Academic literature on the topic 'Electrocardiogram decomposition'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrocardiogram decomposition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electrocardiogram decomposition":

1

REDIF, Soydan. "Fetal electrocardiogram estimation using polynomial eigenvalue decomposition." TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES 24 (2016): 2483–97. http://dx.doi.org/10.3906/elk-1401-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sameni, R., C. Jutten, and M. B. Shamsollahi. "Multichannel Electrocardiogram Decomposition Using Periodic Component Analysis." IEEE Transactions on Biomedical Engineering 55, no. 8 (August 2008): 1935–40. http://dx.doi.org/10.1109/tbme.2008.919714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Malhotra, Vikas, and MandeepKaur Sandhu. "Electrocardiogram signals denoising using improved variational mode decomposition." Journal of Medical Signals & Sensors 11, no. 2 (2021): 100. http://dx.doi.org/10.4103/jmss.jmss_17_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Suppappola, Seth, Ying Sun, and Salvatore A. Chiaramida. "Gaussian pulse decomposition: An intuitive model of electrocardiogram waveforms." Annals of Biomedical Engineering 25, no. 2 (March 1997): 252–60. http://dx.doi.org/10.1007/bf02648039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

SUCHETHA, M., and N. KUMARAVEL. "CLASSIFICATION OF ARRHYTHMIA IN ELECTROCARDIOGRAM USING EMD BASED FEATURES AND SUPPORT VECTOR MACHINE WITH MARGIN SAMPLING." International Journal of Computational Intelligence and Applications 12, no. 03 (September 2013): 1350015. http://dx.doi.org/10.1142/s1469026813500156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Electrocardiogram (ECG) signals represent a useful information source about the rhythm and the functioning of the heart. Any disturbance in the heart's normal rhythmic contraction is called an arrhythmia. Analysis of Electrocardiogram signals is the most effective available method for diagnosing cardiac arrhythmias. Computer based classification of ECG provides higher accuracy and offer a potential of an affordable cardiac abnormality mass screening. The empirical mode decomposition is performed on various arrhythmia signals and different levels of intrinsic mode functions (IMF) are obtained. Singular value decomposition (SVD) is used to extract features from the IMF and classification is performed using support vector machine. This method is more efficient for classification of ECG signals and at the same time provides good generalization properties.
6

Proskurin, S. G. "Trigeminy electrocardiogram spectral characteristics study." CARDIOMETRY, no. 27 (May 4, 2023): 75–79. http://dx.doi.org/10.18137/cardiometry.2023.27.7679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This paper presents the results of a study in which the method of ECG decomposition in the time domain (DMTD) was applied, followed by a spectral analysis. A digital signal with trigeminy of the first lead of a standard electrocardiograph was processed. Using digital filtering in time domain, the electrocardiogram (ECG) was cleared of noise, what results the reduction of spurious components by 10-20%. To represent and classify the frequency characteristics throughout the entire processed cardiac signal, the QRS complexes were removed, P and T waves were left unchanged. Due to considerable influence on the spectral analysis sharp peaks of the ECG signal with small characteristic times of the leading and trailing edges, the obtained result differs considerably from the sum of the harmonic components of the smooth part of the signal. The spectral processing reveals peaks at multiple frequencies, 1.6 Hz, 3.2 Hz, 4.7 Hz, corresponding to a smooth function of P and T waves before the appearance of extra systoles. Based on the obtained data, the frequencies corresponding to the peaks of the cardiogram with a stable sinus rhythm were identified. The acquired data represent regular harmonics, which allow adequate quantitative ECG analysis.
7

Zhang, Xiaohong, Huiling Tong, Yanjun Deng, Mengjiao Lv, and Zhidong Zhao. "Electrocardiogram Human Identification System Based on Block Sparse Bayesian Decomposition." Journal of Medical Imaging and Health Informatics 7, no. 1 (February 1, 2017): 264–72. http://dx.doi.org/10.1166/jmihi.2017.2017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jannah, N., S. Hadjiloucas, F. Hwang, and R. K. H. Galvão. "Smart-phone based electrocardiogram wavelet decomposition and neural network classification." Journal of Physics: Conference Series 450 (June 26, 2013): 012019. http://dx.doi.org/10.1088/1742-6596/450/1/012019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

KUMARI, R. SHANTHA SELVA, and V. SADASIVAM. "DE-NOISING AND BASELINE WANDERING REMOVAL OF ELECTROCARDIOGRAM USING DOUBLE DENSITY DISCRETE WAVELET." International Journal of Wavelets, Multiresolution and Information Processing 05, no. 03 (May 2007): 399–415. http://dx.doi.org/10.1142/s0219691307001823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this paper, an off-line double density discrete wavelet transform based de-noising and baseline wandering removal methods are proposed. Different levels decomposition is used depending upon the noise level, so as to give a better result. When the noise level is low, three levels decomposition is used. When the noise level is medium, four levels decomposition is used. When the noise level is high, five levels decomposition is used. Soft threshold technique is applied to each set of wavelet detail coefficients with different noise level. Donoho's estimator is used as a threshold for each set of wavelet detail coefficients. The results are compared with other classical filters and improvement of signal to noise ratio is discussed. Using the proposed method the output signal to noise ratio is 19.7628 dB for an input signal to noise ratio of -7.11 dB. This is much higher than other methods available in the literature. Baseline wandering removal is done by using double density discrete wavelet approximation coefficients of the whole signal. This is an unsupervised method allowing the process to be used in off-line automatic analysis of electrocardiogram. The results are more accurate than other methods with less effort.
10

Padhy, Sibasankar, and Samarendra Dandapat. "Exploiting multi‐lead electrocardiogram correlations using robust third‐order tensor decomposition." Healthcare Technology Letters 2, no. 5 (September 2015): 112–17. http://dx.doi.org/10.1049/htl.2015.0020.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Electrocardiogram decomposition":

1

Schenone, Elisa. "Reduced Order Models, Forward and Inverse Problems in Cardiac Electrophysiology." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066447/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cette thèse de doctorat est consacrée à l'étude des problèmes directe et inverse en électrophysiologie cardiaque. Comme les équations qui décrivent l'activité électrique du coeur peuvent être très couteuses en temps de calcul, une attention particulière est apportée aux méthodes d'ordre réduit et à leur applications aux modèles de l'électrophysiologie.Dans un premier temps, nous introduisons les modèles mathématiques et numériques de l'électrophysiologie cardiaque. Ces modèles nous permettent de réaliser des simulations numériques que nous validons à l'aide de plusieurs critères qualitatifs et quantitatifs trouvés dans la littérature médicale. Comme notre modèle prend en compte les oreillettes et les ventricules, nous sommes capables de reproduire des cycles complets d'électrocardiogrammes (ECG) à la fois dans des conditions saines et dans des cas pathologiques.Ensuite, plusieurs méthodes d'ordre réduit sont étudiées pour la résolution des équations de l'électrophysiologie. La méthode Proper Orthogonal Decomposition (POD) est appliquée pour la discrétisation des équations de l'électrophysiologie dans plusieurs configurations, comme par exemple la simulation d'un infarctus du myocarde. De plus, cette méthode est utilisée pour résoudre quelques problèmes d'identification de paramètres comme localiser un infarctus à partir de mesures d'un électrocardiogramme ou simuler une courbe de restitution. Pour contourner les limitations de la POD, une nouvelle méthode basée sur des couples de Lax approchés (Approximated Lax Pairs, ALP) est utilisée. Cette méthode est appliquée aux problèmes directe et inverse. Pour finir, un nouvel algorithme, basé sur les méthodes ALP et l'interpolation empirique discrète, est proposé. Cette nouvelle approche améliore significativement l'efficacité de l'algorithme original ALP et nous permet de considérer des modèles plus complexes utilisés en électrophysiologie cardiaque
This PhD thesis is dedicated to the investigation of the forward and the inverse problem of cardiac electrophysiology. Since the equations that describe the electrical activity of the heart can be very demanding from a computational point of view, a particular attention is paid to the reduced order methods and to their application to the electrophysiology models. First, we introduce the mathematical and numerical models of electrophysiology and we implement them to provide for simulations that are validated against various qualitative and quantitative criteria found in the medical literature. Since our model takes into account atria and ventricles, we are able to reproduce full cycle Electrocardiograms (ECG) in healthy configurations and also in the case of several pathologies. Then, several reduced order methods are investigated for the resolution of the electrophysiology equations. The Proper orthogonal Decomposition (POD) method is applied for the discretization of the electrophysiology equations in several configurations, as for instance the simulation of a myocardial infarction. Also, the method is used in order to solve some parameters identification problems such as the identification of an infarcted zone using the Electrocardiogram measures and for the efficient simulation of restitution curves. To circumvent some limitations of the POD method, a new reduced order method based on the Approximated Lax Pairs (ALP) is investigated. This method is applied to the forward and inverse problems. Finally, a new reduced order algorithm is proposed, based on the ALP and the Discrete Empirical Interpolation methods. This new approach significantly improves the efficiency of the original ALP algorithm and allow us to consider more complex models used in electrophysiology
2

