Journal articles on the topic 'Electroactive scaffold'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Electroactive scaffold.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gupta, Kriti, Ruchi Patel, Madara Dias, Hina Ishaque, Kristopher White, and Ronke Olabisi. "Development of an Electroactive Hydrogel as a Scaffold for Excitable Tissues." International Journal of Biomaterials 2021 (January 30, 2021): 1–9. http://dx.doi.org/10.1155/2021/6669504.
Full textAngulo-Pineda, Carolina, Kasama Srirussamee, Patricia Palma, Victor M. Fuenzalida, Sarah H. Cartmell, and Humberto Palza. "Electroactive 3D Printed Scaffolds Based on Percolated Composites of Polycaprolactone with Thermally Reduced Graphene Oxide for Antibacterial and Tissue Engineering Applications." Nanomaterials 10, no. 3 (February 28, 2020): 428. http://dx.doi.org/10.3390/nano10030428.
Full textSun, Baojun, Yajie Sun, Shuwei Han, Ruitong Zhang, Xiujuan Wang, Chunxia Meng, Tuo Ji, et al. "Electroactive Hydroxyapatite/Carbon Nanofiber Scaffolds for Osteogenic Differentiation of Human Adipose-Derived Stem Cells." International Journal of Molecular Sciences 24, no. 1 (December 28, 2022): 530. http://dx.doi.org/10.3390/ijms24010530.
Full textWibowo, Arie, Gusti U. N. Tajalla, Maradhana A. Marsudi, Glen Cooper, Lia A. T. W. Asri, Fengyuan Liu, Husaini Ardy, and Paulo J. D. S. Bartolo. "Green Synthesis of Silver Nanoparticles Using Extract of Cilembu Sweet Potatoes (Ipomoea batatas L var. Rancing) as Potential Filler for 3D Printed Electroactive and Anti-Infection Scaffolds." Molecules 26, no. 7 (April 2, 2021): 2042. http://dx.doi.org/10.3390/molecules26072042.
Full textZaszczyńska, Angelika, Arkadiusz Gradys, Anna Ziemiecka, Piotr K. Szewczyk, Ryszard Tymkiewicz, Małgorzata Lewandowska-Szumieł, Urszula Stachewicz, and Paweł Ł. Sajkiewicz. "Enhanced Electroactive Phases of Poly(vinylidene Fluoride) Fibers for Tissue Engineering Applications." International Journal of Molecular Sciences 25, no. 9 (May 2, 2024): 4980. http://dx.doi.org/10.3390/ijms25094980.
Full textChen, Jing, Juan Ge, Baolin Guo, Kun Gao, and Peter X. Ma. "Nanofibrous polylactide composite scaffolds with electroactivity and sustained release capacity for tissue engineering." Journal of Materials Chemistry B 4, no. 14 (2016): 2477–85. http://dx.doi.org/10.1039/c5tb02703a.
Full textWibowo, Arie, Cian Vyas, Glen Cooper, Fitriyatul Qulub, Rochim Suratman, Andi Isra Mahyuddin, Tatacipta Dirgantara, and Paulo Bartolo. "3D Printing of Polycaprolactone–Polyaniline Electroactive Scaffolds for Bone Tissue Engineering." Materials 13, no. 3 (January 22, 2020): 512. http://dx.doi.org/10.3390/ma13030512.
Full textCastro, Nelson, Margarida M. Fernandes, Clarisse Ribeiro, Vítor Correia, Rikardo Minguez, and Senentxu Lanceros-Méndez. "Magnetic Bioreactor for Magneto-, Mechano- and Electroactive Tissue Engineering Strategies." Sensors 20, no. 12 (June 12, 2020): 3340. http://dx.doi.org/10.3390/s20123340.
Full textSanchez, Jérémie-Luc, and Christel Laberty-Robert. "A novel microbial fuel cell electrode design: prototyping a self-standing one-step bacteria-encapsulating bioanode with electrospinning." Journal of Materials Chemistry B 9, no. 21 (2021): 4309–18. http://dx.doi.org/10.1039/d1tb00680k.
Full textBarbosa, Frederico, Fábio F. F. Garrudo, Ana C. Marques, Joaquim M. S. Cabral, Jorge Morgado, Frederico Castelo Ferreira, and João C. Silva. "Novel Electroactive Mineralized Polyacrylonitrile/PEDOT:PSS Electrospun Nanofibers for Bone Repair Applications." International Journal of Molecular Sciences 24, no. 17 (August 25, 2023): 13203. http://dx.doi.org/10.3390/ijms241713203.
Full textAmiryaghoubi, Nazanin, and Marziyeh Fathi. "Bioscaffolds of graphene based-polymeric hybrid materials for myocardial tissue engineering." BioImpacts 14, no. 1 (August 12, 2023): 27684. http://dx.doi.org/10.34172/bi.2023.27684.
Full textYow, Soh-Zeom, Tze Han Lim, Evelyn K. F. Yim, Chwee Teck Lim, and Kam W. Leong. "A 3D Electroactive Polypyrrole-Collagen Fibrous Scaffold for Tissue Engineering." Polymers 3, no. 1 (February 28, 2011): 527–44. http://dx.doi.org/10.3390/polym3010527.
Full textGuan, Shui, Yangbin Wang, Feng Xie, Shuping Wang, Weiping Xu, Jianqiang Xu, and Changkai Sun. "Carboxymethyl Chitosan and Gelatin Hydrogel Scaffolds Incorporated with Conductive PEDOT Nanoparticles for Improved Neural Stem Cell Proliferation and Neuronal Differentiation." Molecules 27, no. 23 (November 29, 2022): 8326. http://dx.doi.org/10.3390/molecules27238326.
Full textVandghanooni, Somayeh, Hadi Samadian, Sattar Akbari-Nakhjavani, Balal Khalilzadeh, Morteza Eskandani, Bakhshali Massoumi, and Mehdi Jaymand. "Electroactive nanofibrous scaffold based on polythiophene for bone tissue engineering application." Journal of Materials Research 37, no. 3 (January 6, 2022): 796–806. http://dx.doi.org/10.1557/s43578-021-00482-1.
Full textWu, Yehong, Sheng Feng, Xingjie Zan, Yuan Lin, and Qian Wang. "Aligned Electroactive TMV Nanofibers as Enabling Scaffold for Neural Tissue Engineering." Biomacromolecules 16, no. 11 (October 7, 2015): 3466–72. http://dx.doi.org/10.1021/acs.biomac.5b00884.
Full textRibeiro, Sylvie, Teresa Marques-Almeida, Vanessa F. Cardoso, Clarisse Ribeiro, and Senentxu Lanceros-Méndez. "Modulation of myoblast differentiation by electroactive scaffold morphology and biochemical stimuli." Biomaterials Advances 151 (August 2023): 213438. http://dx.doi.org/10.1016/j.bioadv.2023.213438.
Full textMa, Chunyang, Le Jiang, Yingjin Wang, Fangli Gang, Nan Xu, Ting Li, Zhongqun Liu, et al. "3D Printing of Conductive Tissue Engineering Scaffolds Containing Polypyrrole Nanoparticles with Different Morphologies and Concentrations." Materials 12, no. 15 (August 6, 2019): 2491. http://dx.doi.org/10.3390/ma12152491.
Full textWang, Liu, Changfeng Lu, Shuhui Yang, Pengcheng Sun, Yu Wang, Yanjun Guan, Shuang Liu, et al. "A fully biodegradable and self-electrified device for neuroregenerative medicine." Science Advances 6, no. 50 (December 2020): eabc6686. http://dx.doi.org/10.1126/sciadv.abc6686.
Full textBarbosa, Frederico, Frederico Castelo Ferreira, and João Carlos Silva. "Piezoelectric Electrospun Fibrous Scaffolds for Bone, Articular Cartilage and Osteochondral Tissue Engineering." International Journal of Molecular Sciences 23, no. 6 (March 8, 2022): 2907. http://dx.doi.org/10.3390/ijms23062907.
Full textLi, Meng-yan, Paul Bidez, Elizabeth Guterman-Tretter, Yi Guo, Alan G. MacDiarmid, Peter I. Lelkes, Xu-bo Yuan, et al. "ELECTROACTIVE AND NANOSTRUCTURED POLYMERS AS SCAFFOLD MATERIALS FOR NEURONAL AND CARDIAC TISSUE ENGINEERING." Chinese Journal of Polymer Science 25, no. 04 (2007): 331. http://dx.doi.org/10.1142/s0256767907002199.
Full textArnaboldi, Serena, Tiziana Benincori, Andrea Penoni, Luca Vaghi, Roberto Cirilli, Sergio Abbate, Giovanna Longhi, et al. "Highly enantioselective “inherently chiral” electroactive materials based on a 2,2′-biindole atropisomeric scaffold." Chemical Science 10, no. 9 (2019): 2708–17. http://dx.doi.org/10.1039/c8sc04862b.
Full textShafei, Sajjad, Javad Foroughi, Leo Stevens, Cynthia S. Wong, Omid Zabihi, and Minoo Naebe. "Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres." Research on Chemical Intermediates 43, no. 2 (August 17, 2016): 1235–51. http://dx.doi.org/10.1007/s11164-016-2695-4.
Full textMackle, Joseph N., David J. P. Blond, Emma Mooney, Caitlin McDonnell, Werner J. Blau, Georgina Shaw, Frank P. Barry, J. Mary Murphy, and Valerie Barron. "In vitro Characterization of an Electroactive Carbon-Nanotube-Based Nanofiber Scaffold for Tissue Engineering." Macromolecular Bioscience 11, no. 9 (July 4, 2011): 1272–82. http://dx.doi.org/10.1002/mabi.201100029.
Full textLi, Liao, and Tjong. "Electrospun Polyvinylidene Fluoride-Based Fibrous Scaffolds with Piezoelectric Characteristics for Bone and Neural Tissue Engineering." Nanomaterials 9, no. 7 (June 30, 2019): 952. http://dx.doi.org/10.3390/nano9070952.
Full textChhatwal, Megha, Anup Kumar, Satish K. Awasthi, Michael Zharnikov, and Rinkoo D. Gupta. "An Electroactive Metallo–Polypyrene Film As A Molecular Scaffold For Multi-State Volatile Memory Devices." Journal of Physical Chemistry C 120, no. 4 (January 26, 2016): 2335–42. http://dx.doi.org/10.1021/acs.jpcc.5b12597.
Full textCui, Liguo, Jin Zhang, Jun Zou, Xianrui Yang, Hui Guo, Huayu Tian, Peibiao Zhang, et al. "Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation." Biomaterials 230 (February 2020): 119617. http://dx.doi.org/10.1016/j.biomaterials.2019.119617.
Full textHuang, Peng, Yang Wu, Xinxin Wang, Peng Chen, Shuigen Li, and Yuan-Li Ding. "Engineering edge-exposed MoS2 nanoflakes anchored on the 3D cross-linked carbon frameworks for enhanced lithium storage." Functional Materials Letters 13, no. 08 (November 2020): 2051050. http://dx.doi.org/10.1142/s1793604720510509.
Full textMawad, Damia, Catherine Mansfield, Antonio Lauto, Filippo Perbellini, Geoffrey W. Nelson, Joanne Tonkin, Sean O. Bello, et al. "A conducting polymer with enhanced electronic stability applied in cardiac models." Science Advances 2, no. 11 (November 2016): e1601007. http://dx.doi.org/10.1126/sciadv.1601007.
Full textMarsudi, Maradhana Agung, Ridhola Tri Ariski, Arie Wibowo, Glen Cooper, Anggraini Barlian, Riska Rachmantyo, and Paulo J. D. S. Bartolo. "Conductive Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges from Biomaterials and Manufacturing Perspectives." International Journal of Molecular Sciences 22, no. 21 (October 26, 2021): 11543. http://dx.doi.org/10.3390/ijms222111543.
Full textChen, Yutong, Yan Xu, and Seeram Ramakrishna. "Electromagnetic-responsive targeted delivery scaffold technology has better potential to repair injured peripheral nerves: a narrative review." Advanced Technology in Neuroscience 1, no. 1 (September 2024): 51–71. http://dx.doi.org/10.4103/atn.atn-d-24-00002.
Full textTajalla, Gusti Umindya Nur, Mukhammad Arif Fakhruddin, Adinda Asmoro, Arif Basuki, and Arie Wibowo. "The Influence of Ph on Green Synthesis of Honey-Mediated Silver Nanoparticles." Key Engineering Materials 891 (July 6, 2021): 83–88. http://dx.doi.org/10.4028/www.scientific.net/kem.891.83.
Full textAliwarga, Bryan S., Khalid Muhammad, Lia A. T. W. Asri, and Arie Wibowo. "Microwave-assisted synthesis of silver nanoparticles using extract of unbaked cilembu sweet potato." Journal of Physics: Conference Series 2866, no. 1 (October 1, 2024): 012002. http://dx.doi.org/10.1088/1742-6596/2866/1/012002.
Full textAleemardani, Mina, Pariya Zare, Amelia Seifalian, Zohreh Bagher, and Alexander M. Seifalian. "Graphene-Based Materials Prove to Be a Promising Candidate for Nerve Regeneration Following Peripheral Nerve Injury." Biomedicines 10, no. 1 (December 30, 2021): 73. http://dx.doi.org/10.3390/biomedicines10010073.
Full textZhou, Ting, Liwei Yan, Chaoming Xie, Pengfei Li, Lili Jiang, Ju Fang, Cancan Zhao, et al. "A Mussel‐Inspired Persistent ROS‐Scavenging, Electroactive, and Osteoinductive Scaffold Based on Electrochemical‐Driven In Situ Nanoassembly." Small 15, no. 25 (May 20, 2019): 1805440. http://dx.doi.org/10.1002/smll.201805440.
Full textLiang, Zheng, Kai Yan, Guangmin Zhou, Allen Pei, Jie Zhao, Yongming Sun, Jin Xie, et al. "Composite lithium electrode with mesoscale skeleton via simple mechanical deformation." Science Advances 5, no. 3 (March 2019): eaau5655. http://dx.doi.org/10.1126/sciadv.aau5655.
Full textGolbaten-Mofrad, Hooman, Alireza Seyfi Sahzabi, Saba Seyfikar, Mohammad Hadi Salehi, Vahabodin Goodarzi, Frederik R. Wurm, and Seyed Hassan Jafari. "Facile template preparation of novel electroactive scaffold composed of polypyrrole-coated poly(glycerol-sebacate-urethane) for tissue engineering applications." European Polymer Journal 159 (October 2021): 110749. http://dx.doi.org/10.1016/j.eurpolymj.2021.110749.
Full textMiguel, Álvaro, Francisco González, Víctor Gregorio, Nuria García, and Pilar Tiemblo. "Solvent-Free Procedure for the Preparation under Controlled Atmosphere Conditions of Phase-Segregated Thermoplastic Polymer Electrolytes." Polymers 11, no. 3 (March 1, 2019): 406. http://dx.doi.org/10.3390/polym11030406.
Full textBarbosa, F., F. F. F. Garrudo, P. S. Alberte, M. S. Carvalho, F. C. Ferreira, and J. C. Silva. "NOVEL PIEZOELECTRIC AND OSTEOCONDUCTIVE NANOFIBRES FOR BONE TISSUE ENGINEERING." Orthopaedic Proceedings 106-B, SUPP_1 (January 2, 2024): 111. http://dx.doi.org/10.1302/1358-992x.2024.1.111.
Full textFan, Bo, Zheng Guo, Xiaokang Li, Songkai Li, Peng Gao, Xin Xiao, Jie Wu, Chao Shen, Yilai Jiao, and Wentao Hou. "Electroactive barium titanate coated titanium scaffold improves osteogenesis and osseointegration with low-intensity pulsed ultrasound for large segmental bone defects." Bioactive Materials 5, no. 4 (December 2020): 1087–101. http://dx.doi.org/10.1016/j.bioactmat.2020.07.001.
Full textAlves, Thais, Juliana Souza, Venancio Amaral, Danilo Almeida, Denise Grotto, Renata Lima, Norberto Aranha, et al. "Biomimetic dense lamellar scaffold based on a colloidal complex of the polyaniline (PANi) and biopolymers for electroactive and physiomechanical stimulation of the myocardial." Colloids and Surfaces A: Physicochemical and Engineering Aspects 579 (October 2019): 123650. http://dx.doi.org/10.1016/j.colsurfa.2019.123650.
Full textHamzah, Mohd Syahir Anwar, Azhan Austad, Saiful Izwan Abd Razak, and Nadirul Hasraf Mat Nayan. "Tensile and wettability properties of electrospun polycaprolactone coated with pectin/polyaniline composite for drug delivery application." International Journal of Structural Integrity 10, no. 5 (October 7, 2019): 704–13. http://dx.doi.org/10.1108/ijsi-04-2019-0033.
Full textMarques-Almeida, Teresa, Vanessa F. Cardoso, Miguel Gama, Senentxu Lanceros-Mendez, and Clarisse Ribeiro. "Patterned Piezoelectric Scaffolds for Osteogenic Differentiation." International Journal of Molecular Sciences 21, no. 21 (November 7, 2020): 8352. http://dx.doi.org/10.3390/ijms21218352.
Full textPlanellas, Marc, Maria M. Pérez-Madrigal, Luís J. del Valle, Sophio Kobauri, Ramaz Katsarava, Carlos Alemán, and Jordi Puiggalí. "Microfibres of conducting polythiophene and biodegradable poly(ester urea) for scaffolds." Polymer Chemistry 6, no. 6 (2015): 925–37. http://dx.doi.org/10.1039/c4py01243g.
Full textMassaglia, Giulia, Adriano Sacco, Angelica Chiodoni, Candido Fabrizio Pirri, and Marzia Quaglio. "Living Bacteria Directly Embedded into Electrospun Nanofibers: Design of New Anode for Bio-Electrochemical Systems." Nanomaterials 11, no. 11 (November 16, 2021): 3088. http://dx.doi.org/10.3390/nano11113088.
Full textIvanoska-Dacikj, Aleksandra, Petre Makreski, Nikola Geskovski, Joanna Karbowniczek, Urszula Stachewicz, Nenad Novkovski, Jelena Tanasić, Ivan Ristić, and Gordana Bogoeva-Gaceva. "Electrospun PEO/rGO Scaffolds: The Influence of the Concentration of rGO on Overall Properties and Cytotoxicity." International Journal of Molecular Sciences 23, no. 2 (January 17, 2022): 988. http://dx.doi.org/10.3390/ijms23020988.
Full textWickham, Abeni, Mikhail Vagin, Hazem Khalaf, Sergio Bertazzo, Peter Hodder, Staffan Dånmark, Torbjörn Bengtsson, Jordi Altimiras, and Daniel Aili. "Electroactive biomimetic collagen-silver nanowire composite scaffolds." Nanoscale 8, no. 29 (2016): 14146–55. http://dx.doi.org/10.1039/c6nr02027e.
Full textMejias, Sara H., Zahra Bahrami-Dizicheh, Mantas Liutkus, Dayn Joshep Sommer, Andrei Astashkin, Gerdenis Kodis, Giovanna Ghirlanda, and Aitziber L. Cortajarena. "Repeat proteins as versatile scaffolds for arrays of redox-active FeS clusters." Chemical Communications 55, no. 23 (2019): 3319–22. http://dx.doi.org/10.1039/c8cc06827e.
Full textHitscherich, Pamela, Ashish Aphale, Richard Gordan, Ricardo Whitaker, Prabhakar Singh, Lai-hua Xie, Prabir Patra, and Eun Jung Lee. "Electroactive graphene composite scaffolds for cardiac tissue engineering." Journal of Biomedical Materials Research Part A 106, no. 11 (October 16, 2018): 2923–33. http://dx.doi.org/10.1002/jbm.a.36481.
Full textPor Hajrezaei, Sana, Masoumeh Haghbin Nazarpak, Shahriar Hojjati Emami, and Elham Shahryari. "Biocompatible and Electroconductive Nanocomposite Scaffolds with Improved Piezoelectric Response for Bone Tissue Engineering." International Journal of Polymer Science 2022 (April 25, 2022): 1–10. http://dx.doi.org/10.1155/2022/4521937.
Full textFarooqi, Abdul Razzaq, Julius Zimmermann, Rainer Bader, and Ursula van Rienen. "Numerical Simulation of Electroactive Hydrogels for Cartilage–Tissue Engineering." Materials 12, no. 18 (September 9, 2019): 2913. http://dx.doi.org/10.3390/ma12182913.
Full text