.
Full textCommittee Chair: Kumar, Satish; Committee Member: Cook, Fred L.; Committee Member: Bottomley, Lawrence A.; Committee Member: Carter, William Brent; Committee Member: Yushin, Gleb. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Ismail, Iqbal M. I. "Electrochemical studies of polymer electrolytes." Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242319.
Full textBooks on the topic "Electrochemical analysis"
1944-, Ngo T. T., ed. Electrochemical sensors in immunological analysis. New York: Plenum Press, 1987.
Find full textScully, JR, DC Silverman, and MW Kendig, eds. Electrochemical Impedance: Analysis and Interpretation. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1993. http://dx.doi.org/10.1520/stp1188-eb.
Full textNgo, T. T., ed. Electrochemical Sensors in Immunological Analysis. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4899-1974-8.
Full textFahidy, Thomas Z. Principles of electrochemical reactor analysis. Amsterdam: Elsevier, 1985.
Find full text1958-, Scully John R., Silverman David C. 1947-, and Kendig Martin W, eds. Electrochemical impedance: Analysis and interpretation. Philadelphia: ASTM, 1993.
Find full textJong, Hans G. de. Electrochemical analysis of metal complexes. Wageningen, Netherlands?: Landbouwuniversiteit te Wageningen?, 1987.
Find full textFahidy, Thomas Z. Principles of electrochemical reactor analysis. Amsterdam: Elsevier, 1985.
Find full textLi, Genxi, and Peng Miao. Electrochemical Analysis of Proteins and Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34252-3.
Full textXia, Fan, Hui Li, Shaoguang Li, and Xiaoding Lou, eds. Electrochemical Biosensors for Whole Blood Analysis. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5644-9.
Full textBraĭnina, Kh Z. Inversionnye ėlektroanaliticheskie metody. Moskva: "Khimii͡a︡", 1988.
Find full textBook chapters on the topic "Electrochemical analysis"
Dornbusch, Michael. "Electrochemical Methods." In Corrosion Analysis, 38–110. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018] | "A science publishers book.": CRC Press, 2018. http://dx.doi.org/10.1201/9781315208480-2.
Full textMitra, Somenath, Pradyot Patnaik, and Barbara B. Kebbekus. "Electrochemical Methods." In Environmental Chemical Analysis, 235–41. Second edition. | Boca Raton : CRC Press, [2018] | Previous edition by B.B. Kebbekus and S. Mitra.: CRC Press, 2018. http://dx.doi.org/10.1201/9780429458200-8.
Full textPa, P. S., and H. Hocheng. "Electrochemical Machining." In Advanced Analysis of Nontraditional Machining, 107–257. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4054-3_3.
Full textLaCourse, William R. "Electrochemical Stripping Analysis." In Ewing’s Analytical Instrumentation Handbook, Fourth Edition, 523–38. Fourth edition / [edited by] Nelu Grinberg, Sonia Rodriguez. | Boca Raton : CRC Press, Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781315118024-18.
Full textO'Connell, P. "ANALYSIS | Electrochemical Analysis." In Encyclopedia of Dairy Sciences, 101–6. Elsevier, 2002. http://dx.doi.org/10.1016/b0-12-227235-8/00026-2.
Full text"Electrochemical Analysis." In Principles and Applications of Lithium Secondary Batteries, 231–61. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527650408.ch7.
Full text"Electrochemical Analyzers." In Analysis and Analyzers, 290–302. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315370323-22.
Full text"Electrochemical Detection Methods." In Flow Injection Analysis, 107–61. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812813725_0003.
Full text"Electrochemical Stripping Analysis." In Analytical Instrumentation Handbook, 571–86. CRC Press, 2004. http://dx.doi.org/10.1201/9780849390395-21.
Full textLacourse, William. "Electrochemical Stripping Analysis." In Analytical Instrumentation Handbook, Second Edition, 545–59. CRC Press, 2004. http://dx.doi.org/10.1201/9780849390395.ch18.
Full textConference papers on the topic "Electrochemical analysis"
Schmid, Robert, and Christophe Pillot. "Introduction to energy storage with market analysis and outlook." In REVIEW ON ELECTROCHEMICAL STORAGE MATERIALS AND TECHNOLOGY: Proceedings of the 1st International Freiberg Conference on Electrochemical Storage Materials. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4878476.
Full textHANSEN, WILFORD N., GALEN J. HANSEN, and DAVID GLENN. "ANALYSIS OF SOME ELECTROCHEMICAL CALORIMETRY DATA." In Proceedings of the 10th International Conference on Cold Fusion. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701510_0024.
Full textOndruch, V., J. Krejci, and D. Krejcova. "Simple Electrochemical Analysis of Enzyme Kinetics." In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1615490.
Full textBardt, Hubertus. "Raw materials in the field of electrochemical energy storage – A risk analysis." In ELECTROCHEMICAL STORAGE MATERIALS: SUPPLY, PROCESSING, RECYCLING AND MODELLING: Proceedings of the 2nd International Freiberg Conference on Electrochemical Storage Materials. Author(s), 2016. http://dx.doi.org/10.1063/1.4961894.
Full textFilsø, Mette Ø., Espen Eikeland, and Bo B. Iversen. "Procrystal analysis as a tool for the visualization of ion migration pathways." In ELECTROCHEMICAL STORAGE MATERIALS: SUPPLY, PROCESSING, RECYCLING AND MODELLING: Proceedings of the 2nd International Freiberg Conference on Electrochemical Storage Materials. Author(s), 2016. http://dx.doi.org/10.1063/1.4961902.
Full textAzahidi, A., R. Rusdi, N. A. Mohd Mokhtar, and K. Elong. "Fe doped in LiCo0.6Ni0.4O2 and their electrochemical behaviour." In INTERNATIONAL CONFERENCE “FUNCTIONAL ANALYSIS IN INTERDISCIPLINARY APPLICATIONS” (FAIA2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4999871.
Full textAnderson, Mark R., Dennis H. Evans, and Mary J. Wirth. "Indirect Determination of a Local pH Change by Surface Enhanced Raman Spectroscopy." In Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/laca.1987.pdp5.
Full textSelvaraj, Gowri, Cecilia Devi Wilfred, and Neo Kian Eang. "Recrystallized quinolinium ionic liquids for electrochemical analysis." In 4TH INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES (ICFAS2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4968082.
Full textLai, Qingzhi, Sidharth Jangra, Hyoung Jun Ahn, Geumbee Kim, Won Tae Joe, and Xinfan Lin. "Analytical Sensitivity Analysis for Battery Electrochemical Parameters." In 2019 American Control Conference (ACC). IEEE, 2019. http://dx.doi.org/10.23919/acc.2019.8814950.
Full textMa, Junliang, Zhidong Wang, and Shuming Zhang. "Benefit Assessment Analysis of Electrochemical Energy Storage." In 2023 IEEE International Conference on Power Science and Technology (ICPST). IEEE, 2023. http://dx.doi.org/10.1109/icpst56889.2023.10164815.
Full textReports on the topic "Electrochemical analysis"
Canaday, J. D., A. K. Kuriakose, A. Ahmad, and T. A. Wheat. An electrochemical analysis of solid electrolyte/electrode systems. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/307075.
Full textLafreniere, Philip. Application of Principal Component Analysis to Electrochemical Reprocessing PM and NMAC. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2005795.
Full textHughes, Sydney, Marc Turner, Mark Woods, Sue Carr, Douglas Kauffman, and Gregory Hackett. Sensitivity Analysis Tool for Electrochemical Conversion of CO2 To CO: User Guide. Office of Scientific and Technical Information (OSTI), December 2023. http://dx.doi.org/10.2172/2234013.
Full textHu, Hongqiang, Dong Ding, Lane Knighton, Daniel Wendt, and Richard Boardman. Techno-Economic Analysis on an Electrochemical Non-oxidative Deprotonation Process for Ethylene Production from Ethane. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1643942.
Full textSarkar, Abhishek. Multiphysics analysis of electrochemical and electromagnetic system addressing lithium-ion battery and permanent magnet motor. Office of Scientific and Technical Information (OSTI), July 2019. http://dx.doi.org/10.2172/1593376.
Full textReynolds, Jonathan. A System Engineering Approach in the Analysis of Electrochemical and Structural Properties of Ionic Liquids. Office of Scientific and Technical Information (OSTI), March 2022. http://dx.doi.org/10.2172/1853911.
Full textMoore, D. G., and N. R. Sorensen. Nondestructive inspection assessment of eddy current and electrochemical analysis to separate inconel and stainless steel alloys. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/572689.
Full textLatanision, R. M. Deterministic analysis of processes at corroding metal surfaces and the study of electrochemical noise in these systems. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/5132868.
Full textLatanision, R. Deterministic analysis of processes at corroding metal surfaces and the study of electrochemical noise in these systems. Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/6074547.
Full textGlasscott, Matthew, Johanna Jernberg, Erik Alberts, and Lee Moores. Toward the electrochemical detection of 2,4-dinitroanisole (DNAN) and pentaerythritol tetranitrate (PETN). Engineer Research and Development Center (U.S.), March 2022. http://dx.doi.org/10.21079/11681/43826.
Full text