Academic literature on the topic 'ELECTROCARDIOGRAM FEATURES'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ELECTROCARDIOGRAM FEATURES.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "ELECTROCARDIOGRAM FEATURES"
Filatova, Anna Yevhenivna, Anatoliy Ivanovych Povoroznyuk, Bohdan Petrovych Nosachenko, and Mohamad Fahs. "Synthesis of an integral signal for solving the problem of morphological analysis of electrocardiograms." Herald of Advanced Information Technology 5, no. 4 (December 28, 2022): 263–74. http://dx.doi.org/10.15276/hait.05.2022.19.
Full textMadias, John E. "Electrocardiogram features predictive of takotsubo syndrome." Clinical Research in Cardiology 108, no. 2 (July 26, 2018): 221. http://dx.doi.org/10.1007/s00392-018-1338-8.
Full textYang, Xiao, and Zhong Ji. "Automatic Classification Method of Arrhythmias Based on 12-Lead Electrocardiogram." Sensors 23, no. 9 (April 28, 2023): 4372. http://dx.doi.org/10.3390/s23094372.
Full textSingh, Yogendra Narain, and Sanjay Kumar Singh. "Identifying Individuals Using Eigenbeat Features of Electrocardiogram." Journal of Engineering 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/539284.
Full textWu, Shun-Chi, Peng-Tzu Chen, and Jui-Hsuan Hsieh. "Spatiotemporal features of electrocardiogram for biometric recognition." Multidimensional Systems and Signal Processing 30, no. 2 (June 1, 2018): 989–1007. http://dx.doi.org/10.1007/s11045-018-0593-1.
Full textAl-Yarimi, Fuad Ali Mohammed, Nabil Mohammed Ali Munassar, and Fahd N. Al-Wesabi. "Electrocardiogram stream level correlated patterns as features to classify heartbeats for arrhythmia prediction." Data Technologies and Applications 54, no. 5 (October 26, 2020): 685–701. http://dx.doi.org/10.1108/dta-03-2020-0076.
Full textDAS, MANAB KUMAR, and SAMIT ARI. "ELECTROCARDIOGRAM BEAT CLASSIFICATION USING S-TRANSFORM BASED FEATURE SET." Journal of Mechanics in Medicine and Biology 14, no. 05 (August 2014): 1450066. http://dx.doi.org/10.1142/s0219519414500663.
Full textJang, Jong-Hwan, Tae Young Kim, Hong-Seok Lim, and Dukyong Yoon. "Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder." PLOS ONE 16, no. 12 (December 1, 2021): e0260612. http://dx.doi.org/10.1371/journal.pone.0260612.
Full textA. Elsayed, Hend, Ahmed F. Abed, and Shawkat K. Guirguis. "Comparative Features Extraction Techniques for Electrocardiogram Images Regression." Research Journal of Applied Sciences, Engineering and Technology 14, no. 4 (April 15, 2017): 132–36. http://dx.doi.org/10.19026/rjaset.14.4156.
Full textIllig, David, Aaron Lewicke, and Stephanie Schuckers. "Electrocardiogram features for detection of abnormal cardiac events." Journal of Electrocardiology 43, no. 6 (November 2010): 642–43. http://dx.doi.org/10.1016/j.jelectrocard.2010.10.009.
Full textDissertations / Theses on the topic "ELECTROCARDIOGRAM FEATURES"
ElMaghawry, Mohamed. "Advances in Electrocardiographic Features in Arrhythmogenic Right Ventricular Cardiomyopathy." Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3423899.
Full textIntroduzione La cardiomiopatia aritmogena del ventricolo destro (CAVD) è una patologia genetica del muscolo cardiaco caratterizzata da instabilità elettrica che può portare a aritmie ventricolari e morte improvvisa. Dal punto di vista patologico, la CAVD si caratterizza per una progressiva perdita di tessuto miocardico della parete libera del ventricolo destro (VD) con sostituzione fibro-adiposa. Il mapaggio elettroanatomico tridimensionale (endocardial voltage mapping, EVM) col sistema CARTO (Biosense-Webster, Diamond Bar, California) consente di identificare e caratterizzare aree di basso-voltaggio, dette "cicatrici elettroanatomiche" (CEA), che in pazienti affetti da CAVD corrispondono ad aree di sostituzione fibro-adiposa. Nonostante la tecnica abbia dimostrato di migliorare l"accuratezza per la diagnosi di CAVD, il suo valore per la stratificazione del rischio aritmico rimane da dimostrate. Inoltre, l"utilità dell"EVM per la quantificazione della cicatrice e la valutazione del rischio è limitata dalla natura invasiva, bassa disponibilità ed alti costi. Quindi, nella pratica clinica quotidiana è auspicabile la disponibilità di un esame non-invasivo, come l"elettrocardiogramma (ECG), per la stima dell'estensione della CEA e la stratificazione del rischio aritmico. Studi precedenti hanno dimostrato un"associazione tra la presenza di anomalie della ripolarizzazione o della depolarizzazione all"ECG e l"entità della dilatazione e della disfunzione del VD. In particolare, l"inversione delle onde T nelle derivazioni precordiali destre V1-V3 è uno dei segni distintivi della CAVD. Tuttavia, lo stesso segno ECG può essere riscontrato come "persistenza del pattern giovanile di ripolarizzazione" fino al 3% degli adulti sani. La prospettiva attuale è che le T negative persistano con l'esercizio nei pazienti con CAVD ma non nei soggetti sani. Tuttavia, questa idea non è supportata da dati scientifici. Obbiettivo L"obbiettivo dell"attività di ricerca è stato quello di caratterizzare ulteriormente alcune delle caratteristiche ECG della CAVD. Inizialmente, abbiamo valutato il valore prognostico della CEA all"EVM e la sua correlazione con vari esami non invasivi, in particolare l"ECG. In secondo luogo, abbiamo studiato le modificazioni indotte dall"esercizio nella T negative nelle derivazioni precordiali destre in un gruppo di pazienti con CAVD ed in un gruppo di soggetti sani con "persistenza del pattern giovanile di ripolarizzazione". Metodi e risultati Sono stati studiati 69 pazienti consecutivi affetti da CAVD (47 maschi, età mediana 35 [28-45] anni) che sono stati sottoposti a studio elettrofisiologico endocavitario con mappa di voltaggio unipolare e bipolare. L"estensione delle aree contenenti elettrogrammi di basso voltaggio bipolari (<1.5 mV) e/o unipolari (<6.0 mV) è stata stimata usando un software incorporato nel sistema CARTO. Cinquantatre pazienti (77%) mostravano ≥1 CEA con un"estensione pari a 24.8% (7.2-31.5) dell"estensione del VD alla mappa bipolare e del 64.8% (39.8-95.3) alla mappa unipolare (p=0.009). Nei rimanenti 16 pazienti con mappa bipolare normale, la mappa unipolare è risultata alterata con un"estensione delle lesioni pari al 26.2% (11.6-38.2) del VD. Nel corso di un follow-up medio di 41 (28-56) mesi, 19 (27.5%) pazienti hanno avuto un evento aritmico maggiore. All'analisi multivariata, l'unico predittore indipendente di eventi aritmici è risultata l'estensione della CEA alla mappa di voltaggio bipolare (hazard ratio=1.6 per 5%; intervallo di confidenza 95%: 1.2-1.9; P<0.001). I pazienti con mappa di voltaggio bipolare negativa hanno avuto un follow-up privo di eventi. Successivamente, abbiamo analizzato un sottogruppo di 49 pazienti (38 maschi, età mediana 35 anni) con CAVD e mappa di voltaggio bipolare positiva. All'analisi univariata, la presenza di onde epsilon, il grado di dilatazione del VD, la severità della disfunzione del VD e l'estensione delle T negative all'ECG correlavano con l'estensione della CEA alla mappa bipolare. All'analisi multivariata, l'estensione delle onde T negative è rimasta l'unico predittore di estensione della CEA (B=4.4, 95%CI 1.3-7.4, p=0.006). Questo parametro si è inoltre dimostrato correlare con il rischio di eventi aritmici durante il follow-up (p=0.03). In una coorte differente, abbiamo valutato il comportamento durante test da sforzo delle T negative nelle derivazioni precordiali destre V1-V4 in 35 pazienti con CAVD (19 maschi, età media 22.2"±6.2 anni) ed in 41 controlli appaiati per età e sesso con benigna "persistenza del pattern giovanile di ripolarizzazione". Al picco dell'esercizio, le onde T negative persistevano in 3 (9%) pazienti con CAVD, normalizzavano completamente in 12 (34%) e normalizzavano parzialmente in 20 (57%). I pazienti affetti da CAVD con e senza normalizzazione delle onde T durante l'esercizio mostravano un fenotipo simile. La prevalenza di normalizzazione (parziale o completa) delle onde T era simile nei pazienti e nei controlli (92% e 88%, p=1,0), mentre si è notato un trend non significativo verso una più alta prevalenza di normalizzazione completa nei controlli sani rispetto ai pazienti con CAVD (59% e 34%, p=0,06). Conclusioni In conclusione, i nostri risultati hanno mostrato che l'estensione della CEA bipolare alla mappa di voltaggio del VD è un potente predittore di rischio aritmico nei pazienti con CAVD, indipendentemente dalla storia aritmica e dal grado di disfunzione/dilatazione del VD. Una mappa di voltaggio bipolare normale caratterizza una popolazione di pazienti con CAVD a basso rischio. Abbiamo inoltre dimostrato che l'estensione della CEA bipolare può essere stimata dall'estensione delle anomalie della ripolarizzazione (T negative) all'ECG. I pazienti che non mostrano T negative all'ECG dimostrano un basso rischio aritmico. Infine, abbiamo dimostrato che il comportamento delle T negative nelle derivazioni precordiali destre V1-V3 non è un utile strumento di diagnosi differenziale tra CAVD e benigna "persistenza del pattern giovanile di ripolarizzazione"
Dizon, Lucas, and Martin Johansson. "Atrial Fibrillation Detection Algorithm Evaluation and Implementation in Java." Thesis, KTH, Skolan för teknik och hälsa (STH), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-158878.
Full textFörmaksflimmer är en vanlig hjärtrytmrubbning som kännetecknas av en avsaknad eller oregelbunden kontraktion av förmaken. Sjukdomen är en riskfaktor för andra allvarligare sjukdomar och de totala kostnaderna för samhället är betydande. Det skulle därför vara fördelaktigt att effektivisera och förbättra prevention samt diagnostisering av förmaksflimmer. Kliniskt diagnostiseras förmaksflimmer med hjälp av till exempel pulspalpation och auskultation av hjärtat, men diagnosen brukar fastställas med en EKG-undersökning. Det finns idag flertalet algoritmer för att detektera arytmin genom att analysera ett EKG. En av de vanligaste metoderna är att undersöka variabiliteten av hjärtrytmen (HRV) och utföra olika sorters statistiska beräkningar som kan upptäcka episoder av förmaksflimmer som avviker från en normal sinusrytm. I detta projekt har två metoder för att detektera förmaksflimmer utvärderats i Matlab, en baseras på beräkningar av variationskoefficienten och den andra använder sig av logistisk regression. EKG som kommer från databasen Physionet MIT används för att träna och testa modeller av algoritmerna. Innan EKG-signalen kan användas måste den behandlas för att ta bort olika typer av brus och artefakter. Vid test av algoritmen med variationskoefficienten blev resultatet en sensitivitet på 91,38%, en specificitet på 93,93% och en noggrannhet på 92,92%. För logistisk regression blev sensitiviteten 97,23%, specificiteten 93,79% och noggrannheten 95,39%. Algoritmen med logistisk regression presterade bättre och valdes därför för att implementeras i Java, där uppnåddes en sensitivitet på 91,31%, en specificitet på 93,47% och en noggrannhet på 95,25%.
Salgueiro, Ana Teresa Fonseca. "Detecção de problemas cardíacos usando sinais de electrocardiograma(ECG)." Master's thesis, 2020. http://hdl.handle.net/10316/92201.
Full textRecentemente, devido ao aumento do número de mortes por doenças cardiovasculares, o diagnóstico de doenças cardíacas tem sido um foco de bastante interesse no mundo computacional. Isto porque, a deteção de doenças cardíacas num estágio inicial pode prolongar a vida através de um tratamento adequado.Inúmeros métodos para fazer a monitorização das condições cardíacas foram introduzidos no mercado, sendo que o mais utilizado é a eletrocardiograma (ECG). O ECG é o registo da variação da atividade bioelétrica do coração, que representa as contrações e relaxamentos cíclicos do músculo cardíaco humano. Este fornece informações importantes sobre os aspetos funcionais do coração e do sistema cardiovascular. No entanto, ler grandes quantidades de sinais de ECGs é um processo demorado. Por isso, a deteção automática de anomalias nos sinais do eletrocardiograma atua como um assistente para os médicos diagnosticarem uma condição cardíaca.As irregularidades presentes no batimento cardíaco no formato do ECG são geralmente chamada de arritmia. Arritmia é um termo comum para qualquer distúrbio cardíaco que difere do ritmo normal. A análise automática do sinal de ECG para deteção de batimentos cardíacos é difícil devido à grande variação nas características morfológicas e temporais das formas de onda do ECG entre pacientes diferentes, bem como nos mesmos pacientes.Esta dissertação tem como objetivo desenvolver um método de deteção da fibrilhação auricular, que é um tipo de arritmia, através do sinal do eletrocardiograma. Deste modo, a metodologia proposta baseia-se na extração de um conjunto de características ("features'') dos ECG, e na sua classificação através de diferentes tipos de classificadores baseados em "machine learning", que consiste na execução de algoritmos que criam de modo automático modelos com base num conjunto de dados.O método desenvolvido foi utilizado em 2000 ECG de maneira a determinar a eficácia de cada um dos classificadores na deteção da doença cardíaca. Deste modo o presente documento inclui um estudo sobre os parâmetros do modelo escolhido e os resultados de classificação correspondestes. Não só, apresenta uma análise sobre a influência de certos fatores no desempenho do sistema, nomeadamente o tamanho do conjunto de dados e o conjunto de "features" utilizado na representação.Por sua vez, os resultados obtidos apoiam o uso de classificadores baseados em "machine learning" como ferramenta de classificação, na área de deteção de doenças cardíacas. O sistema desenvolvido classifica 2000 ECG, provenientes de duas classes, normal e fibrilhação auricular, com uma taxa de eficácia global de 93%, para o conjunto de teste. Na deteção particular da fibrilhação auricular, registou-se uma eficácia de 97% para o conjunto de teste.
Recently, due to the increase in the number of deaths from cardiovascular diseases, the diagnosis of heart disease has been a focus of great interest in the computational world. This is because the detection of heart disease at an early stage can prolong life through proper treatment. Numerous methods for monitoring cardiac conditions have been introduced in the market, the most used being the electrocardiogram (ECG). The ECG is the recording of the variation in the bioelectric activity of the heart, which represents the contractions and cyclical relaxations of the human cardiac muscle. It provides important information about the functional aspects of the heart and the cardiovascular system. However, processing large amounts of raw electrocardiogram signals from sensors is time consuming. Therefore, the automatic detection of abnormalities in the electrocardiogram signals acts as an assistant for doctors to diagnose a heart condition.The irregularities present in the heartbeat in the ECG format are generally called arrhythmia. Arrhythmia is a common term for any heart disorder that differs from the normal rhythm. The automatic analysis of the ECG signal to detect heartbeat is difficult due to the great variation in the morphological and temporal characteristics of the ECG waveforms between different patients, as well as in the same patients. This dissertation aims to develop a method of detecting atrial fibrillation, which is a type of arrhythmia, using the electrocardiogram signal. The proposed methodology is based on the extraction of a set of characteristics (features) from ECG, and on their classification through different types of classifiers based on machine learning. These classifiers consists of the execution of algorithms that automatically create representation models based on a set of data.The method developed was used on 2000 ECG in order to determine the effectiveness of each of the classifiers in detecting heart disease. Thus, this document includes a study on the parameters of the chosen model and the corresponding classification results. Not only, it presents an analysis of the influence of certain factors on the performance of the system, namely the size of the data set and the set of features used in the representation.In turn, the results obtained support the use of classifiers based on machine learning as a classification tool, in the area of heart disease detection. Therefore, the developed system classifies 2000 ECG, as two classes: normal and atrial fibrillation, with an overall effectiveness rate of 93%, on the test set. In the particular detection of atrial fibrillation, there was an efficiency of 97% for the test set.
Tam, Kuang-Jer, and 譚匡哲. "An Obstructive Sleep Apnea Recognition Algorithm Based on Support Vector Machine via Each Minute Single-Lead Electrocardiogram Features." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/55925368628280371064.
Full text國立清華大學
電機工程學系
102
Nowadays, sleep disorders become an important issue because it can adversely affect neurocognitive, cardiovascular, respiratory diseases, which subsequently induce the behavior disorder, majority of these cases up to 85% of these cases are obstructive sleep apnea (OSA). Therefore, the study of how to diagnose, detect and treat OSA is becoming a critical issue from both academical and medical perspective. Polysomnography (PSG) can monitor the OSA using relatively few invasive techniques. However, sleep studies are expensive and time-consuming because they require overnight evaluation at sleep laboratories with dedicated systems and attending personnel. To improve such inconveniences of exam and high cost, it is important to develop a simplified method to diagnose the OSA. The motivation of this study is to develop an OSA detection algorithm, which uses only electrocardiogram (ECG) signal. The procedures of this algorithm include three parts. At first, ECG signals are preprocessed by discrete wavelet transform (DWT) method in order to detect the R peck by removing the base line wander and power line noise. Based on the R peak position, the 126 features were generated from the ECG-derived respiration (EDR) signal using time domain and frequency analysis. The range scaling method can be applied afterward to normalize all features in order to minimize the effect of large range variation from the value of each feature. At last, a classification method called support vector machine (SVM) is used to classify if the subject shows OSA symptom or not in each minute. The 10- fold cross-validation method is applied to select the best SVM parameter for classification. By combining all the classification results, one can determine if the subject is normal or apnea. The accuracy of 88.29%, the sensitivity of 92.90% and the specificity value of 86.48%can be seen from the Apnea-ECG database using the minute by minute performance based algorithm. Beside, the accuracy of 100%, the sensitivity of 100% and the specificity value of 100% also can be seen from the database using the subject based performance. The goal of this study to reduce both the detection time and cost is accomplished.
Chou, Yi-Wen, and 周逸雯. "The Analysis of Electrocardiogram Feature in Disease." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/03214271949525441106.
Full text元智大學
資訊管理學系
97
Abstract Heart attack is one of the major diseases leading to death based on recent reports. Therefore, it is crucial to develop a computer-assisted algorithm to improve conventional diagnoses of heart diseases. 12-lead ECG is a frequently-used diagnostic tool with the advantages of non-invasive measurement and convenient acquisition. Objective : The major objective of this study is to develop a hidden markov model (HMM) that can recognize the ECG features of 12-lead ECG. The HMM model then can be used to identify myocardial infarction that is a life-threaten disease and commonly-seen in clinical practice. Method : The 12-lead ECGs confirmed as myocardial infarction were acquired from clinically-used Philips XML-ECG. The waveforms in collected XML-ECG files were extracted and then processed to get clean ECG waveform data. The waveform data in various leads were used to build a HMM model. The HMM model using mixed Gaussian functions to model waveform pattern in time domain. Result : By using Maximum Likelihood Estimation in the process of HMM training, the optimal HMM model representing anterior myocardial infarction was evaluated. Results indicated that anterior myocardial infarction can be represented by two Gaussian mixture and twelve states in HMM. Conclusion : In sum, a computer-assisted myocardial infarction detector can be facilitated with the use of HMM. Keywords: Hidden Markov Model, 12-lead ECG, Myocardial Infarction
Hsiao, Yuchun, and 蕭宇純. "Feature Extraction and Feature Selection for Emotion Recognition Based on Electrocardiogram." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/38203918737364188383.
Full text國立中正大學
電機工程研究所
100
We proposed an emotion recognition system based on electrocardiogram (ECG) in this study which could recognize seven kinds of emotions, including “Neutral”, “Happy”, “Stress”, “Sad”, “Anger”, “Disgust”, “Surprise”. These emotions have been defined as basic emotions in the psychology. Our user-independent emotion recognition system can be divided into five parts: data acquisition (physiological signals), feature calculation, feature extraction, feature selection, and classification. In the physiological signal acquisition part, we recorded ECG from10 participants who watched video films of two to four minutes in length for stimulating distinct emotions in a quiet room. Seven categories of features were calculated from the ECG segment, including time-domain features, HRV features, Poincare plot regional features, baseline features, nonlinear features, frequency-domain features, and waveform features. In our research, the performance of feature extractors and feature selectors were especially discussed. Two feature extractors, including principal component analysis (PCA) and discriminant analysis (DA) were applied to reduce feature dimensions from mapping the original data to new subspace. Three feature selectors, including sequential backward selection (SBS), sequential forward selection (SFS), and genetic algorithms (GA), proceeded to select useful features and reduce feature dimensions. Finally, the leave-one-out cross-validation was performed in combination with the support vector machine (SVM) classifier to recognize the seven emotions mentioned from above. The emotion recognition system using all the 65 features led to a classification rate of 85.71%. When in the single feature category condition, the best system classification rate was 78.57% with Poincare plot regional features. If we removed Poincare plot regional features from the feature set, the classification rate only led to 70.00%, which was considered that the Poincare plot regional features contributed good performance to our system. In our study, we used those 65 features for further research. When applying the two feature extractors for our system, the classification rates were 77.14% when using DA feature extractor and 72.86% when using PCA feature extractor. On the other side, applying the three feature selectors for the emotion recognition system, when applying the GA feature selector, the classification rate could achieve an average accuracy of 98.57%. Although applying feature selectors to our system led to a high classification rate, the time it took also quite long. As a result, when the designer decided which method to apply, the application purpose became a very important role.
Zuo-JhengHuang and 黃佐正. "Architecture Design and Implementation of Gabor Feature Extraction Algorithm for Electrocardiogram." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/94990321387723500910.
Full textYang, Yueh-Yiing, and 楊岳穎. "Detection of cardiac arrhythmia in electrocardiograms using adaptive feature extraction and modified support vector machines." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/91962725401196186809.
Full text國立臺灣師範大學
應用電子科技學系
98
The electrocardiogram (ECG) analysis is one of the most important approaches to cardiac arrhythmia detection. Many algorithms have been proposed, however, the recognition rate is still unsatisfactory due to unreliable feature extraction in signal characteristic analysis or poor generalization capability of the classifier. In this paper, we propose a system for cardiac arrhythmia detection in ECGs with adaptive feature selection and modified support vector machines (SVMs). Wavelet transform-based coefficients and signal amplitude/interval parameters are first enumerated as candidates, but only a few specific ones are adaptively selected for the classification of each class pair. A new classifier, which integrates k-means clustering, one-against-one SVMs, and a modified majority voting mechanism, is proposed to further improve the recognition rate for extremely similar classes. By testing the system with more than 100,000 samples in MIT-BIH arrhythmia database, the average recognition rate is 97.72%.
Books on the topic "ELECTROCARDIOGRAM FEATURES"
Rautaharju, Pentti M. Female Electrocardiogram: Special Repolarization Features, Gender Differences, and the Risk of Adverse Cardiac Events. Springer International Publishing AG, 2015.
Find full textRautaharju, Pentti M. Female Electrocardiogram: Special Repolarization Features, Gender Differences, and the Risk of Adverse Cardiac Events. Springer, 2015.
Find full textRautaharju, Pentti M. M. The Female Electrocardiogram: Special Repolarization Features, Gender Differences, and the Risk of Adverse Cardiac Events. Springer, 2016.
Find full textBass, Cristina, Barbara Bauce, and Gaetano Thiene. Arrhythmogenic right ventricular cardiomyopathy: diagnosis. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0360.
Full textBook chapters on the topic "ELECTROCARDIOGRAM FEATURES"
Rautaharju, Pentti M. "Special Features of the Female Electrocardiogram." In The Female Electrocardiogram, 1–9. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15293-6_1.
Full textRautaharju, Pentti M. "ST-T Waveform Features, QT and Mortality Risk." In The Female Electrocardiogram, 87–107. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15293-6_9.
Full textDetweiler, D. K. "The Mammalian Electrocardiogram: Comparative Features." In Specialized Aspects of ECG, 491–529. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-880-5_10.
Full textDetweiler, D. K. "The Mammalian Electrocardiogram: Comparative Features." In Comprehensive Electrocardiology, 1909–47. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-046-3_42.
Full textHerff, Christian, and Dean J. Krusienski. "Extracting Features from Time Series." In Fundamentals of Clinical Data Science, 85–100. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99713-1_7.
Full textEl-Saadawy, Hadeer, Manal Tantawi, Howida A. Shedeed, and M. F. Tolba. "Diagnosing Heart Diseases Using Morphological and Dynamic Features of Electrocardiogram (ECG)." In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2017, 342–52. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64861-3_32.
Full textRamani, R. Geetha, Abhinand Ganesh, Roshni Balasubramanian, and Aruna Srikamakshi Ramkumar. "Application of Phonocardiogram and Electrocardiogram Signal Features in Cardiovascular Abnormality Recognition." In Computer, Communication, and Signal Processing. AI, Knowledge Engineering and IoT for Smart Systems, 196–209. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39811-7_16.
Full textShi, Heng, Belkacem Chikhaoui, and Shengrui Wang. "Tree-Based Models for Pain Detection from Biomedical Signals." In Lecture Notes in Computer Science, 183–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09593-1_14.
Full textTuerxunwaili, Rizal Mohd Nor, Abdul Wahab Bin Abdul Rahman, Khairul Azami Sidek, and Adamu Abubakar Ibrahim. "Electrocardiogram Identification: Use a Simple Set of Features in QRS Complex to Identify Individuals." In Recent Advances in Information and Communication Technology 2016, 139–48. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40415-8_14.
Full textLoo, Chu Kiong, Soon Fatt Cheong, Margaret A. Seldon, Ali Afzalian Mand, Kalaiarasi Sonai Muthu, Wei Shiung Liew, and Einly Lim. "Genetic-Optimized Classifier Ensemble for Cortisol Salivary Measurement Mapping to Electrocardiogram Features for Stress Evaluation." In Lecture Notes in Computer Science, 274–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32695-0_26.
Full textConference papers on the topic "ELECTROCARDIOGRAM FEATURES"
Dey, N., B. Nandi, M. Dey, D. Biswas, A. Das, and S. S. Chaudhuri. "BioHash code generation from electrocardiogram features." In 2013 3rd IEEE International Advanced Computing Conference (IACC 2013). IEEE, 2013. http://dx.doi.org/10.1109/iadcc.2013.6514317.
Full textVansteenkiste, E., R. Houben, A. Pizurica, and W. Philips. "Classifying electrocardiogram peaks using newwavelet domain features." In 2008 35th Annual Computers in Cardiology Conference. IEEE, 2008. http://dx.doi.org/10.1109/cic.2008.4749176.
Full textWang, Liping, Jiangchao Zhu, Mi Shen, Xia Liu, and Jun Dong. "An Electrocardiogram Classification Method Combining Morphology Features." In 2010 Chinese Conference on Pattern Recognition (CCPR). IEEE, 2010. http://dx.doi.org/10.1109/ccpr.2010.5659254.
Full textYao, Qingyu, Xuesong Su, Siyuan Li, and Gongwen Chen. "A structure for extracting features of electrocardiogram signals." In 6th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE 2023), edited by Lvqing Yang and Wenjun Tan. SPIE, 2023. http://dx.doi.org/10.1117/12.3004314.
Full textGurkan, Hakan, Umit Guz, and B. S. Yarman. "A novel human identification system based on electrocardiogram features." In 2013 International Symposium on Signals, Circuits and Systems (ISSCS). IEEE, 2013. http://dx.doi.org/10.1109/isscs.2013.6651266.
Full textGul, Maheen, Syed Muhammad Anwar, and Muhammad Majid. "Electrocardiogram signal classification to detect arrythmia with improved features." In 2017 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2017. http://dx.doi.org/10.1109/ist.2017.8261545.
Full textOya, Hidetoshi, Yuki Nishida, Yoshihide Onishi, Yoshihiro Ogino, Kazushi Nakano, Yoshihiro Yamaguchi, Hiroshi Miyauchi, and Takayuki Okai. "A New Detection Algorithm Based on Spectrum Features for Electrocardiogram." In Modelling, Identification and Control / 834: Parallel and Distributed Computing and Networks / 835: Software Engineering. Calgary,AB,Canada: ACTAPRESS, 2016. http://dx.doi.org/10.2316/p.2016.830-034.
Full textVenton, "Jenny, Karli Gillette, Matthias Gsell, Axel Loewe, Claudia Nagel, Benjamin Winkler, and Louise Wright." "Sensitivity Analysis of Electrocardiogram Features to Computational Model Input Parameters." In 2022 Computing in Cardiology Conference. Computing in Cardiology, 2022. http://dx.doi.org/10.22489/cinc.2022.024.
Full textSaini, Sanjeev Kumar, and Rashmi Gupta. "Mental Stress Assessment using Wavelet Transform Features of Electrocardiogram Signals." In 2021 International Conference on Industrial Electronics Research and Applications (ICIERA). IEEE, 2021. http://dx.doi.org/10.1109/iciera53202.2021.9726532.
Full textKim, D. H., J. S. Park, I. Y. Kim, S. I. Kim, and J. S. Lee. "Personal recognition using geometric features in the phase space of electrocardiogram." In 2017 IEEE Life Sciences Conference (LSC). IEEE, 2017. http://dx.doi.org/10.1109/lsc.2017.8268177.
Full text