Marinho, Ramos de Oliveira Pedro. "Modélisation Tensorielle de l'ECG pour l'Analyse de la Fibrillation Atriale Persistante." Thesis, Université Côte d'Azur, 2020. https://tel.archives-ouvertes.fr/tel-03177971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La fibrillation atriale (FA) est l'arythmie soutenue la plus couramment diagnostiquée dans la pratique clinique. Elle est responsable de taux élevés d'hospitalisation et de décès. Les mécanismes électrophysiologiques qui sous-tendent ce trouble du rythme cardiaque ne sont pas complètement compris. Une stratégie non invasive et efficace pour étudier cette arythmie consiste à analyser l'activité atriale (AA) présente dans l'électrocardiogramme (ECG) de surface. Toutefois, l'AA est masquée par l'activité ventriculaire (AV) dans chaque battement, et elle a une amplitude faible, ce qui rend difficile son analyse. Au fil des années, des méthodes de traitement du signal ont aidé les cardiologues pour l'étude de la FA en extrayant l'AA de l'ECG. En particulier, des méthodes matricielles de séparation aveugle de sources (SAS) se sont révélées des outils d'extraction de l'AA efficaces. Cependant, certaines contraintes doivent être imposées pour garantir l'unicité de ces techniques de factorisation matricielle et, bien que mathématiquement cohérentes, elles peuvent manquer de fondements physiologiques, avec pour conséquence d'entraver l'interprétation des résultats. En revanche, les décompositions tensorielles peuvent garantir l'unicité sous des contraintes moins restrictives. En particulier, la décomposition en termes de blocs (Block Term Decomposition, BTD), récemment proposée comme technique SAS, peut être unique sous certaines contraintes satisfaites par les facteurs matriciels, facilement verifiées tant du point de vue mathématique que physiologique. Par ailleurs, les sources cardiaques peuvent être bien modélisées par des fonctions mathématiques spécifiques qui, lorsqu'elles sont mappées dans les facteurs matriciels structurés de la BTD, présentent un lien avec leur rang. Un autre avantage par rapport aux méthodes matricielles est que l'approche tensorielle est capable d'extraire l'AA à partir d'enregistrements ECG très courts. Dans la présente thèse de doctorat, on étudie tout d'abord le modèle Hankel-BTD comme outil d'extraction d'AA dans des épisodes de FA persistante, avec une validation basée sur des expériences statistiques concernant une population de patients atteints de FA et plusieurs types de segments ECG. Les enregistrements ECG avec des intervalles courts entre les battements cardiaques et de l'AA à faible amplitude sont des cas difficiles courants à ce stade de l'arythmie. Ces cas motivent l'utilisation d'une autre approche tensorielle, appelée Löwner-BTD, pour estimer un signal AA de meilleure qualité. Une telle approche est présentée dans le cadre d'une nouvelle stratégie optimale pour assurer la structure de Löwner qui est implémentée comme une variante d'un algorithme robuste récemment proposé pour le calcul de la BTD. Une autre contribution est la modélisation des ECG en FA par le modèle dit de Hankel-BTD couplé, qui offre une meilleure extraction d'AA avec un coût de calcul réduit par rapport à son homologue non couplé. D'autres contributions concernent les défis qui découlent du problème de l'extraction d'AA des ECG de FA, tels que la détection de la source d'AA parmi d'autres sources séparées dans des expériences réelles, où la vérité est inconnue. Pour cette tâche, plusieurs approches utilisent des algorithmes d'apprentissage automatique et des réseaux de neurones sont évaluées, offrant une précision satisfaisante. Un autre défi à relever est la difficulté de mesurer la qualité de l'estimation de l'AA. De nouveaux indices sont proposés et évalués pour quantifier la qualité de l'estimation AA pendant la FA. En résumé, cette thèse de doctorat fournit la première étude approfondie de l'application des techniques de traitement du signal tensoriel pour l'analyse de la fibrillation atriale, en mettant en évidence l'intérêt de l'approche tensorielle et son potentiel pour la prise en charge et la compréhension de ce trouble cardiaque complexe
Atrial Fibrillation (AF) is the most common sustained arrhythmia diagnosed in clinical practice, responsible for high hospitalization and death rates. Furthermore, the electrophysiological mechanisms underlying this cardiac rhythm disorder are not completely understood. A non-invasive and efficient strategy to study this challenging cardiac condition is analyzing the atrial activity (AA) from the Electrocardiogram (ECG). However, the AA during AF is masked by the ventricular activity (VA) in each heartbeat and often presents a very low amplitude, hampering its analysis. Throughout the years, signal processing methods have helped cardiologists in the study of AF by extracting the AA from the ECG. In particular, matrix-based blind source separation (BSS) methods have proven to be ecient AA extraction tools. However, some constraints need to be imposed to guarantee the uniqueness of such matrix factorization techniques that, although mathematically coherent, may lack physiological grounds and hinder results interpretation. In contrast, tensor decompositions can ensure uniqueness under more relaxed constraints. Particularly, the block term decomposition (BTD), recently proposed as a BSS technique, can be unique under some constraints over its matrix factors, easily satisfying in the mathematical and physiological sense. In addition, cardiac sources can be well modeled by specific mathematical functions that, when mapped into the structured matrix factors of BTD, present a link with their rank. Another advantage over matrix-based methods is that the tensor approach is able to extract AA from very short ECG recordings. The present doctoral thesis has its first focus on the investigation of the Hankel-BTD as an AA extraction tool in persistent AF episodes, with validation based on statistical experiments over a population of AF patients and several types of ECG segments. ECG recordings with a short interval between heartbeats and an AA with significantly low amplitude are challenging cases common in this stage of the arrhythmia. Such cases motivate the use of other tensor-based approach to estimate an AA signal with better quality, the Löwner-BTD. Such an approach is presented along a novel optimal strategy to ensure the Löwner structure that is implemented as a variant of a recently proposed robust algorithm for BTD computation. Another contribution is the model of persistent AF ECGs by a coupled Hankel-BTD, which shows some advantages in terms of improved AA extraction and reduced computational cost over its non-coupled counterpart. Further contributions focus on challenges that arise from the problem of AA extraction from AF ECGs, such as detecting the AA source among the other separated sources in real experiments, where the ground truth it's unknown. For this task, several approaches that use machine learning algorithms and neural networks are assessed, providing satisfactory accuracy. Another challenge that is dealt with is the difficulty in measuring the quality of AA estimation. Here, new indices for AA estimation quality from ECG recordings during AF are proposed and assessed. In summary, this PhD thesis provides the first thorough investigation of the application of tensor-based signal processing techniques to the analysis of atrial fibrillation, showing the interest of the tensor approach and its potential in the management and understanding of this challenging cardiac condition
3

Yang, Yingyu. "Analyse automatique de la fonction cardiaque par intelligence artificielle : approche multimodale pour un dispositif d'échocardiographie portable." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Selon le rapport annuel de la Fédération Mondiale du Cœur de 2023, les maladies cardiovasculaires (MCV) représentaient près d'un tiers de tous les décès mondiaux en 2021. Comparativement aux pays à revenu élevé, plus de 80% des décès par MCV surviennent dans les pays à revenu faible et intermédiaire. La répartition inéquitable des ressources de diagnostic et de traitement des MCV demeure toujours non résolue. Face à ce défi, les dispositifs abordables d'échographie de point de soins (POCUS) ont un potentiel significatif pour améliorer le diagnostic des MCV. Avec l'aide de l'intelligence artificielle (IA), le POCUS permet aux non-experts de contribuer, améliorant ainsi largement l'accès aux soins, en particulier dans les régions moins desservies.L'objectif de cette thèse est de développer des algorithmes robustes et automatiques pour analyser la fonction cardiaque à l'aide de dispositifs POCUS, en mettant l'accent sur l'échocardiographie et l'électrocardiogramme. Notre premier objectif est d'obtenir des caractéristiques cardiaques explicables à partir de chaque modalité individuelle. Notre deuxième objectif est d'explorer une approche multimodale en combinant les données d'échocardiographie et d'électrocardiogramme.Nous commençons par présenter deux nouvelles structures d'apprentissage profond (DL) pour la segmentation de l'échocardiographie et l'estimation du mouvement. En incorporant des connaissance a priori de forme et de mouvement dans les modèles DL, nous démontrons, grâce à des expériences approfondies, que de tels a priori contribuent à améliorer la précision et la généralisation sur différentes séries de données non vues. De plus, nous sommes en mesure d'extraire la fraction d'éjection du ventricule gauche (FEVG), la déformation longitudinale globale (GLS) et d'autres indices utiles pour la détection de l'infarctus du myocarde (IM).Ensuite, nous proposons un modèle DL explicatif pour la décomposition non supervisée de l'électrocardiogramme. Ce modèle peut extraire des informations explicables liées aux différentes sous-ondes de l'ECG sans annotation manuelle. Nous appliquons ensuite ces paramètres à un classificateur linéaire pour la détection de l'infarctus du myocarde, qui montre une bonne généralisation sur différentes séries de données.Enfin, nous combinons les données des deux modalités pour une classification multimodale fiable. Notre approche utilise une fusion au niveau de la décision intégrant de l'incertitude, permettant l'entraînement avec des données multimodales non appariées. Nous évaluons ensuite le modèle entraîné à l'aide de données multimodales appariées, mettant en évidence le potentiel de la détection multimodale de l'IM surpassant celle d'une seule modalité.Dans l'ensemble, nos algorithmes proposés robustes et généralisables pour l'analyse de l'échocardiographie et de l'ECG démontrent un potentiel significatif pour l'analyse de la fonction cardiaque portable. Nous anticipons que notre cadre pourrait être davantage validé à l'aide de dispositifs portables du monde réel
According to the 2023 annual report of the World Heart Federation, cardiovascular diseases (CVD) accounted for nearly one third of all global deaths in 2021. Compared to high-income countries, more than 80% of CVD deaths occurred in low and middle-income countries. The inequitable distribution of CVD diagnosis and treatment resources still remains unresolved. In the face of this challenge, affordable point-of-care ultrasound (POCUS) devices demonstrate significant potential to improve the diagnosis of CVDs. Furthermore, by taking advantage of artificial intelligence (AI)-based tools, POCUS enables non-experts to help, thus largely improving the access to care, especially in less-served regions.The objective of this thesis is to develop robust and automatic algorithms to analyse cardiac function for POCUS devices, with a focus on echocardiography (ECHO) and electrocardiogram (ECG). Our first goal is to obtain explainable cardiac features from each single modality respectively. Our second goal is to explore a multi-modal approach by combining ECHO and ECG data.We start by presenting two novel deep learning (DL) frameworks for echocardiography segmentation and motion estimation tasks, respectively. By incorporating shape prior and motion prior into DL models, we demonstrate through extensive experiments that such prior can help improve the accuracy and generalises well on different unseen datasets. Furthermore, we are able to extract left ventricle ejection fraction (LVEF), global longitudinal strain (GLS) and other useful indices for myocardial infarction (MI) detection.Next, we propose an explainable DL model for unsupervised electrocardiogram decomposition. This model can extract interpretable information related to different ECG subwaves without manual annotation. We further apply those parameters to a linear classifier for myocardial infarction detection, which showed good generalisation across different datasets.Finally, we combine data from both modalities together for trustworthy multi-modal classification. Our approach employs decision-level fusion with uncertainty, allowing training with unpaired multi-modal data. We further evaluate the trained model using paired multi-modal data, showcasing the potential of multi-modal MI detection to surpass that from a single modality.Overall, our proposed robust and generalisable algorithms for ECHO and ECG analysis demonstrate significant potential for portable cardiac function analysis. We anticipate that our novel framework could be further validated using real-world portable devices. We envision that such advanced integrative tools may significantly contribute towards better identification of CVD patients
4

Samad, Sarah. "Contactless detection of cardiopulmonary activity for a person in different scenarios." Thesis, Rennes, INSA, 2017. http://www.theses.fr/2017ISAR0030/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
De nos jours, les mesures sans contact du signal cardiaque du patient en utilisant le radar Doppler a suscité un intérêt considérable chez les chercheurs, surtout que les électrocardiographes traditionnels avec des électrodes fixes ne sont pas pratiques dans certains cas comme les nourrissons ou les victimes de brûlure. En raison de la sensibilité des micro­ondes à de petits mouvements, le radar a été utilisé comme système de surveillance de l'activité cardio-pulmonaire humaine. Selon l'effet Doppler, un signal de fréquence constante est transmis vers la cible ayant un déplacement variable puis réfléchi. Le signal réfléchit possède une variation de phase par rapport au temps. Dans notre cas, la cible est la poitrine du patient; Le signal réfléchi de la poitrine de la personne contient le signal cardiorespiratoire. Le système est basé sur un analyseur de réseau vectoriel et deux antennes cornet. Le S21 est calculé en utilisant un analyseur de réseau. La variation de phase de S21 contient des informations de l'activité cardio-pulmonaire. Des techniques de traitement sont utilisées pour extraire le signal cardiaque de la variation de la phase de S21 . Cette thèse présente une étude comparative dans la détection des signaux de battements cardiaques au niveau de la puissance rayonnée et de la fréquence opérationnelle. Les puissances rayonnées sont comprises entre 3 et -17 dBm et les fréquences opérationnelles utilisées sont 2.4, 5.8, 1 0 et 20 GHz. Cela permet de spécifier la fréquence opérationnelle optimale, qui donne un compromis entre la puissance minimale émise ainsi que la complexité du système de mesure. De plus, une étude comparative entre plusieurs méthodes de traitement de signal est proposée pour extraire la meilleure méthode qui permet de mesurer le signal cardiaque et par suite extraire ses paramètres. Des techniques de traitement basées sur des transformées en ondelettes ou le filtrage classique sont présentées et utilisées afin de faire une comparaison entre elles. Le paramètre extrait dans cette thèse est le taux des battements cardiaques. Les mesures ont été effectuées simultanément avec un électrocardiographe afin de valider les mesures du signal cardiaque. Puisque la personne peut se déplacer d'une pièce à une autre à l'intérieur de son domicile, des mesures des quatre côtés de la personne et derrière un mur sont réalisées. Ajoutons une approche de modélisation fondée sur la mesure cardio-respiratoire pour une personne qui exerce une marche en avant. De plus, une comparaison entre un système à micro-ondes à simple et deux antennes pour une personne qui prend son souffle est effectuée afin de tester la précision du système à antenne unique par rapport au a la deuxième. Par suite, des mesures sont effectuées pour une personne qui respire en utilisant un système à une seule antenne
Nowadays, contact-less monitoring patient's heartbeat using Doppler radar has attracted considerable interest of researchers, especially when the traditional electrocardiogram (ECG) measurements with fixed electrodes is not practical in some cases like infants at risk or sudden infant syndrome or burn victims. Due to the microwave sensitivity toward tiny movements, radar has been employed as a noninvasive monitoring system of human cardiopulmonary activity. According to Doppler effect, a constant frequency signal reflected off an object having a varying displacement will result in a reflected signal, but with a time varying phase. In our case, the object is the patient's chest; the reflected signal of the person's chest contains information about the heartbeat and respiration. The system is based on a vector network analyzer and 2 horn antennas. The S21 is computed using a vector network analyzer. The phase variation of S21 contains information about cardiopulmonary activity. Processing techniques are used to extract the heartbeat signal from the S21 phase. This thesis presents a comparative study in heartbeat detection, considering different radiated powers and frequencies. The radiated powers used are between 3 and -17 dBm and the operational frequencies used are 2.4, 5.8, 10 and 20 GHz. This helps to make a compromise between the minimum power emitted and the complexity of the measurement system. In addition, a comparative study of several signal processing methods is proposed to extract the best technique for heartbeat measurement and thus to extract its parameters. Processing techniques are based on wavelet transforms and conventional filtering in order to make a comparison between them. The parameter extracted in this thesis is the heartbeat rate HR. Measurements were performed simultaneously with a PC-based electrocardiograph to validate the heartbeat rate measurement. Since the person can move from a room to another inside his home, measurements from the four sides of the person and behind a wall are performed. In addition, a modeling approach based on cardio-respiratory measurement for a person who is walking forward is presented. Furthermore, a comparison between single and two-antenna microwave systems for a non-breathing person is carried out to test the accuracy of the single-antenna system relative to the two ­antenna microwave system. After that, measurements are performed using one antenna microwave system for a person who breathes normally
5

Chen, Ying-Hsiang, and 陳穎祥. "Subband Decomposition Methods for Electrocardiogram Beat Discrimination." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/13403671395600740821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
博士
國立中正大學
電機工程所
97
Electrocardiogram (ECG) beat discrimination plays an important role in the clinical diagnosis of heart diseases. Although many ECG beat classification methods have been provided in the literature, there still leave room for improvement in view of different issues. Several significant issues, including recognition rates, noise-resistibility, and feature dimension, are considered in the dissertation for the development of an effective and efficient ECG beat classifier. In Chapter II, the discrete wavelet transformation is employed to decompose the ECG signals into different subband components. Statistical and morphological features are extracted to characterize the ECG signals. A probabilistic neural network (PNN) proceeds to discriminate different pathological heartbeat types. The results demonstrate that it provides a promising accuracy of 99.65%, with equally well recognition rates of over 99% throughout all heartbeat types in this study. In Chapter III, higher order statistics is recruited to accompany with the discrete wavelet decomposition to characterize the ECG signals as an attempt to elevate the noise-resistibility of the heartbeat discrimination. A feed-forward back-propagation neural network (FFBNN) is employed as classifier. More than 97.5% discrimination rate is achieved with a more complicated experimental profile in which multiple beat types are selected from each of the records for study. In Chapter IV, four nonlinear feature selection methods including Relief-F, two nonlinear correlation based filters (NCBFs), and symmetrical uncertainty feature-class only (SUFCO), are utilized to reduce the dimension of features mentioned in Chapter III. The results demonstrate that two NCBFs based on both feature-feature and feature-class correlation measures outperform the other methods. As high as 96.34% accuracies can be retained even with only eight features. At last, comparison between the proposed methods in Chapter II with another ECG beat discrimination based on independent component analysis and support vector machine (ICA-SVM) method is demonstrated in Chapter V. The results show that both ECG beat classification methods are insensitive to the stationary artifacts including white Gaussian noise and power line interference. The proposed method is especially tolerant to non-stationary artifacts baseline wander and muscle artifacts when compared to ICA-SVM. More than 90% accuracy can be retained with the proposed method even when the SNR is decreases to 10 dB.
6

Liu, Fang-Tsen, and 劉芳岑. "Subband Decomposition Methods for two leads Electrocardiogram Beat Discrimination." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/42676652558894815641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
碩士
國立中正大學
電機工程所
98
Electrocardiogram (ECG) beat discrimination plays an important role in the clinical diagnosis of heart diseases. Although many ECG beat classification methods have been provided in the literature, there still leave room for improvement in view of different issues. The purpose of this study is to add the second lead to the system and study the influence on the recognition rates and the ability to tolerate noises. The discrete wavelet transformation is employed to decompose the ECG signals into different subband components in the first stage, and higher order statistics is recruited to accompany with the discrete wavelet decomposition to characterize the ECG signals as an attempt to elevate the noise-resistibility of heartbeat discrimination. A feed –forward back-propagation neural network (FFBNN) is employed as classifier. We select multiple beat types form records for study. When compared with the system that uses one the first lead, the second lead enhances the recognition rate from 97.5% to 98.1%. We also study of the ability of the two-lead system in resisting noise of different kinds. More than 97.4% accuracy than be retained with the two-lead system even when the SNR is decreases to 10 dB. The results show that the second lead ECG’s information used in the proposed method does enhance the noise-tolerant.
7

El, Fiky Ahmed Osama. "Correlation of Respiratory Signals and Electrocardiogram Signals via Empirical Mode Decomposition." Thesis, 2011. http://hdl.handle.net/10754/136671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Recently Electrocardiogram (ECG) signals are being broadly used as an essential diagnosing tool in different clinical applications as they carry a reliable representation not only for cardiac activities, but also for other associated biological processes, like respiration. However, the process of recording and collecting them has usually suffered from the presence of some undesired noises, which in turn affects the reliability of such representations.Therefore, de-noising ECG signals became a hot research field for signal processing experts to ensure better and clear representation of the different cardiac activities. Given the nonlinear and non-stationary properties of ECGs, it is not a simple task to cancel the undesired noise terms without affecting the biological physics of them. In this study, we are interested in correlating the ECG signals with respiratory parameters, specifically the lung volume and lung pressure. We have focused on the concept of de-noising ECG signals by means of signal decomposition using an algorithm called the Empirical Mode Decomposition (EMD) where the original ECG signals are being decomposed into a set of intrinsic mode functions (IMF). Then, we have provided criteria based on which some of these IMFs have been adapted to reconstruct de-noised ECG version. Finally, we have utilized de-noised ECGs as well as IMFs for to study the correlation with lung volume and lung pressure. These correlation studies have showed some clear resemblance especially between the oscillations of ECGs and lung pressures.
8

林祥瑋. "Noise Filtering of Electrocardiogram Using Empirical Mode Decomposition and Least Square Method." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/hw6ed6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
碩士
國立臺灣師範大學
機電科技研究所
97
Electrocardiogram (ECG) has played an important role to diagnose cardiovascular diseases. It often corrupted by interferences introduced by the measurement device. These interferences presented in the signal can lead to the feature of waveforms and frequency bands which can not be recognized and retrieved. These are difficulties for diagnosing symptoms of cardiovascular diseases to clinicians. There are plenty kind of interferences of ECG signals including power line interference, baseline drift and Electromyography, EMG, etc. Thus, the de-noising of ECG is an extremely significant issue. In this paper, a de-noising algorithm based on Empirical Mode Decomposition (EMD) and least square method is proposed to filter the interference of ECG signals. EMD is applied to decompose a signal into a set of oscillatory functions from high frequency to low frequency known as intrinsic mode functions (IMFs) by the sifting process. The interference-free signal is reconstructed by the selected IMFs based on least mean square criterion. Several artificial signals are used as to test the feasibility of the proposed method. Numerical results demonstrate the superiority of the proposed method. This method is also applied to some cases of Arrhythmias from the MIT/BIH Arrhythmias database. Using a set of digital filters’ combination proceed to QRS waves inspections. The simulation results show to conform QRS wave inspections to the symptoms of Arrhythmias and prove the feasibility of the proposed method for processing the ECG signals.
9

Καραγιάννης, Αλέξανδρος. "Μέθοδοι για ανίχνευση και χαρακτηρισμό βιοσημάτων σε θορυβώδεις χρονοσειρές με βάση το μετασχηματισμό Hilbert-Huang." Thesis, 2010. http://nemertes.lis.upatras.gr/jspui/handle/10889/4533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Η διπλωματική εργασία με τίτλο «Μέθοδοι για Ανίχνευση και Χαρακτηρισμό Βιοσημάτων σε Θορυβώδεις Χρονοσειρές βασισμένοι στο Μετασχηματισμό Hilbert-Huang» μελετάει ζητήματα που σχετίζονται με βιοϊατρικά σήματα και την ανάλυση τους. Γίνεται διερεύνηση των διαθέσιμων τεχνικών και μεθόδων ανάλυσης βιοϊατρικών σημάτων, επισημαίνονται τα ιδιαίτερα χαρακτηριστικά των χρονοσειρών που προκύπτουν από την παρατήρηση και καταγραφή των σημάτων και έμφαση δίνεται στη μη στασιμότητα, την μη γραμμικότητα των υποκείμενων φυσικών διεργασιών και την ανάγκη προσαρμοστικότητας της μεθόδου. Μια μέθοδος που ικανοποιεί αυτές τις απαιτήσεις είναι η εμπειρική μέθοδος αποσύνθεσης η οποία αναλύει ένα σήμα σε ένα σύνολο συνιστωσών (IMFs) από τις οποίες ένα υποσύνολο θεωρείται ότι έχει φυσική σημασία. Επιπλέον, με το μετασχηματισμό Hilbert ανιχνεύονται οι στιγμιαίες συχνότητες και διαμορφώνεται η χρονοσυχνοτική κατανομή του σήματος. Τα θέματα που διερευνώνται αναφορικά με την εμπειρική μέθοδο αποσύνθεσης αφορούν τη στατιστική σημαντικότητα των IMFs, την αποθορυβοποίηση βιοϊατρικών σημάτων, την εξαγωγή χαρακτηριστικών από ηλεκτροκαρδιογράφημα και την απόδοση της μεθόδου. Ειδικά η απόδοση της εμπειρικής μεθόδου αποσύνθεσης είναι κρίσιμη παράμετρος για συστήματα με περιορισμένους πόρους όπως είναι οι κόμβοι ασύρματων δικτύων αισθητήρων ή τα ενσωματωμένα συστήματα. Η μοντελοποίηση μεθόδων που υλοποιούνται στο επίπεδο κόμβων ασύρματου δικτύου αισθητήρων είναι απαραίτητη για τη βέλτιστη διαχείριση πόρων και τον προγραμματισμό διεργασιών ώστε να μην διαταραχθεί η λειτουργία και λειτουργικότητα του συστήματος
This diploma thesis entitled "Methods for Identification and Characterization of Biosignals in Noise corrupted Time Series based on Hilbert-Huang Transform " studies issues concerning biomedical signal analysis. There is a review of the available techniques and methods for biomedical signal analysis pointing at certain characteristics of biomedical time series such as non stationarity, the non linearity of the underlying physical process and the need for the adaptive nature of the analysis method. One method that meets these requirements is considered to be the Empirical Mode Decomposition (EMD) which decomposes a signal into a set of components (IMFs) that a subset of them is believed to have a physical meaning. Application of Hilbert Transform on these IMFs provides the instantaneous frequencies and forms the time-frequency distribution of the signal. Issues studied are related to the statistical significance of the IMFs, denoising of biomedical signals, characteristics extraction and feature selection out of the electrocardiogram as well as the performance of the method. Particularly, the performance of empirical mode decomposition is considered to be a critical parameter especially in the case of implementation on nodes of wireless sensor networks or generally embedded systems due to the limited amount of resources available onboard. Modeling method's performance and demand for resources is a significant task facilitating the optimum resource management and task execution schedule of these systems.
10

YE, GUANG-CI, and 葉光騏. "Application of Empirical Mode Decomposition Method and Extension Neural Network Type-3 to Disease Diagnosis of Electrocardiograms." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/79yyuz.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
碩士
國立勤益科技大學
電機工程系
107
This study proposes combining Extension Neural Network type-3 (ENN-3) with Chaos Theory and Empirical Mode Decomposition (EMD) for electrocardiography (ECG) recognition. The ECG signals are measured and extracted by using a developed hardware measuring circuit and LabVIEW human-machine interface, and then the stored ECG signals are decomposed by EMD into high frequency and low frequency. The low frequency signal is screened out by using the largest root-mean-square deviation, and the chaos dynamic error scatter map is formed by using master and slave chaotic systems, so as to obtain the chaos eye coordinates of a specific ECG signal, which are identified by ENN-3. With 50 research subjects, 25 datapoints are derived from actual measurements of a signal acquisition circuit, and the other 25 datapoints are provided by the medical center of MIT-BIH. The analysis results show that the accuracy of this method at ECG identification and classification is as high as 100%. This method is then compared with the traditional back-propagation neural network. In terms of learning times, the traditional back-propagation neural network must learn 10,000 times to reach 99% accuracy, whereas the method proposed in this study can achieve a higher recognition rate only after 1,000 times. The ECG autodiagnosis system designed herein can classify arrhythmia and diagnose diseases effectively, reducing the error rate of manual identification.

Book chapters on the topic "Electrocardiogram decomposition":

1

Warrick, P. A., and M. Altuve. "Classification of Abdominal Fetal Electrocardiogram Recordings using Karhunen-Loève Decomposition." In IFMBE Proceedings, 1072–75. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19387-8_261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Yingyu, Marie Rocher, Pamela Moceri, and Maxime Sermesant. "Explainable Electrocardiogram Analysis with Wave Decomposition: Application to Myocardial Infarction Detection." In Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers, 221–32. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-23443-9_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fujita, Hamido, Vidya K. Sudarshan, Muhammad Adam, Shu Lih Oh, Jen Hong Tan, Yuki Hagiwara, Kuang Chua Chua, Kok Poo Chua, and U. Rajendra Acharya. "Characterization of Cardiovascular Diseases Using Wavelet Packet Decomposition and Nonlinear Measures of Electrocardiogram Signal." In Advances in Artificial Intelligence: From Theory to Practice, 259–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60042-0_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zeng, Kehan, Jun Huang, Zhen Tan, and Mingchui Dong. "White Noise Energy and SNR Estimation Based on Haar Wavelet Decomposition for Heart Sound and Electrocardiogram Signals." In Lecture Notes in Electrical Engineering, 589–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55038-6_92.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Garnaik, Sarmila, Nikhilesh Chandra Rout, and Kabiraj Sethi. "Noise Reduction in Electrocardiogram Signal Using Hybrid Methods of Empirical Mode Decomposition with Wavelet Transform and Non-local Means Algorithm." In Advances in Intelligent Systems and Computing, 639–48. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8055-5_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abdou, Abdoul-Dalibou, Ndeye Fatou Ngom, and Oumar Niang. "Classification and Prediction of Arrhythmias from Electrocardiograms Patterns Based on Empirical Mode Decomposition and Neural Network." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 174–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16042-5_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dliou, Azzedine, Samir Elouaham, Rachid Latif, and Mostafa Laaboubi. "Combination of the CEEM Decomposition with Adaptive Noise and Periodogram Technique for ECG Signals Analysis." In Practical Applications of Electrocardiogram. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.86007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yadu, Gitika, Suraj Kumar Nayak, Debasisha Panigrahi, Anilesh Dey, and Kunal Pal. "Wavelet Packet Analysis of ECG signals to Understand the Effect of a Motivating Song on Heart of Indian Male Volunteers." In Expert System Techniques in Biomedical Science Practice, 168–92. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5149-2.ch008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This chapter investigates the effect of a motivational song (acting as a stimulus) on the electrical activity of the heart using wavelet packet analysis of electrocardiogram (ECG) signals. ECG signals were acquired from 18 healthy male volunteers during the pre- and the post-stimulus conditions. Wavelet packet decomposition of the ECG signals was performed up to level 3 using db04 wavelet, which resulted in the formation of 8 wavelet packet coefficients. Linear (t-test) and nonlinear (classification and regression tree [CART], boosted tree [BT], and random forest [RF]) methods were used to identify the statistically significant parameters. The statistically significant parameters were used as categorical inputs for multilayer perceptron (MLP)-based artificial neural network (ANN) classification of the ECG signals. A classification efficiency of ≥ 80% was obtained, suggesting an alteration in the cardiac electrophysiology of the volunteers caused by the music stimulus.
9

Bajaj, Nikesh. "Wavelets for EEG Analysis." In Wavelet Theory [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This chapter introduces the applications of wavelet for Electroencephalogram (EEG) signal analysis. First, the overview of EEG signal is discussed to the recording of raw EEG and widely used frequency bands in EEG studies. The chapter then progresses to discuss the common artefacts that contaminate EEG signal while recording. With a short overview of wavelet analysis techniques, namely; Continues Wavelet Transform (CWT), Discrete Wavelet Transform (DWT), and Wavelet Packet Decomposition (WPD), the chapter demonstrates the richness of CWT over conventional time-frequency analysis technique e.g. Short-Time Fourier Transform. Lastly, artefact removal algorithms based on Independent Component Analysis (ICA) and wavelet are discussed and a comparative analysis is demonstrated. The techniques covered in this chapter show that wavelet analysis is well-suited for EEG signals for describing time-localised event. Due to similar nature, wavelet analysis is also suitable for other biomedical signals such as Electrocardiogram and Electromyogram.
10

Pandey, Anukul, Butta Singh, Barjinder Singh Saini, and Neetu Sood. "Nonlinear Complexity Sorting Approach for 2D ECG Data Compression." In Computational Tools and Techniques for Biomedical Signal Processing, 1–21. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0660-7.ch001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cardiovascular Disease (CVD) is globally acknowledged research problem. The continuous Electrocardiogram (ECG) monitoring can assist in tackling the problem of CVD. The redundancy in the monitoring of ECG signal is reduced by various signal processing techniques either in 1D or 2D domain. This chapter is having the sole objective of reviewing the existing 2D ECG data compression techniques and comparing it with the 1D compression techniques. Furthermore, proposing a novel nonlinear complexity sorting approach for 2D ECG data compression. The broad basic steps involved in the procedure are preprocessing, transformation and encoding. The preprocessing steps includes QRS detection, 2D ECG image formulation, Dc quantization and complexity sorting. The second stage of transformation includes the various decomposition techniques. At encoding stage, standard image codec (JPEG2000) can be employed. The performance evaluation of the proposed complexity sorting algorithm is performed on records of Massachusetts Institute of Technology – Beth Israel Hospital arrhythmia database.

Conference papers on the topic "Electrocardiogram decomposition":

1

Verma, Ashish, Pratik, and Gayadhar Pradhan. "Electrocardiogram denoising using Wavelet decomposition and EMD domain filtering." In TENCON 2016 - 2016 IEEE Region 10 Conference. IEEE, 2016. http://dx.doi.org/10.1109/tencon.2016.7848414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Paithane, A. N., and D. S. Bormane. "Electrocardiogram signal analysis using empirical mode decomposition and Hilbert spectrum." In 2015 International Conference on Pervasive Computing (ICPC). IEEE, 2015. http://dx.doi.org/10.1109/pervasive.2015.7087042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sharma, L. N. "Denoising pathological multilead electrocardiogram signals using multiscale singular value decomposition." In 2014 12th International Conference on ICT and Knowledge Engineering (ICT & Knowledge Engineering 2014). IEEE, 2014. http://dx.doi.org/10.1109/ictke.2014.7001525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Youssef, Sherin M. "Analysis of non-stationary electrocardiogram signals using iterative wavelet decomposition." In 2011 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2011. http://dx.doi.org/10.1109/icma.2011.5985818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bouabida, Z., Z. E. Hadj Slimane, and F. Bereksi Reguig. "Detection of QRS complex in electrocardiogram signal by the empirical mode decomposition." In 2011 7th International Workshop on Systems, Signal Processing and their Applications (WOSSPA). IEEE, 2011. http://dx.doi.org/10.1109/wosspa.2011.5931472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sekar, Prithi, and E. Rajinikanth. "Denoising and extraction of electrocardiogram signal using Ensemble Pragmatic Mode Decomposition (EPMD)." In 2016 International Conference on Communication and Signal Processing (ICCSP). IEEE, 2016. http://dx.doi.org/10.1109/iccsp.2016.7754229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Deb, Pratik, Mohammad Nooruddin, and Md Shajahan Badshah. "Detection of Abnormal Electrocardiogram (ECG) Using Wavelet Decomposition and Support Vector Machine (SVM)." In 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT). IEEE, 2019. http://dx.doi.org/10.1109/icasert.2019.8934588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rodriguez, Richmond Roi B., Ruby Jane A. Mapolon, and Rosula S. J. Reyes. "A Non-intrusive Single Channel Abdominal Fetal Electrocardiogram Monitor Using Singular Value Decomposition." In 2021 3rd International Conference on Electrical, Control and Instrumentation Engineering (ICECIE). IEEE, 2021. http://dx.doi.org/10.1109/icecie52348.2021.9664665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lilienthal, Jannis, and Waltenegus Dargie. "Extraction of Motion Artifacts from the Measurements of a Wireless Electrocardiogram using Tensor Decomposition." In 2019 22th International Conference on Information Fusion (FUSION). IEEE, 2019. http://dx.doi.org/10.23919/fusion43075.2019.9011290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nguyen, Duc-Hieu, Minh-Tuan Nguyen, and Hai-Chau Le. "An Efficient Electrocardiogram R-peak Detection Exploiting Ensemble Empirical Mode Decomposition and Hilbert Transform." In 2022 International Conference on Advanced Technologies for Communications (ATC). IEEE, 2022. http://dx.doi.org/10.1109/atc55345.2022.9942984.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography