Academic literature on the topic 'Electro-Catalyst'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electro-Catalyst.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Electro-Catalyst"

1

Jungius, Hugo. "Model inverse electro-catalyst investigations of metal support interactions." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/413849/.

Full text
Abstract:
Gold supported titania nano-particle surfaces have been synthesised in order to understand supported electrochemical mechanisms through an inverse catalyst. The catalyst process investigated was the electro-oxidation of CO which is known to be promoted on Au nano-particles on a titania support. Synthesis proceeded via physical vapour deposition (PVD) of titanium onto a gold surface (both polycrystalline and 111 crystal), followed by alloying and oxidation to form discrete particles of titania on the surface, with variations in density of particles achieved by control of the initial titanium coverages. Scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) measurements indicate these particles develop with consistent triangular and hexagonal shapes, with average diameters of 11.5 and 20 nm observed depending on alloying temperature. The procession of titanium deposition on the gold surface and subsequent alloy formation was followed by X-ray photoelectron spectroscopy (XPS) measurements, with the formation of pure TiO2 revealed once synthesis was complete, with minimal modification to the final electronic state of the underlying gold. Electrochemical testing in an acidic environment provides evidence for alteration of the electrooxidation of CO on these modified gold surfaces. A deactivation of the CO oxidation is observed with initial addition of titania, explained by the blocking of CO adsorption on the surface. This is followed by significant subsequent increases in activity with increasing densities of titania particles, with decreasing over-potential and increasing current density observed as the titania coverage increases. This observed effect on CO oxidation activity with titania coverage in the inverse system provides significant evidence for the action of either reactant spill-over or Ti-Au interface sites as being responsible for the changes in activity observed for titania modified gold systems, whether in the inverse or standard form.
APA, Harvard, Vancouver, ISO, and other styles
2

Jalil, Pour Kivi Soghra. "The Effect of Metal Solution Contaminants on the Electro-catalyst Activities of Direct Methanol Fuel Cell." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/38807.

Full text
Abstract:
Direct methanol fuel cells (DMFCs) are considered a clean source of electrical power for future energy demand, creating a potential to reduce our dependency on fossil fuels. Despite their advantages, including high energy density, efficiency and easy handling and distribution of fuel, the commercialization of DMFCs has suffered from some drawbacks, including methanol crossover and contamination of the system. Metal cation contaminants (such as Ni, Co, etc) introduced through the degradation of fuel cell components (bipolar plate and electro-catalyst layer) can significantly affect the Nafion-membrane properties and overall fuel cell performance. In the current study, a systematic approach is taken to characterize and identify the mechanism of the effect of metal solution contaminants on the activities of electro-catalysts of DMFCs. Cyclic voltammetry and rotating disk electrode (RDE) techniques were utilized in order to characterize the effect of various concentrations (i.e., 2x10-x M (x=1-7)) of six metal solution contaminants (i.e., Co, Ni and Zn with sulfate and nitrate as counter-anions) on the voltammetric properties and electro-catalytic activity of polycrystalline Pt during methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). The results showed a decrease in the MOR and ORR activities of Pt as the concentration of metal solution increased. The effect of counter-anion on the Pt activity was further investigated. The results showed that a combined effect of counter-anions and metal cations may be responsible for the decrease in the electro-catalytic activity of Pt. The effect of metal solution contaminants on the Nafion-ionomer of anode electro-catalysts was investigated using Nafion-coated Pt electrode. Voltammetric properties and MOR activities of Nafion-coated and bare Pt electrodes in the presence of Ni solution contaminants were characterized using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The overall results showed a significant negative effect of Ni solution contaminants on the electro-catalytic activity of bare Pt electrode as compared to the Nafion-coated Pt electrode. Based on the results, it appears that Nafion-ionomer film may interact with metal cations (through its sulfonate groups) and repel them away from the Pt active sites, partially inhibiting the negative effect of metal cations on the Pt activity of Nafion-coated Pt electrode. The effect of metal solution contaminants on the carbon-supported platinum nanoparticle (Pt/C) with various Nafion-ionomer distributions and contents (i.e., Nafion-incorporated Pt/C and Nafion-coated Pt/C electrodes) was further investigated. Cyclic voltammetry and EIS techniques were employed to characterize the effect of Ni solution contaminants on the voltammetric properties and MOR activities of Nafion-incorporated and Nafion-coated Pt/C electrodes. The overall results showed a stronger negative effect of Ni solution contaminants on the electro-catalytic activity of Nafion-incorporated Pt/C electrodes as compared to the Nafion-coated Pt/C electrodes. This further confirms previous observations showing the sulfonate groups of Nafion-ionomer film may attract the Ni metal cations, localize them away from the Pt active sites, and subsequently suppress the negative effect of cations on the activity of Nafion-coated Pt/C electrodes.
APA, Harvard, Vancouver, ISO, and other styles
3

BYSTRÖM, MARCUS. "Anchoring a Molecular Iron Based Water Oxidation Catalyst onto a Carbon Paste Electrode." Thesis, KTH, Skolan för kemivetenskap (CHE), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172212.

Full text
Abstract:
This thesis concerns the development and the study of Iron-based water oxidation catalysts (WOCs) and how to immobilize them onto the hydrophobic surface of a carbon paste electrode. In the introductory chapter a general background of the field of water splitting and this thesis is given. In the second chapter, experimental performance is described from synthesis to measurements of a complete complex-doped electrode. The third chapter deals with the results and the discussion of the performed experiments. In chapter four, a descriptive conclusion of the obtained data is held.<br>Det här arbetet berör studien och utvecklingen utav järnbaserade katalysatorer, speciellt framtagna för för delning utav vatten. Utöver detta undersöks även om dessa katalysatorer (WOCs) kan immobiliseras på den hydrofoba ytan hos elektroder gjorda på kol-pasta. I det inledande kapitlet ges en generell bakgrund till området som berör delning utav vatten. I det andra kapitlet presenteras det experimentella utförandet utav synteser samt elektrokemiska mätningar som berörts under arbetets gång i jakten på en komplexdopad elektrod. I det tredje kapitlet diskuteras resultaten från mätningarna samt möjliga framtidsutsikter. I det fjärde kapitlet presenteras slutsatserna utav studien.
APA, Harvard, Vancouver, ISO, and other styles
4

Petrik, Leslie F. "Pt Nanophase supported catalysts and electrode systems for water electrolysis." Thesis, University of the Western Cape, 2008. http://hdl.handle.net/11394/2743.

Full text
Abstract:
Doctor Scientiae - DSc<br>In this study novel composite electrodes were developed, in which the catalytic components were deposited in nanoparticulate form. The efficiency of the nanophase catalysts and membrane electrodes were tested in an important electrocatalytic process, namely hydrogen production by water electrolysis, for renewable energy systems. The activity of electrocatalytic nanostructured electrodes for hydrogen production by water electrolysis were compared with that of more conventional electrodes. Development of the methodology of preparing nanophase materials in a rapid, efficient and simple manner was investigated for potential application at industrial scale. Comparisons with industry standards were performed and electrodes with incorporated nanophases were characterized and evaluated for activity and durability.<br>South Africa
APA, Harvard, Vancouver, ISO, and other styles
5

Estejab, Ali. "Mathematical and Molecular Modeling of Ammonia Electrolysis with Experimental Validation." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1514834805432007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bonnin, Egilda Purusha. "Electrolysis of Ammonia Effluents: A Remediation Process with Co-generation of Hydrogen." Ohio : Ohio University, 2006. http://www.ohiolink.edu/etd/view.cgi?ohiou1156435340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Caliman, Cristiano Carrareto. "Estudo da eletro-oxidação de álcoois em catalisadores do tipo PtSnNiTi para aplicação em células a combustível." Universidade Federal do Espírito Santo, 2013. http://repositorio.ufes.br/handle/10/6746.

Full text
Abstract:
Made available in DSpace on 2016-12-23T14:41:51Z (GMT). No. of bitstreams: 1 Cristiano Carrareto Caliman.pdf: 1377803 bytes, checksum: 0d1fc0aca431a76f5b63c8fea41daa6d (MD5) Previous issue date: 2013-03-06<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior<br>Electrocatalysts of type C/PtSnNiTi were prepared by thermal decomposition of polymeric precursors. The physico-chemical and electrochemical characterization of the electrocatalysts was performed by different techniques: X-ray diffraction, transmission electron microscopy, cyclic voltammetry and chronoamperometry. The X-ray diffraction results showed that the electrocatalysts comprise mainly Pt metal with face-centered cubic crystal structure and particle sizes ranging from 1.8 to 8.3 nm. In transmission electron microscopy analysis the average particle sizes observed were between 4 and 6 nm. The electrocatalysts were evaluated in the absence and presence of ethanol and glycerol in sulfuric acid medium. All showed activity towards alcohols oxidation. Furthermore, the Pt50Sn20Ni25Ti5 electrocatalyst showed the best results of cyclic voltammetry and chronoamperometry in presence of glycerol and ethanol respectively. The greater potency density obtained in cell tests was 20 mW/cm2 for the composition Pt50Sn20Ni25Ti5. Cyclic voltammetry data obtained in this study indicate that the addition of Ni and Ti in PtSn electrocatalysts increases its electrocatalytic activity toward alcohols oxidation<br>Eletrocatalisadores do tipo C/PtSnNiTi foram preparados por decomposição térmica dos precursores poliméricos. As caracterizações físico-química e eletroquímica foram feitas por diferentes técnicas: Difração de raios X, Microscopia eletrônica de transmissão, Voltametria cíclica, Cronoamperometria, Teste de célula e Teste de energia de ativação. Os resultados de difração de raios X mostraram que os catalisadores são principalmente compostos por Platina cúbica de face centrada e com tamanhos de partícula variando de 1,8 a 8,3 nm. Nas análises de microscopia eletrônica de transmissão foram observados tamanhos médios de partícula entre 4 e 6 nm. Os eletrocatalisadores foram avaliados na presença e ausência de etanol e glicerol em ácido sulfúrico. Todos mostraram atividade na oxidação dos álcoois. Além disso, a composição Pt50Sn20Ni25Ti5 apresentou os melhores resultados de voltametria cíclica e cronoamperometria na presença de glicerol e etanol. A maior densidade de potência obtida nos testes de célula foi de 20 mW/cm2 para a composição Pt50Sn20Ni25Ti5. De modo geral, os dados de voltametria cíclica obtidos nesse estudo indicam que a adição de Ni e Ti em catalisadores PtSn aumenta a atividade catalítica destes frente a oxidação de álcoois
APA, Harvard, Vancouver, ISO, and other styles
8

Vafaee, Maedeh. "Conception, développement et caractérisation des fibres spécifiques activées (composite nanoweb) pour le traitement des rejets de l'industrie textile." Thesis, Mulhouse, 2019. http://www.theses.fr/2019MULH3062.

Full text
Abstract:
Dans cette recherche, dans un premier temps, un nouveau catalyseur a été synthétisé par une nouvelle méthode de combustion et il a été également caractérisé et mis en oeuvre dans un réacteur photo catalytique afin de dégrader les composés organiques. Puis, ces photo-catalyseurs ont été immobilisés sur la surface de non-tissés de nano fibres polyamide obtenues par le procédé d'électro-filage (electro-spinning) en utilisant une machine semi-industrielle. Ensuite, les comportements mécaniques de non tissés de nano-fibre de polyamide (PA) ont été étudiés à court et à long terme par test de traction et de fluage. Ceci a permis d'une part d'évaluer finement les propriétés des non tissés et d'autre part de modéliser leur comportement au moyen de modèles analogiques. Le modèle de Kelvin-Voigt généralisé a montré sa robustesse. Ces non tissés de nanofibres ont été installés sur 1a paroi du réacteur afin d'avoir un réacteur en inox à lit fixe et d'éviter des inconvénients d'un système hétérogène. Les résultats d'analyse des solutions, nous ont montré une dégradation favorable des composés organiques et les produits intermédiaires dans un système de circulation fermée. La mise sous pression du réacteur a confirmé, comme montré dans les essais mécaniques, que les propriétés mécaniques des fibres dopées étaient suffisantes pour supporter les contraintes mécaniques liées au flux du liquide<br>In this research, at first, a new catalyst was synthesized by a new combustion method and it was also characterized and applied in a photo-catalytic reactor to degrade the organic compounds. Then, these photocatalysts were immobilized on the surface of nonwovens of polyamide nano fibers obtained by the electro-spinning process using a semi-industrial machine. Then, the mechanical behaviors of polyamide (PA) nano-fiber nonwovens were studied in the short and long term by tensile and creep test. This allowed on the one hand to evaluate finely the properties of nonwovens and on the other hand to model their behavior on average of analog models. The generalized Kelvin-Voigt model has shown its robustness. They were installed on the reactor wall in order to have a stainless steel fixed bed reactor and to avoid the disadvantages of a heterogencous system. The solution analysis results showed us a favorable degradation of organic compounds and intermediate products in a closed circulation system. Pressurizing the reactor confirmed, as shown in the mechanical tests, that the mechanical properties of the doped fibers were sufficient to withstand the mechanical stresses associated with the flow of the Jiquid
APA, Harvard, Vancouver, ISO, and other styles
9

Khanduyeva, Natalya. "Conjugated Polymer Brushes (Poly(3-hexylthiophene) brushes): new electro- and photo-active molecular architectures." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1232556562686-70575.

Full text
Abstract:
The aim of the present work was to screen the main methods for the synthesis of conjugated polymers for their suitability in the preparation of conductive polymer brushes. The main focus was put on the grafting of intrinsically soluble substituted regioregular polyalkylthiophenes because of their excellent optoelectronic properties. The resulting polymer films were characterized and their optoelectrical properties studied. For the first time, a synthesis of conductive polymer brushes on solid substrates using “grafting-from” method was performed. The most important, from my opinion, finding of this work is that regioregular head-to-tail poly-3-alkylthiophenes – benchmark materials for organic electronics - can be now selectively grafted from appropriately-terminated surfaces to produce polymer brushes of otherwise soluble polymers - the architecture earlier accessible only in the case of non-conductive polymers. In particular, we developed a new method to grow P3ATs via Kumada Catalyst Transfer Polymerization (KCTP) of 2-bromo-5-chloromagnesio-3-alkylthiophene. Exposure of the initiator layers to monomer solutions leads to selective chain-growth polycondensation of the monomers from the surface, resulting into P3AT brushes in a very economical way. The grafting process was investigated in detail and the structure of the resulting composite films was elucidated using several methods. The obtained data suggests that the grafting process occurs not only at the poly(4-bromstyrene) (PS-Br)/polymerization solution interface, but also deeply inside the swollen PS-Br films, penetrable for the catalyst and for the monomer The grafting process was investigated in detail and the structure of the resulting composite film was elucidated using ellipsometry, X-ray Photoelectron Spectroscopy (XPS), Rutherford backscattering spectroscopy (RBS), and Conductive atomic force microscopy (C-AFM). The obtained data suggests that the grafting process occurs not only at the poly(4-bromostyrene), PS-Br/polymerization solution interface, but also deeply inside the swollen PS-Br film, which is penetrable for the catalyst and the monomer. The process results in an interpenetrated PS-Br/P3HT network, in which relatively short poly(3-hexylthiophene), P3HT grafts emanate from long, cross-linked PS-Br chains. A further method investigated during our work was to covalently graft regioirregular P3HT to substrates modified by macromolecular anchors using oxidative polymerization of 3HT with FeCl3. P3HT layers with variable thicknesses from 30 nm up to 200 nm were produced using two steps of polymerization reaction. The P3HT obtained by oxidative polymerization had always an irregular structure, which was a result of the starting monomer being asymmetric, which is undesired for electronic applications. The third method for the production of conductive polymer brushes was to graft regioregular poly(3,3''-dioctyl-[2,2';5',2'']terthiophene) (PDOTT) by electrochemical oxidative polycondensation of symmetrically substituted 3,3''-dioctyl-[2,2';5',2'']terthiophene (DOTT). A modification of the supporting ITO electrode by the self-assembled monolayers (SAMs) of compounds having polymerizable head-groups with properly adjusted oxidative potentials was found to be essential to achieve a covalent attachment of PDOTT chains. The polymer films produced show solvatochromism and electrochromism, as well as the previous two methods. After polymerization, the next step towards building organic electronic devices is applying the methods obtained in nano- and microscale production. Block copolymers constitute an attractive option for such surface-engineering, due to their ability to form a variety of nanoscale ordered phase-separated structures. However, block copolymers containing conjugated blocks are less abundant compared to their non-conjugated counterparts. Additionally, their phase behaviour at surfaces is not always predictable. We demonstrated in this work, how surface structures of non-conductive block copolymers, such as P4VP-b-PS-I, can be converted into (semi)conductive P4VP-b-PS-graft-P3HT chains via a surface-initiated polymerization of P3HT (Kumada Catalyst Transfer Polymerization (KCTP) from reactive surface-grafted block copolymers. This proves that our method is applicable to develop structured brushes of conductive polymers. We believe that it can be further exploited for novel, stimuli-responsive materials, for the construction of sensors, or for building various opto-electronic devices. The methods developed here can in principle be adapted for the preparation of any conductive block copolymers and conductive polymers, including other interesting architectures of conductive polymers, such as block copolymers, cylindrical brushes, star-like polymers, etc. To this end, one needs to synthesize properly-designed and multi-functional Ni-initiators before performing the polycondensation.
APA, Harvard, Vancouver, ISO, and other styles
10

Khanduyeva, Natalya. "Conjugated Polymer Brushes (Poly(3-hexylthiophene) brushes): new electro- and photo-active molecular architectures." Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A23635.

Full text
Abstract:
The aim of the present work was to screen the main methods for the synthesis of conjugated polymers for their suitability in the preparation of conductive polymer brushes. The main focus was put on the grafting of intrinsically soluble substituted regioregular polyalkylthiophenes because of their excellent optoelectronic properties. The resulting polymer films were characterized and their optoelectrical properties studied. For the first time, a synthesis of conductive polymer brushes on solid substrates using “grafting-from” method was performed. The most important, from my opinion, finding of this work is that regioregular head-to-tail poly-3-alkylthiophenes – benchmark materials for organic electronics - can be now selectively grafted from appropriately-terminated surfaces to produce polymer brushes of otherwise soluble polymers - the architecture earlier accessible only in the case of non-conductive polymers. In particular, we developed a new method to grow P3ATs via Kumada Catalyst Transfer Polymerization (KCTP) of 2-bromo-5-chloromagnesio-3-alkylthiophene. Exposure of the initiator layers to monomer solutions leads to selective chain-growth polycondensation of the monomers from the surface, resulting into P3AT brushes in a very economical way. The grafting process was investigated in detail and the structure of the resulting composite films was elucidated using several methods. The obtained data suggests that the grafting process occurs not only at the poly(4-bromstyrene) (PS-Br)/polymerization solution interface, but also deeply inside the swollen PS-Br films, penetrable for the catalyst and for the monomer The grafting process was investigated in detail and the structure of the resulting composite film was elucidated using ellipsometry, X-ray Photoelectron Spectroscopy (XPS), Rutherford backscattering spectroscopy (RBS), and Conductive atomic force microscopy (C-AFM). The obtained data suggests that the grafting process occurs not only at the poly(4-bromostyrene), PS-Br/polymerization solution interface, but also deeply inside the swollen PS-Br film, which is penetrable for the catalyst and the monomer. The process results in an interpenetrated PS-Br/P3HT network, in which relatively short poly(3-hexylthiophene), P3HT grafts emanate from long, cross-linked PS-Br chains. A further method investigated during our work was to covalently graft regioirregular P3HT to substrates modified by macromolecular anchors using oxidative polymerization of 3HT with FeCl3. P3HT layers with variable thicknesses from 30 nm up to 200 nm were produced using two steps of polymerization reaction. The P3HT obtained by oxidative polymerization had always an irregular structure, which was a result of the starting monomer being asymmetric, which is undesired for electronic applications. The third method for the production of conductive polymer brushes was to graft regioregular poly(3,3''-dioctyl-[2,2';5',2'']terthiophene) (PDOTT) by electrochemical oxidative polycondensation of symmetrically substituted 3,3''-dioctyl-[2,2';5',2'']terthiophene (DOTT). A modification of the supporting ITO electrode by the self-assembled monolayers (SAMs) of compounds having polymerizable head-groups with properly adjusted oxidative potentials was found to be essential to achieve a covalent attachment of PDOTT chains. The polymer films produced show solvatochromism and electrochromism, as well as the previous two methods. After polymerization, the next step towards building organic electronic devices is applying the methods obtained in nano- and microscale production. Block copolymers constitute an attractive option for such surface-engineering, due to their ability to form a variety of nanoscale ordered phase-separated structures. However, block copolymers containing conjugated blocks are less abundant compared to their non-conjugated counterparts. Additionally, their phase behaviour at surfaces is not always predictable. We demonstrated in this work, how surface structures of non-conductive block copolymers, such as P4VP-b-PS-I, can be converted into (semi)conductive P4VP-b-PS-graft-P3HT chains via a surface-initiated polymerization of P3HT (Kumada Catalyst Transfer Polymerization (KCTP) from reactive surface-grafted block copolymers. This proves that our method is applicable to develop structured brushes of conductive polymers. We believe that it can be further exploited for novel, stimuli-responsive materials, for the construction of sensors, or for building various opto-electronic devices. The methods developed here can in principle be adapted for the preparation of any conductive block copolymers and conductive polymers, including other interesting architectures of conductive polymers, such as block copolymers, cylindrical brushes, star-like polymers, etc. To this end, one needs to synthesize properly-designed and multi-functional Ni-initiators before performing the polycondensation.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography