To see the other types of publications on this topic, follow the link: Electro-Beam.

Dissertations / Theses on the topic 'Electro-Beam'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 34 dissertations / theses for your research on the topic 'Electro-Beam.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Tremblay, Eric J. "Electro-optic beam scanning in domain inverted LiTaO₂ for fast optical switching." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=80148.

Full text
Abstract:
This thesis investigates the design, simulation, fabrication and testing of electro-optic beam scanners in domain inverted LiTaO3 . To build these devices, a process of fabrication was developed including the construction of an electro-optic poling station for ferroelectric domain inversion of LiTaO3. This fabrication process was used to construct electro-optic prism beam scanners, which were designed and simulated to provide voltage controlled deflection of a collimated laser beam at 1310nm. Two electro-optic scanners were tested yielding linear deflection up to 1.064° and 0.986° at 1500V; agreeing well with simulation. Both scanners were found to have insertion losses of 1.7 dB and 2.3 dB in the off and on states respectively, and crosstalk of -25 dB. Degradation of performance was measured as a function of polarization extinction ratio, polarization misalignment, and applied voltage. Both devices are found to exhibit performance well suited for the construction of 1 x 2 fiber optic switches.
APA, Harvard, Vancouver, ISO, and other styles
2

Renkoski, Timothy Eli. "Study of a high frequency electro-optic beam deflector utilizing reflection-based velocity matching /." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p1422958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Evans, Jonathan W. "Beam Switching of an Nd:YAG Laser Using Domain Engineered Prisms in Magnesium Oxide Doped Congruent Lithium Niobate." University of Dayton / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1281366442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pishnyak, Oleg. "New electro-optical applications of liquid crystals from beam steering devices and tunable lenses to negative refraction and field-induced dynamics of colloids /." [Kent, Ohio] : Kent State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=kent1246407095.

Full text
Abstract:
Thesis (Ph.D.)--Kent State University, 2009.
Title from PDF t.p. (viewed Feb 25, 2010). Advisor: Oleg Lavrentovich. Keywords: electro-optical applications of liquid crystals, beam steering devices, polarization rotator, negative refraction, electrically tunable lens, colloidal dynamics, bidirectional motion of colloidal particles in liquid crystals controlled by backflow. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
5

Yousefzadeh, Comrun. "TUNABLE LIQUID CRYSTAL BEAM STEERING DEVICE BASED ON PANCHARATNAM PHASE IN FRINGE FIELD SWITCHING MODE." Kent State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=kent1627049349857564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sathian, Juna. "Investigation of the intensity dependence of amplitude noise in electro-optic phase modulators." Thesis, Queensland University of Technology, 2013. https://eprints.qut.edu.au/63003/1/Juna_Sathian_Thesis.pdf.

Full text
Abstract:
This thesis studied the source of instability in optical phase modulators used in high accuracy laser measurement systems. The nonlinear origin of the amplitude noise helped further reducing this instability in applications that rely on phase modulators to function. This outcome will have positive impacts on the development of new methods in the amplitude noise suppression.
APA, Harvard, Vancouver, ISO, and other styles
7

Greenlee, Jordan Douglas. "Study of cation-dominated ionic-electronic materials and devices." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53401.

Full text
Abstract:
The memristor is a two-terminal semiconductor device that is able to mimic the conductance response of synapses and can be utilized in next-generation computing platforms that will compute similarly to the mammalian brain. The initial memristor implementation is operated by the digital formation and dissolution of a highly conductive filament. However, an analog memristor is necessary to mimic analog synapses in the mammalian brain. To understand the mechanisms of operation and impact of different device designs, analog memristors were fabricated, modeled, and characterized. To realize analog memristors, lithiated transition metal oxides were grown by molecular beam epitaxy, RF sputtering, and liquid phase electro-epitaxy. Analog memristors were modeled using a finite element model simulation and characterized with X-ray absorption spectroscopy, impedance spectroscopy, and other electrical methods. It was shown that lithium movement facilitates analog memristance and nanoscopic ionic-electronic memristors with ion-soluble electrodes can be key enabling devices for brain-inspired computing.
APA, Harvard, Vancouver, ISO, and other styles
8

Banda, Gnama Mbimbiangoye Mallys Elliazar. "Mesure et modélisation du comportement de matériaux diélectriques irradiés par faisceau d'électrons." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30208/document.

Full text
Abstract:
Dans leurs usages courants comme isolants électriques, les matériaux solides organiques sont constitutifs aussi bien des câbles de transport d'énergie électrique, des circuits de commande et de conversion de puissance que des composants (micro)électroniques ou des systèmes embarqués (revêtement thermique des satellites, batteries d'accumulateurs...). La diversité des contraintes d'utilisation auxquelles ils sont soumis (champ électrique, rayonnement, température, humidité...) les prédisposent à emmagasiner des charges en leur sein, susceptibles d'affecter la fiabilité des systèmes qui en dépendent. L'un des moyens communément mis en œuvre pour étudier le comportement électrique de ces charges est la mesure de la distribution spatio-temporelle des charges d'espace, en soumettant le diélectrique à une différence de potentiel continue à travers deux électrodes. Cette méthode ne permet cependant pas toujours de distinguer clairement la contribution des charges dues à la génération, d'une part, et celles dues aux phénomènes de transport, d'autre part. Cette étude propose une approche alternative, consistant à déposer sous vide des charges (électrons) au sein de l'isolant par le biais d'un faisceau d'électrons, à une position connue et en quantité maîtrisée, en prenant en compte d'autres processus physiques liés à l'implantation d'électrons afin de prévoir et modéliser le comportement de ces matériaux irradiés. Des films de PolyEthylène basse densité (PEbd), préparés par thermomoulage, ont été irradiés par un faisceau d'électrons de 80 keV avec un flux de 1 nA/cm2. Les mesures de charge d'espace par la méthode Electro-Acoustique Pulsée (PEA), réalisées d'abord in-situ, puis ex-situ sous polarisation électrique DC, confirment une localisation effective de charges au sein du matériau. Les résultats sous polarisation électrique après irradiation mettent en évidence une importante présence de charges positives dans la zone irradiée du diélectrique. Les caractérisations électriques des films PEbd irradiés montrent un comportement complètement différent de celui d'un même matériau non-irradié, laissant penser à une modification de la structure chimique du matériau. Des mesures physico-chimiques (spectroscopie infra-rouge, Photoluminescence et Analyse Enthalpique Différentielle-DSC) sur ces films PEbd irradiés, ne montrent pas une dégradation significative de la structure chimique du diélectrique qui expliquerait le comportement électrique observé sous polarisation post-irradiation. Des mesures complémentaires montrent le comportement réversible du PEbd irradié puis polarisé, qui serait uniquement lié à la présence des charges générées par le faisceau. Les données expérimentales de cette étude ont parallèlement alimenté un modèle numérique de transport de charges, développé pour tenir compte des contraintes sous irradiation. Ce modèle a permis de reproduire les résultats d'implantation de charge par faisceau d'électrons in-situ ainsi que la majorité des processus électriques observés sur du PEbd irradié puis polarisé. Il confirme l'impact de la charge déposée par faisceau d'électrons sur le comportement sous polarisation et permet de conclure quant à l'origine des charges positives observées post-irradiation, qui seraient dues aussi bien aux phénomènes d'injection aux électrodes qu'à la création de paires électrons/trous par le faisceau d'électrons pendant l'irradiation
In their common uses as electrical insulators, organic solid materials are constitutive of electric power transmission cables, power control and conversion circuits as well as (micro) electronic components or embedded systems (thermal coating of satellites, batteries of accumulators, etc.). Under various constraints of use (electric field, radiation, temperature, humidity ...) they can accumulate charges in their bulk which could affect the reliability of the systems in which they are employed. One of the commonly used means to study the electrical behavior of these charges is to measure the spatiotemporal distribution of charges by subjecting the dielectrics to a continuous potential difference between two electrodes. However, this method does not always allow clearly distinguishing the contribution of charges due to generation on the one hand and the one due to transport phenomena on the other hand. This study proposes an alternative approach, consisting in generating charges (electrons) within the electrical insulation using an electron-beam under vacuum. The charges are hence deposited at a known position and in a controlled quantity. Other physical processes related to the implantation of electrons must then be taken into account in order to predict and model the behavior of these irradiated materials. Low-density polyethylene (LDPE) films, prepared by thermal molding, were irradiated by a 80 keV electron-beam with a current flux of 1 nA/cm2. Space charge measurements using the Pulsed Electro-Acoustic (PEA) method, performed first in-situ and then ex-situ under DC electrical polarization, confirm an effective localization of charges within the material. The results under electrical polarization after irradiation show an important amount of positive charges in the irradiated zone of the dielectric. The electrical characterizations of irradiated LDPE films show a completely different behavior compared to the same non-irradiated material, suggesting a modification of the chemical structure of the material. Physico-chemical measurements (infrared spectroscopy, Photoluminescence and Differential Scanning Calorimetry-DSC) on these irradiated PEbd films do not show a significant degradation of the chemical structure of the dielectric which would explain the observed electrical behavior under post-irradiation polarization. Additional measurements show the reversible behavior of the irradiated then polarized PEbd, which would be only related to the presence of the charges generated by the beam. The experimental data of this study have simultaneously fed a numerical model of charge transport, developed to take into account the irradiation constraints. This model allows reproducing the in-situ results of charge implantation by the electron beam as well as the majority of the electrical processes observed on irradiated and polarized LDPE. It confirms the impact of the electron-beam deposited charge on the behavior under polarization and allows concluding on the origin of the positive charges observed after irradiation, which would be due to injection at the electrodes as well as to the creation of electron-hole pairs by the electron-beam during irradiation
APA, Harvard, Vancouver, ISO, and other styles
9

French, Kyle J. "Growth of Optical Quality Lead Magnesium Niobate-Lead Titanate Thick Films." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1575993750125728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gorram, Mohamed. "Génération et étude de guides d'onde dynamiques et reconfigurables induits par illumination latérale." Thesis, Metz, 2009. http://www.theses.fr/2009METZ013S/document.

Full text
Abstract:
La réalisation de réseaux optiques ne nécessitant pas l'intervention d'éléments électroniques pour la détection temporaire de signaux demande des éléments de routage et d'interconnexion optique, adaptables et reconfigurables en des temps courts, de l'ordre de la milliseconde dans le cas des réseaux de télécommunications. L'utilisation de guides d'onde optiques réalisés dans des matériaux actifs par des techniques conventionnelles telles que la diffusion d'ions, l'échange protonique ou l'implantation ionique se prêtent mal à ce but. Ces techniques donnent lieu exclusivement à des guides statiques, typiquement de surface qui ne sont pas facilement modifiables. La méthode de photo-inscription transversale développée dans le cadre de cette thèse permet de franchir un cap important vers la réalisation de dispositifs purement optiques dans les quels la lumière est utilisée pour guider et manipuler la lumière sans avoir recours à de complexes étapes de fabrication. L'avantage principal est que cet effet peut être effacé, donnant lieu à des structures dynamiques sans l'intervention d'endommagements permanents du matériau. Un autre avantage est la grande versatilité par rapport à la forme des guides qui est conditionnée par la structure imposée à l'illumination de contrôle perpendiculaire à la direction de propagation. La formation de guides d'onde reconfigurables planaires à une dimension (1D) transversale a été réalisée dans des cristaux ferroélectriques photoréfractifs comme le SrxBa1xNb2O6 (SBN) ou le Sn2P2S6 (SPS), dans les longueurs d'ondes du visible ([lambda] = 514 nm et [lambda] = 633 nm). Des temps de génération et de reconfiguration des guides de l'ordre de la milliseconde ont été atteints dans le SPS. La dynamique des guides a été étudiée en s'appuyant sur des traitements théoriques et des simulations numériques. Une nouvelle méthode pour la déflexion et la modulation se basant sur la photo-inscription de guides a été proposée et démontrée expérimentalement dans les matériaux SBN et LiTaO3. Nous avons aussi montré pour la première fois la possibilité de réaliser à l'aide de cette technique le confinement dans les deux dimensions (2D) transversales. Les études expérimentales concernant l'influence des intensités des illuminations de contrôle et du champ appliqué sur le profil du guide sont en bonne adéquation avec les prédictions théoriques concernant le mode fondamental attendu
The realization transparent achievement of optical networks that do not need electronic components for the temporary detection and regenration of signals asks for optical routing and interconnection elements which are reconfigurable in short time, in the order of milliseconds in the case telecommunications networks. The use of optical waveguides in active materials made of active materials by conventional techniques, such as ion-indiffusion, proton exchange or ion implantation is badly suitable for this goal. These techniques give rise only to static waveguides close to the material surface and they are not easily modified. The technique of light inducing waveguides by lateral illumination developed in this work allows to cross an important step towards purely optical devices in which light is used to guide and manipulate light without resorting to complex manufacturing steps. The main advantage is that this effect can be erased, giving rise to dynamic structures that do note cause a permanent damage of the material. Another advantage is the versatility with respect to the form of the waveguides, that is defined by the structure imposed to control the illumination perpendicular to the direction of propagation. The feasibility of reconfigurable 1-dimensional waveguides has been experimentally demonstrated in the electro-optic ferroelectric crystals SrxBa1xNb2O6 (SBN, x=0.61) and Sn2P2S6 (SPS). The illuminating wavelengths used were 514 nm for SBN and 633 nm for SPS. Response and reconfiguration times of the order of 1 ms are shown to be possible in the case of SPS. The dynamics of the waveguides has been studied on the basis of theoretical treatment and numerical simulations. The evolution of light induced one-dimensional waveguides when the sustaining electric field is switched off leads to a novel kind of dynamic light deflection. We have studied this effect in detail using SBN and LiTaO3 crystals. Simulations of the beam propagation in the split waveguide on the base of a simple model lead to a good agreement with the experimental observations. Light modulation by the help of this effect has been demonstrated as well. Finally, we realized for the first time, the recording of dynamically reconfigurable bulk channel waveguides confined in two dimensions using lateral illumination technique. The experimental studies of the dependence of the output probe wave profile on the intensities of two control waves and on the applied electric field were found to be in good agreement with the expectations based on a simplified step profile for the photorefractive by induced refractive index change and on mode calculations
APA, Harvard, Vancouver, ISO, and other styles
11

Nguyen, Van-Nghi. "Principes alternatifs pour la détection de masse ultime via la dynamique non linéaire de capteurs résonants M/NEMS." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0160/document.

Full text
Abstract:
Les capteurs résonants de type M/NEMS sont largement utilisés dans l’environnement biologique pour la mesure de masse de biomolécules en raison de leur grande précision combinée à une taille réduite. Classiquement, la détection et la quantification se basent sur le décalage fréquentiel induit par la masse ajoutée. Toutefois, ce décalage devient très faible et difficile à distinguer du bruit de mesure lorsque les masses considérées sont très petites. Il est théoriquement possible de gagner encore un ou plusieurs ordres de grandeur en résolution avec ces méthodes fréquentielles en diminuant encore les tailles et/ou en augmentant le rapport signal sur bruit, c’est-à-dire en actionnant de manière plus importante les résonateurs. Mais, dans ces conditions, les nanorésonateurs ont un comportement très fortement non-linéaire, source d’instabilités et de mixage de bruit basses et hautes fréquences susceptibles de dégrader la fiabilité et la précision des mesures. C’est pourquoi cette thèse a pour objectif de définir des principes de détection alternatifs basés sur l’exploitation des phénomènes non-linéaires, tels que les comportements hystérétiques et les bifurcations des courbes de réponse en fréquence. Pour cela, un modèle réduit de micro/nano-poutre résonante avec actionnement électrostatique est considéré. Les résultats numériques montrent que les brusques sauts d’amplitude à proximité des points de bifurcation permettent la détection de masses très faibles. Contrairement à la détection fréquentielle, ces sauts sont d’autant plus grands que la masse additionnelle est petite, ce qui rend cette technique particulièrement intéressante. De plus, le seuil de détection peut être ajusté avec la valeur de la fréquence de fonctionnement. Un mécanisme de réinitialisation est toutefois indispensable pour rendre la détection à nouveau possible après un saut d’amplitude. Afin d’automatiser la réinitialisation et ainsi permettre la détection en temps réel, un concept totalement innovant de détection de masse par balayage en fréquence des cycles d’hystérésis est proposé, qui permet de détecter, quantifier et localiser la masse ajoutée sur la poutre résonante. La mise en réseau de plusieurs poutres résonantes est également traitée et constitue un premier pas vers la mise en oeuvre de réseaux de milliers de capteurs. Pour cela, des architectures efficaces sont proposées et les modèles numériques sont adaptés en conséquence. Sur des configurations symétriques, l’exploitation des bifurcations de type brisure de symétrie permet là-encore d’améliorer la détection de masse
Resonant M/NEMS mass sensors are widely used in biological environment for measuring the mass of biomolecules due to their high accuracy combined with a reduced size. Usually, the detection and the quantification are based on the frequency shift induced by an added mass. However, this shift becomes very small and difficult to distinguish from the noise of measurement as the considered masses are tiny. It is theoretically possible to increase further one or several orders of magnitude in resolution with these frequency methods by further reducing size and/or by increasing the signal-to-noise ratio, that is to say by operating more importantly the resonators. But in these conditions, the nanoresonators have a strongly nonlinear behavior, a source of instability and noise mix of low and high frequencies likely to degrade the reliability and the accuracy of measurements. Therefore, the thesis’s objective is to define alternative principles of detection based on exploiting the nonlinear phenomena, such as the hysteretic behavior and the bifurcations of frequency-response curves. To this end, a reduced model of resonant micro/nano-beam with electrostatic actuation is considered. The numerical results show that the sudden jumps in amplitude close to bifurcation points allow the detection of very small masses. Unlike the frequency detection, the smaller the added mass, the larger the increase of the jump, which makes this technique particularly interesting. In addition, the detection threshold can be adjusted with the value of the operating frequency. However, a mechanism of reinitialization is mandatory to make the detection possible again after a jump in amplitude. In order to automate the reinitialization and allow the detection in real-time, a completely innovative concept of mass detection by the frequency sweep of the hysteretic cycles is proposed to detect, quantify and locate the added mass on the resonant beam. An array of several resonant beams is also considered and constitutes a first step toward the implementation of arrays of thousands of sensors. Efficient architectures are proposed for this purpose and the numerical models are adapted accordingly. On symmetric configurations, exploiting the bifurcations of symmetry-breaking type allows here again to improve the mass detection
APA, Harvard, Vancouver, ISO, and other styles
12

Lou, Fei. "Design, fabrication and characterization of plasmonic components based on silicon nanowire platform." Doctoral thesis, KTH, Optik och Fotonik, OFO, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-143953.

Full text
Abstract:
Optical interconnects based on CMOS compatible photonic integrated circuits are regarded as a promising technique to tackle the issues traditional electronics faces, such as limited bandwidth, latency, vast energy consumption and so on. In recent years, plasmonic integrated components have gained great attentions due to the properties of nano-scale confinement, which may potentially bridge the size mismatch between photonic and electronic circuits. Based on silicon nanowire platform, this thesis work studies the design, fabrication and characterization of several integrated plasmonic components, aiming to combine the benefits of Si and plasmonics. The basic theories of surface plasmon polaritons are introduced in the beginning, where we explain the physics behind the diffraction-free confinement. Numerical methods frequently used in the thesis including finite-difference time-domain method and finite-element method are then reviewed. We summarize the device fabrication techniques such as film depositions, e-beam lithography and inductively coupled plasma etching as well as characterization methods, such as direct measurement method, butt coupling, grating coupling etc. Fabrication results of an optically tunable silicon-on-insulator microdisk and III-V cavities in applications as light sources for future nanophotonics interconnects are briefly discussed. Afterwards we present in details the experimental demonstrations and novel design of plasmonic components. Hybrid plasmonic waveguides and directional couplers with various splitting ratios are firstly experimentally demonstrated. The coupling length of two 170 nm wide waveguides with a separation of 140 nm is only 1.55 µm. Secondly, an ultracompact polarization beam splitter with a footprint of 2×5.1 μm2 is proposed. The device features an extinction ratio of 12 dB and an insertion loss below 1.5 dB in the entire C-band. Thirdly, we show that plasmonics offer decreased bending losses and enhanced Purcell factor for submicron bends. Novel hybrid plasmonic disk, ring and donut resonators with radii of ~ 0.5 μm and 1 μm are experimentally demonstrated for the first time. The Q-factor of disks with 0.5 μm radii are                         , corresponding to Purcell factors of . Thermal tuning is also presented. Fourthly, we propose a design of electro-optic polymer modulator based on plasmonic microring. The figure of merit characterizing modulation efficiency is 6 times better comparing with corresponding silicon slot polymer modulator. The device exhibits an insertion loss below 1 dB and a power consumption of 5 fJ/bit at 100 GHz. At last, we propose a tightly-confined waveguide and show that the radius of disk resonators based on the proposed waveguide can be shrunk below 60 nm, which may be used to pursue a strong light-matter interaction. The presented here novel components confirm that hybrid plasmonic structures can play an important role in future inter- and intra-core computer communication systems.

QC 20140404

APA, Harvard, Vancouver, ISO, and other styles
13

Tang, Yongbo. "Study on electroabsorption modulators and grating couplers for optical interconnects." Doctoral thesis, KTH, Mikroelektronik och tillämpad fysik, MAP, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-24178.

Full text
Abstract:
Decades of efforts have pushed the replacement of electrical interconnects by optical links to the interconnects between computers, racks and circuit boards. It may be expected that optical solutions will further be used for inter-chip and intra-chip interconnects with potential benefits in bandwidth, capacity, delay, power consumption and crosstalk. Silicon integration is emerging to be the best candidate nowadays due to not only the dominant status of silicon in microelectronics but also the great advantages brought to the photonic integrated circuits (PICs). Regarding the recent breakthroughs concerning active devices on silicon substrate, the question left is no longer the feasibility of the optical interconnects based on silicon but the competitiveness of the silicon device compared with other alternatives. This thesis focuses on the study of two key components for the optical interconnects, both especially designed and fabricated for silicon platform. One is a high speed electroabsorption modulator (EAM), realized by transferring an InP-based segmented design to the hybrid silicon evanescent platform. The purpose here is to increase the speed of the silicon PICs to over 50  Gb/s or more. The other one is a high performance grating coupler, with the purpose to improve the optical interface between the silicon PICs and the outside fiber-based communication system. An general approach based on the transmission line analysis has been developed to evaluate the modulation response of an EAM with a lumped, traveling-wave, segmented or capacitively-loaded configuration. A genetic algorithm is used to optimize its configuration. This method has been applied to the design of the EAMs on hybrid silicon evanescent platform. Based on the comparison of various electrode design, segmented configuration is adopted for the target of a bandwidth over 40 GHz with as low as possible voltage and high extinction ratio. In addition to the common periodic analysis, the grating coupler is analyzed by the antenna theory assisted with an improved volume-current method, where the directionality of a grating coupler can be obtained analytically. In order to improve the performance of the grating coupler, a direct way is to address its shortcoming by e.g. increasing the coupling efficiency. For this reason, a nonuniform grating coupler with apodized grooves has been developed with a coupling efficiency of 64%, nearly a double of a standard one. Another way is to add more functionalities to the grating coupler. To do this, a polarization beam splitter (PBS) based on a bidirectional grating coupler has been proposed and experimentally demonstrated. An extinction ratio of around -20 dB, as well as a maximum coupling efficiency of over 50% for both polarizations, is achieved by such a PBS with a Bragg reflector underneath.
QC 20100906
APA, Harvard, Vancouver, ISO, and other styles
14

Cardoso, Elisangela Silvana. "Síntese e caracterização de eletrocatalisadores Pt/C, PtAu/C e PtAuBi/C pelo método da redução via feixe de elétrons para oxidação direta de metanol e etanol." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/85/85134/tde-07112012-074656/.

Full text
Abstract:
As células a combustível do tipo PEM (Próton Exchange Membrane) alimentadas diretamente por hidrogênio são consideradas as mais promissoras para a geração de energia elétrica, entretanto o uso de hidrogênio como combustível nestas células apresenta ainda alguns inconvenientes operacionais e de infra-estrutura, o que dificulta o seu uso. Assim, nos últimos anos, uma célula a combustível que utiliza um álcool diretamente como combustível (DAFC - Direct Alcohol Fuel Cell) tem despertado bastante interesse, particularmente aquelas que são alimentadas pelos combustíveis metanol ou etanol, pois apresentam várias vantagens, como por exemplo, a não necessidade de estocar hidrogênio ou gerá-lo através da reforma de hidrocarbonetos.Porém, células que utilizam diretamente metanol como combustível, apresentam correntes relativamente baixas e a oxidação completa do etanol é dificultado pela quebra da ligação CC e também há a formação de intermediários fortemente adsorvidos no eletrocatalisador de platina, como o monóxido de carbono (COads), resultando em baixos potenciais operacionais na célula.Para minimizar o efeito causado pelos venenos catalíticos faz-se necessária a adição de outros metais na composição do eletrodo de Pt. Tais metais devem atuar na reação fornecendo sítios para a adsorção de espécies que contenham oxigênio (OH ou H2O), em potenciais inferiores ao potencial de adsorção de OH na Pt.Este trabalho apresenta estudos da reação de eletro-oxidação destes álcoois, nos meios ácido e alcalino, sobre os eletrocatalisadores Pt/C, PtAu/C e PtAuBi/C, utilizando o método da redução via feixe de elétrons. Os eletrocatalisadores PtAuBi/C foram preparados com diferentes composições atômicas a fim de se avaliar o efeito da adição de bismuto. Os experimentos foram caracterizados por voltametria cíclica e cronoamperometria, utilizando a técnica do eletrodo de camada fina porosa, obtendo informações em relação às atividades dos catalisadores, perfis eletroquímicos e suas estabilidades em relação ao tempo de operação. Os eletrodepósitos foram examinados usando análise de energia dispersiva de raios-X (EDX) e microscopia eletrônica de varredura (MEV) a fim de determinar a composição de fases, o tamanho e a distribuição das nanopartículas metálicas no suporte. Os resultados eletroquímicos mostraram para oxidação eletroquímica de metanol, no meio alcalino, que o catalisador de PtAu/C apresentou melhor atividade eletrocatalítica e, no meio ácido, o catalisador Pt/C foi mais efetivo com relação às demais formulações preparadas e os eletrocatalisadores PtAuBi/C apresentaram-se pouco efetivos. No caso da oxidação do etanol, os dados eletroquímicos mostraram que, no meio ácido os catalisadores PtAu e Pt/C possuem comportamentos similares e os catalisadores PtAuBi/C demonstram baixa atividade. No meio alcalino, o sistema PtAuBi/C obteve melhor desempenho em relação aos demais catalisadores, obtendo maiores valores de correntes à baixos potenciais.
Proton Exchange Membrane (PEM) fuel cell powered directly by hydrogen are considered the most promising for the generation of electricity, however the use of hydrogen as fuel in these cells also presents some drawbacks and operational infrastructure, which hinders its use. Thus, in recent years, a fuel cell which uses an alcohol directly as a fuel (DAFC - Direct Alcohol Fuel Cell) has attracted considerable interest, particularly those that are powered by fuels methanol or ethanol, they present several advantages, such as not need to store hydrogen or generate it through reform of hydrocarbons. However, cells that use methanol directly as fuel, have relatively low current and complete oxidation of ethanol is hampered by the cleavage of C-C and there is also the formation of intermediate strongly adsorbed on the platinum electrocatalyst, such as carbon monoxide (COads), resulting in low operational potential in cell. To reduce the effect caused by the \"poisons\" catalyst is needed the addition of other metals in the composition of Pt electrode. Such, metals should act on the reaction providing sites for adsorption of species containing oxygen (OH or H2O) in potential below for adsorption of OH in Pt.In this work studies the reaction of electro-oxidation of this alcohols in acid medium and alkaline on the electrocatalysts Pt / C, PtAu / C and PtAuBi / C, using the method of reduction electron beam. The electrocatalysts PtAuBi / C were prepared with different compositions to evaluate the effect of addition of bismuth. The materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry (CV). The electro-oxidation of methanol and ethanol were studied by cyclic voltammetry and chronoamperometry at room temperature. The results showed for electrochemical oxidation of methanol in alkaline medium, the catalyst PtAu / C showed better electrocatalytic activity and, in the acidic medium, the catalyst Pt / C was more effective in relation to other formulations prepared and electrocatalysts PtAuBi / C were ineffective. In ethanol oxidation, the results showed that, in acidic medium, catalysts PtAu and Pt / C have similar behaviors and catalysts PtAuBi / C show low activity. In alkaline medium, the system PtAuBi / C performed better than the other catalysts, obtaining higher values of current at low potentials.
APA, Harvard, Vancouver, ISO, and other styles
15

Castillo, Roberto. "Répercussion de traitements physiques de décontamination du polypropylène sur ses propriétés physico-chimiques." Electronic Thesis or Diss., Paris, AgroParisTech, 2014. http://www.theses.fr/2014AGPT0009.

Full text
Abstract:
Les emballages alimentaires sont très règlementés par rapport à leur utilisation. La réglementation européenne CE N°10/2011 « Plastic Implement Measures » impose la vérification de l’innocuité des emballages sur le fondement du principe de précaution. Une notion de risque est associée aux emballages en raison de la méconnaissance de la réactivité des molécules provenant des additifs utilisés et celles propres du plastique. Les produits de réaction et/ou dégradation (dits néo-formés) sont peu ou pas connus.Les néoformés peuvent se produire au cours de toute la vie d’utilisation des emballages alimentaires, dès leur production jusqu’à l’utilisation finale pour le consommateur. Dans le cadre de ce travail, nous avons déterminé l’influence de deux méthodes physiques de décontamination de surfaces : la lumière pulsée et le faisceaux accéléré d’électrons, sur des films de polypropylène avec une formulation d’additifs spécifiques.Des molécules comme les oligomères (POSH) sont propres au polymère, et elles empêchent la correcte identification de néo-formés. L’utilisation de techniques comme la chromatographie liquide couplée à une chromatographie en phase gazeuse (LC-GC) ou la chromatographie gazeuse bidimensionnelle (GCxGC) est nécessaire pour séparer les oligomères et analyser les films et les néo-formés.Parmi les molécules étudiées, seul l’antioxydant Irgafos 168 a présenté une réactivité suite au traitement par Lumière Pulsée : une formation de plusieurs isomères soit de la molécule originale suite à l’oxydation, soit après la perte de un groupe tert-butyle. D’autre part, le traitement par faisceaux d’électrons a généré plusieurs néoformés provenant des additifs utilisés, d’ailleurs une augmentation des oligomères a été quantifiée.Les méthodologies utilisées ainsi que les néo-formés identifiés lors de ce travail pourraient constituer des outils de référence dans le cadre d’études ultérieures sur les effets de procédés de décontamination
Food packaging is highly regulated respect to their use. European regulation CE N ° 10/2011 "Plastic Implement Measures" requires the verification of the safety of packaging on the basis of the precautionary principle. A notion of risk is associated with packaging due to a lack of knowledge of the reactivity of the molecules from the additives used and those specific from plastic. The products of reaction and/or degradation (called neo-formed) are little known or not known.The neo-formed products may occur during the lifetime of use of food packaging, from production to final use by the consumer. As part of this work, we determined the influence of two physical methods for decontamination of surfaces: pulsed light and electron-beams, on polypropylene films specifically formulated for this study.Some molecules such as oligomers (POSH) are specific of polymers. They are already present in the films before treatment and they avoid a good identification of the neo-formed molecules. The use of techniques such as liquid chromatography coupled with gas chromatography (LC-GC) or two-dimensional gas chromatography (GCxGC) is required to separate the oligomers and analyze the films and neo-formed molecules.Only the antioxidant Irgafos 168 among the molecules studied, presented reactivity after Pulsed Light treatment, it was observed the formation of several isomers from the original molecule following oxidation, or after the loss of a tert-butyl group. On the other hand, the Electron-Beam treatment generated several neoformed from all the molecules studied; in addition an increase of the oligomers was quantified.Methodologies used and the neo-formed molecules identified in this work could provide reference tools for the next studies about the effects of decontamination processes
APA, Harvard, Vancouver, ISO, and other styles
16

Pacheco, Josè L. "An Electro- Magneto-static Field for Confinement of Charged Particle Beams and Plasmas." Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc500001/.

Full text
Abstract:
A system is presented that is capable of confining an ion beam or plasma within a region that is essentially free of applied fields. An Artificially Structured Boundary (ASB) produces a spatially periodic set of magnetic field cusps that provides charged particle confinement. Electrostatic plugging of the magnetic field cusps enhances confinement. An ASB that has a small spatial period, compared to the dimensions of a confined plasma, generates electro- magneto-static fields with a short range. An ASB-lined volume thus constructed creates an effectively field free region near its center. It is assumed that a non-neutral plasma confined within such a volume relaxes to a Maxwell-Boltzmann distribution. Space charge based confinement of a second species of charged particles is envisioned, where the second species is confined by the space charge of the first non-neutral plasma species. An electron plasma confined within an ASB-lined volume can potentially provide confinement of a positive ion beam or positive ion plasma. Experimental as well as computational results are presented in which a plasma or charged particle beam interact with the electro- magneto-static fields generated by an ASB. A theoretical model is analyzed and solved via self-consistent computational methods to determine the behavior and equilibrium conditions of a relaxed plasma. The equilibrium conditions of a relaxed two species plasma are also computed. In such a scenario, space charge based electrostatic confinement is predicted to occur where a second plasma species is confined by the space charge of the first plasma species. An experimental apparatus with cylindrical symmetry that has its interior surface lined with an ASB is presented. This system was developed by using a simulation of the electro- magneto-static fields present within the trap to guide mechanical design. The construction of the full experimental apparatus is discussed. Experimental results that show the characteristics of electron beam transmission through the experimental apparatus are presented. A description of the experimental hardware and software used for trapping a charged particle beam or plasma is also presented.
APA, Harvard, Vancouver, ISO, and other styles
17

Kvavle, Joshua Monroe. "A System Level Approach to D-Fiber Electric Field Sensing." Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd3155.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yan, Y. "NOVEL ELECTROACTIVE SOFT ACTUATORS BASED ON IONIC GEL/GOLD NANOCOMPOSITES PRODUCED BY SUPERSONIC CLUSTER BEAM IMPLANTATION." Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/2434/464973.

Full text
Abstract:
Ionic electro-active polymers (IEAPs) constitute a promising solution for developing self-regulating, flexible and adaptive mechanical actuators in the area of soft robotics, micromanipulation and rehabilitation. These smart materials have the ability to undergo large bending deformations as a function of a low applied voltage (1 to 5 V), as a result of the ions migration through their inner structure when the network is liquid filled. Among this broad family of materials, ionic-polymer-metal composites (IPMC) based on DuPont’s Nafion® have attracted an increasing interest for the production of light weight controllable soft machines due to their easiness to be metalized (e.g. by mean of electroless plating), fast response and capability of working exposed to air. However, the high cost of the material, its relatively low working density (i.e. the maximum mechanical work output per unit volume of active material that drives the actuation) and weak force output, as well as the considerable fatigue effects endured by the surface electrodes upon cycling, is limiting the performance of these IPMC actuators and hindering their implementation in traditional mechatronic and robotic systems. On the other hand, ionic hydrogels, such as poly(acrylic acid) (PAA) and poly-styrene sulfonate (PSS) based polymers, exhibit controllable mechanical properties and porosity and have shown to be excellent candidates to be used as electrically triggered artificial muscles and miniaturized robots operating in aqueous environments. Although the relatively low cost of these materials render them appealing for mass production scale up, the applicability of these polymeric actuators is limited to a liquid environment, which is intrinsically facilitating the solvent evaporation when the hydrogels are exposed to air. Furthermore, because of the difficulty encountered in fabricating stable and anchored metal structures on these polymer surfaces, these smart soft systems operate in a non-contact configuration with respect to the pilot electrodes, therefore increasing the actuators response time up to few tenths of seconds. In order to achieve an efficient electromechanical transduction along with a stable and durable performance for electro-active actuators operating in air, two main interplaying characteristics must be tailored when designing the system. On one hand side, the need of electrodes that are physically interpenetrating with the polymeric basis is of absolute priority, since the intercalation of ions into the electrode layers and the resulting material volumetric change are fundamental for strain generation. On the other hand, the formulation and engineering of new low cost materials able to merge highly elastic properties and efficient ionic transport features is of crucial importance. The present thesis work deals with the formulation, synthesis and manufacturing of a novel ionic gel/metal nanocomposite (IGMN) that was designed and developed to merge the advantageous properties of both IPMCs and ionic hydrogel actuators and to contextually overcome many of the above mentioned drawbacks characteristic of these two families of polymers. These composites were obtained by mean of Supersonic Cluster Beam Implantation (SCBI). This technique, developed in-house, relies on the use of supersonically accelerated gas-phase metal cluster beams directed onto a polymeric substrate in order to generate thin conductive layers (few tenths to few hundreds of nanometers thick) anchored to the polymer. This scalable approach already proved to be suitable for the manufacturing of elastomer/metal functional nanocomposites, and, as described in this work, it enabled the production of cluster-assembled gold electrodes (100 nm thick) interpenetrating with an engineered ionic gel matrix. This novel approach led to the fabrication of highly conductive metal nanostructures, large surface area for ions storage and providing minimal interfacial stresses between the metal layer and the polymeric basis upon deformation. The key features of this novel system comprise the control on the polymer elasticity, bending actuation in air from 0.1V to 5V, fast response time (< 300 ms), high displacement (> 5 cm), high work density ( >10 J/cm3), minimal electrodes fatigue upon cycling and low manufacturing costs. A bottom-up approach was firstly adopted to engineer and produce Uv photo-cross-linked ionic co-polymers (iongel) with tailored mechanical properties and provided with inorganic nano-structures embedded in the macromolecular matrix which show excellent long-term performance. The polymer is based on poly(acrylic acid)-co-poly(acrylonitrile) (PAA-co-PAN) co-polymers, which are chemically cross-linked in a hydrogel-like fashion and swollen with suitable imidazolium-based ionic liquid. The materials are produced as 100 um freestanding layers using a one-pot synthesis and a simple molding process. Due to the incommensurably low vapor pressure of the ionic liquid, issues concerning the shrinkage of traditional water swollen gels operating exposed to air could be avoided. An organic cation (tetraethyl ammonium, TEA+) is stably coordinated to the carboxyl groups of the PAA and free to move in the polymer sieve-like structure when a small voltage is applied at the electrodes. PAN was introduced to enhance the elastic properties of whole polymer. In the bulk polymer, halloysite nanoclays (HNC) are physically embedded into the gel in order to both improve the toughness of the gel and to improve the ionic conductivity of the system. In fact, the nanostructures interacts with the imidazolium cation of the ionic liquid through an oxygen reduction reaction, and therefore the latter is able to contribute to the charge transport phenomena induced by the electric field due to the solvent partial dissociation. Furthermore, the porosity of the polymer, tailored by the cross-linker, creates physical channels to favor the mobility of positive ions when an electric field is applied. The contribution of both the positive charged species (TEA+ and cations of ionic liquid) that accumulates at the nanostructured electrode in a double layer capacitance regime generates a differential swelling at the opposite sides of the actuator, which bends towards the anode. As it will be shown in the next sections, the actuation mechanism of the IGMN could be modeled according to both the material structure and design, as well as to the experimental data on its electrochemical and electro-mechanical properties.Comparing with traditional soft polymers incompatibility with current metallization processes, like electroless plating or surface silver laminated electrodes fabrication, which are not suitable to guarantee long-term actuation of the components, SCBI demonstrated to be a suitable technique for the production of next generation electro-active soft actuators. The IGMN-based actuators showed superior performance, such as large bending displacement, fast response time, long durability in a low voltage regime during the actuation process. The combination of the SCBI fabrication technology with the ionic gel synthesis and fabrication renders the manufacturing of these systems time-saving and costs-effective, and the unique properties of these actuators render them good candidates for potential scale up and for applications in micro-electromechanical systems, microfluidics, soft robotics, and rehabilitation.
APA, Harvard, Vancouver, ISO, and other styles
19

Llobet, Sixto Jordi. "Focused ion beam implantation as a tool for the fabrication of nano electromechanical devices." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/384934.

Full text
Abstract:
La tesi doctoral titulada “Focused ion beam implantation as a tool for the fabrication of nano electromechanical devices” aborda el repte de la fabricació de ressonadors nano-mètrics des d’una nova òptica basada en la implantació iònica mitjançant un feix de ions focalitzat (FIB). Aquest nou mètode permet fabricar nano-dispositius suspesos funcionals, des del punt de vista elèctric i mecànic, sense necessitat d’utilitzar resina d’una forma i) ràpida i simple, només son necessàries tres etapes de fabricació; ii) flexible, permet definir dispositius amb gran llibertat geomètrica; iii) alta resolució, es demostra la fabricació de dispositius suspesos de 4 μm de longitud per 10 nm de diàmetre; iv) reproduïble i v) compatible amb la tecnologia CMOS. Partint d’un xip de silici o SOI (silici - diòxid de silici - silici), el mètode de fabricació comença amb un procés d’implantació FIB on es defineixen les estructures i les connexions elèctriques del dispositiu. El segon pas consisteix en el gravat humit del silici, on s’ataca el silici que no està protegit per la implantació FIB, permetent la suspensió o alliberació dels dispositius. En aquest estadi, on les estructures ja estan definides, el silici és amorf, conté gal·li i no és elèctricament funcional (ρ ~1 Ω·m). El darrer pas consisteix en un tractament tèrmic a alta temperatura fins a 1000ºC, en ambient de nitrogen i amb un precursor sòlid de bor on es propicia la recristal·lització del silici formant nano-cristalls, dopar el silici amb bor (tipus p) i eliminar el gal·li. Aquest tractament a alta temperatura, on les estructures no son oxidades, permet obtenir dispositius elèctricament funcionals (ρ ~10-4 Ω·m). Els principals resultats obtinguts es poden classificar en tres àmbits: Investigació de l’efecte de la implantació amb ions gal·li en el silici, pel que fa tant a aspectes de processament com de propietats nanoelectromecàniques del material. En aquest treball hem caracteritzat l’estructura del material en les diferents etapes de fabricació i hem caracteritzat elèctrica i electromecànicament els dispositius finals obtinguts pel mètode descrit. Desenvolupament i optimització del procés de fabricació, especialment pel que respecte al control de dimensions i a la combinació amb altres processos Es mostra el treball realitzat en la optimització dels diferents paràmetres de fabricació, des de la posta a punt de la dosi d’ions fins a la selectivitat del gravat. A través del disseny de les estructures es pot establir estratègies per controlar i minimitzar els efectes d’”under-etching” en el silici, a través de la definició d’estructures de compensació, i també evitar el col·lapse de les estructures més llargues, degut a les tensions superficials que es produeixen durant els processos de gravat humit, fabricant pilars per sostenir les estructures. Aquest mètode de fabricació permet obtenir dispositius a mida convertint-lo en una eina versàtil de prototipatge i de fabricació petites quantitats, que permet aconseguir dispositius de dimensions nano-mètriques per a l’experimentació acadèmica i científica. Investigació de les propietats electròniques, mecàniques i electromecàniques dels dispositius, i concretament en el cas de nanofils de silici suspesos que es poden aplicar com a ressonadors mecànics d’altra freqüència o transistors d’un sol forat. Hem pogut fabricar ressonadors de diferents geometries que ens ha permès estudiar i demostrar la relació que existeix entre la simetria/asimetria dels dispositius i el senyal piezoresistiu mesurat durant la transducció electromecànica. Hem investigat i fabricat transistors d’efecte camp ultra-fins (10 ~ 15 nm) i transistors suspesos on les característiques elèctriques a baixa temperatura mostren efectes de “Coulomb blockade” gracies als nano-cristalls que es formen, dins dels nano-fils de silici suspesos, durant l’etapa de tractament tèrmic.
The thesis entitled “Focused ion beam implantation as a tool for the fabrication of nano electromechanical devices” aboard the challenge of the fabrication of nanometric resonators from a new approach based on ion implantation by a focused ion beam (FIB) . This new method allows the fabrication of functional suspended nanodevices, from the electrical and mechanical point of view, without using any resist. This method is i) fast and simple, where only three steps are needed; ii) flexible, it is feasible the definition of structures of different shape; iii) high resolution, it is demonstrated the fabrication of 4 μm length and 10 nm diameter suspended devices; iv) reproducible and v) CMOS compatible. The starting point is a silicon or SOI (silicon – silicon dioxide – silicon) chip. The fabrication approach starts with a FIB implantation process where the structures and the electrical connections of the device are defined. The second step consists on silicon wet etching, where silicon that is not protected by the FIB implantation is etched, allowing the release of the devices. The defined structures are made of amorphous silicon, they contains gallium and they are not functional electrically (ρ ~1 Ω·m). The last step consists on diffusive boron doping at high temperature (up to 1000ºC) in a boron environment, where it is promoted the recrystallization of silicon forming nanocrystals, the boron doping (p type) of silicon and the removal of gallium. In this last step at high temperature the structures are not oxidized obtaining electrically functional devices (ρ ~10-4 Ω·m). The principal results can be classified in three areas: Investigation of the effect of gallium ion implantation onto silicon from the process and nanoelectromechanical material properties point of view. In this work the material structure in the different fabrication steps has been characterized, as well as the electrical and electromechanical properties of the final devices obtained by the described method. Development and optimization of the fabrication process, especially controlling the dimensions and the combination with other fabrication processes. The work done in the optimization of the different fabrication parameters are shown, from the tuning of the ion dosage to the etching selectivity. It is possible to stablish design strategies to control and minimize the under-etching effects onto silicon, as well as to avoid the collapse of long structures, that are the result of the superficial sticking produced during the wet etching processes, by the fabrication of sustaining posts. That method permits to obtain customized devices. It is a versatile prototyping method that allows the fabrication of small batches of devices of nanometric dimensions that can be employed for the scientific and academic experimentation. Investigation of the electronical, mechanical and electromechanical properties of the devices, specifically suspended silicon nanowires that can be employed as high frequency mechanical resonators or single hole transistors. We fabricated resonators of different geometries for the study and demonstration of the relation between the geometrical symmetry/asymmetry of the devices and the piezoresistive signal measured during the electromechanical transduction. We investigated and fabricated ultra-thin field effect transistors (10 ~ 15 nm) and suspended transistors that exhibits Coulomb blockade electrical characteristics at low temperature thanks to the nanocrystals that are grown during the high temperature fabrication step.
APA, Harvard, Vancouver, ISO, and other styles
20

Almosni, Samy. "Growth, structural and electro-optical properties of GaP/Si and GaAsPN/ GaP single junctions for lattice-matched tandem solar cells on silicon." Thesis, Rennes, INSA, 2015. http://www.theses.fr/2015ISAR0010/document.

Full text
Abstract:
Cette thèse se concentre sur la fabrication de cellule solaire IIIN- V sur substrat de GaP (001) et sur la croissance de couche de GaP sur Si (001). Le but est de réaliser des cellules solaires hautes efficacité sur un substrat à faible coût afin de les intégrer dans des centrales solaire photovoltaïque sous concentration. Les principaux résultats obtenus montrent : - L’importance de l’utilisation d’AlGaP en tant que couche de prénucléation pour annihiler les parois d’antiphase à l’interface GaP/ Si (néfaste pour les propriétés optoélectroniques des dispositifs) - De nombreuses similitude entre la croissance de GaAsN et de GaPN ce qui permet d’élaborer une stratégie afin d’optimiser les propriétés optoélectroniques du GaAsPN - De fortes corrélations entre les propriétés optique et éléctriques dans les nitrures dilués - La réalisation préliminaire d’une cellule solaire monojonction sur GaP ayant un rendement encourageant de 2.25% considérant la faible épaisseur de l’absorbeur dans cette cellule (300 nm)
This thesis focuses on optimizing the heterogeneous growth of IIIN- V solar cells on GaP (001) and GaP nanolayers on Si (001). The goal is to build high efficiency solar cells on low-cost substrate for the realization of concentrated photovoltaic powerplant. The main results shows: - AlGaP as prenucleation layer increase the annihilations of anti-phase boundaries at the GaP/Si interface (harmful for the electronic properties of the devices). - Similarities between the growth of GaAsN and GaPN giving strategies to improve the GaAsPN electrical properties - Clear correlations between the optical and electrical properties of dilute nitride solar cells, giving interesting tools to optimize the growth of those materials using optical measurements. - The realization of a GaAsPN solar cell on GaP with a yield of 2.25%. This results is encouraging given the thin GaAsPN absorber used in this cell
APA, Harvard, Vancouver, ISO, and other styles
21

Baghalian, Amin. "Detecting Structural Defects Using Novel Smart Sensory and Sensor-less Approaches." FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3560.

Full text
Abstract:
Monitoring the mechanical integrity of critical structures is extremely important, as mechanical defects can potentially have adverse impacts on their safe operability throughout their service life. Structural defects can be detected by using active structural health monitoring (SHM) approaches, in which a given structure is excited with harmonic mechanical waves generated by actuators. The response of the structure is then collected using sensor(s) and is analyzed for possible defects, with various active SHM approaches available for analyzing the response of a structure to single- or multi-frequency harmonic excitations. In order to identify the appropriate excitation frequency, however, the majority of such methods require a priori knowledge of the characteristics of the defects under consideration. This makes the whole enterprise of detecting structural defects logically circular, as there is usually limited a priori information about the characteristics and the locations of defects that are yet to be detected. Furthermore, the majority of SHM techniques rely on sensors for response collection, with the very same sensors also prone to structural damage. The Surface Response to Excitation (SuRE) method is a broadband frequency method that has high sensitivity to different types of defects, but it requires a baseline. In this study, initially, theoretical justification was provided for the validity of the SuRE method and it was implemented for detection of internal and external defects in pipes. Then, the Comprehensive Heterodyne Effect Based Inspection (CHEBI) method was developed based on the SuRE method to eliminate the need for any baseline. Unlike traditional approaches, the CHEBI method requires no a priori knowledge of defect characteristics for the selection of the excitation frequency. In addition, the proposed heterodyne effect-based approach constitutes the very first sensor-less smart monitoring technique, in which the emergence of mechanical defect(s) triggers an audible alarm in the structure with the defect. Finally, a novel compact phased array (CPA) method was developed for locating defects using only three transducers. The CPA approach provides an image of most probable defected areas in the structure in three steps. The techniques developed in this study were used to detect and/or locate different types of mechanical damages in structures with various geometries.
APA, Harvard, Vancouver, ISO, and other styles
22

Hage-Ali, Sami. "Antennes et dispositifs hyperfréquences millimétriques ultrasouples reconfigurables à base de Microsystèmes Magnéto-Electro-Mécaniques (MMEMS) : conception, réalisation, mesures." Phd thesis, Ecole Centrale de Lille, 2011. http://tel.archives-ouvertes.fr/tel-00638181.

Full text
Abstract:
Il y a à l'heure actuelle un grand besoin d'antennes reconfigurables dans la bande des 60 GHz pour des applications de télédétection et de télécommunications sans fil très hauts débits. Les solutions traditionnelles de reconfiguration sont basées sur des semiconducteurs ou des composants RF-MEMS, qui connaissent un coût, une complexité et des pertes croissantes en bande millimétrique. Dans cette thèse, une approche originale a été développée : elle est basée sur la reconfiguration mécanique d'antennes et dispositifs millimétriques microrubans sur substrat élastomère ultrasouple PDMS grâce à des actionneurs MEMS grands déplacements. Premièrement, les choix de conception, la technique de simulation éléments finis (HFSS), et surtout la microfabrication d'antennes sur membrane PDMS ainsi que les techniques de mesure en impédance et rayonnement sont abordés.Deux axes ont ensuite été étudiés : les antennes accordables en fréquence, et les antennes et composants pour le balayage angulaire (déphaseurs et antennes à balayage mécanique de type scanner). Des procédés technologiques innovants ont été développés (reports de métallisations épaisses biocompatibles et d'aimants permanents en couches minces sur membrane PDMS) et différentes techniques d'actionnement (pneumatique, magnétique, par électromouillage) ont été mises en œuvre. Les performances en terme d'accord en fréquence (8,2 %) et de balayage angulaire (-90/+100°) dépassent l'état de l'art des antennes du même type en bande millimétrique, et ceci en utilisant une technologie peu complexe, ultra bas-coût et prometteuse pour la montée en fréquence.
APA, Harvard, Vancouver, ISO, and other styles
23

Chiang, Yu-Hsin, and 江昱欣. "Design and Fabrication of an Electro-Optic Beam Scanner." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/262n27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Huang, Chih-Wei, and 黃志偉. "Vibration Control of a Sandwich Beam with Embedded Electro-Rheological Fluid." Thesis, 1999. http://ndltd.ncl.edu.tw/handle/59314188861495229794.

Full text
Abstract:
碩士
華梵大學
機電工程研究所
87
This thesis presents vibration control strategies of sandwich beam with embedded electro-rheological fluid (ERF). The ERF consists of corn powder and silicon oil. When an electric field is applied, the dynamic properties of sandwich beam change instantly and reversibly. The stiffness and damping coefficient of the beam increase with electric field. Based on these phenomena, the thesis presents two control strategies, namely genetic algorithm and adaptive control, to suppress vibration of the structure. The control algorithms are implemented in a personal computer containing Intel Pentium II CPU. Genetic algorithm is employed to search for the optimal electric field on-line, and is proven effective in suppressing vibration in the experiments. The beam undergoes harmonic excitations of different frequency. After implementing genetic algorithm, it can be found that the vibration amplitude of the beam converges to its near optimal minimum. Adaptive control is used to work with a constant electric field strategy to accomplish both active and semi-active controls. The beam is assumed to undergo harmonic excitations of the first and second modes respectively. While suppressing most of the amplitude by the constant electric field, adaptive control is aimed to diminish the remaining vibration. It is shown that the remaining amplitude is reduced in most situations.
APA, Harvard, Vancouver, ISO, and other styles
25

Lu, Sho-Shou, and 呂受書. "InGaAlAs/InP Electro-Absorption Modulator Structures Grown by Molecular Beam Epitaxy." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/69706688618929902036.

Full text
Abstract:
碩士
國立中山大學
光電工程研究所
91
The work of this thesis includes designs, molecular beam epitaxy (MBE) growths and optical study of electro-absorption modulator (EAM) structures. Three EAM structures are designed near 1.5 um : symmetric, asymmetric multiple quantum wells (MQWs) of TE polarization, and polarization insensitive MQWs. For symmetric and asymmetric MQWs simulation of TE polarization, their red-shift are 31 nm and 50 nm, respectively, as the electric field decrease from -40 kV/cm to -120 kV/cm. For polarization insensitive MQWs, we use the strained quantum-well concept to achieve same transition energy and absorption. After growth by MBE system, the samples were fabricated in mesa type by photolithography and wet etching. For symmetric and asymmetric quantum wells of TE polarization:the red-shift are 16 nm and 49 nm, respectively, as the bias decrease form 0-1 volt to 0-6 volt. Because of small △n near subband transition energy, these two samples exhibit small chirp parameter. However, the photoluminescence (PL) and photocurrent spectra of these two ones were not near 1.5 um and obvious absorption edge. The possible reason is that the molecular beam flux have changed during growth. For polarization insensitive MQWs, the PL spectra shows 1494 nm, which only 25.6 nm differ from our design. Also, the photocurrent spectra of TE and TM polarization nearly exhibit same transition energy and have small chirp parameter.
APA, Harvard, Vancouver, ISO, and other styles
26

Weng, Peng-Hsiang, and 翁鵬翔. "Time-resolved electro-luminescence & optical beam induced current mapping of photonic devices." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/48051952218798257359.

Full text
Abstract:
碩士
國立中山大學
光電工程研究所
93
In this study we have successfully developed the techniques of time-resolved electro-luminescence (EL) and optical beam induced current (OBIC) microscopy for the mapping of photonic devices. We have applied the techniques to examine various photonic devices, including light emitting diodes (LED), organic light emitting diode (OLED), and coplanar waveguide (CPW) devices. The key development in time-resolved microscopy is the technique of modulation. By measuring the phase delay between the modulation source and the output signal, the response time of the observed devices can be extracted. In electro-luminescence mapping, the phase delay is measured between the applied sinusoidal voltage and the emitted EL, while in OBIC mapping the phase delay is measured between the modulated laser beam and the resulting photocurrent. The phase delay measurements are performed with a lock-in amplifier. In this way, large enhancement in signal-to-noise ratio can also be obtained. Additionally, the technique of varying scanning rate is also developed to synchronize the data acquisition between the LSM and the lock-in amplifier, a key enabling advancement in this thesis study.
APA, Harvard, Vancouver, ISO, and other styles
27

Shin, Yong-Wook. "Electro-optically tunable polarization independent add drop filter with relaxed beam splitter in linbo3." Thesis, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2951.

Full text
Abstract:
A polarization-independent electro-optically tunable add/drop filter utilizing non-polarizing novel relaxed beam splitters has been developed in LiNbO3 at the 1.55μm wavelength regime. The operation of this filter is based on passive directional coupler type beam splitters and strain-induced phase-matched TE↔TM polarization mode converters on an asymmetric Mach-Zehnder interferometer waveguide configuration. Fabrication parameters for channel waveguides, relaxed beam splitters and polarization mode converters were optimized individually then integrated to produce the final device. Single mode channel waveguides for both TE and TM polarizations were realized by the diffusion of 7μm wide Ti strips into LiNbO3 substrate. Relaxed beam splitters were produced using Ti diffused waveguides in a directional coupler configuration with 3.5mm long coupling region, 0.6º bending angle, and separation gap of 11μm and 13μm between waveguides. Tunable TE↔TM polarization mode converters with 99.8%
APA, Harvard, Vancouver, ISO, and other styles
28

Chen, Wei-Hsuan, and 陳蔚軒. "On-wafer 2-D electric-field-vector measurement using single-beam electro-optic probing technique." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/91189158300332752419.

Full text
Abstract:
碩士
國立中山大學
光電工程研究所
88
Electro-Optic(EO) probing techniques are advancing rapidly in recent years due to their superior performance in characterization of semiconductor devices and circuits. Although the conventional systems can only monitor the amplitude distribution of electric field, some advanced EO probing techniques are able to measure not only the electric-field amplitude, but also direction of the electric field. Because valuable information can be released in such as chamfered bending transmission lines, patch antennas and wireless devices, etc., EO probing technique becomes an important tool to the characterization of radio frequency devices. These systems often require two beams or two different EO crystals to differentiate the directions of the electric field under test because only one type of EO modulation, compressed/stretched deformation modulation, is utilized in the measurement. Therefore, the measurements are inaccurate and complicated due to the fact that the path length and EO interaction strength of the two probing beams are different. In this research, we demonstrate the EO probing technique with one beam and one EO crystal to extract 2-D electric-field vector using an additional modulation effect, i.e. rotational deformation modulation. This electric field vector measurement technique is compact, accurate and low cost. We not only prove that on-wafer 2-D electric-field-vector measurement using single-beam electro-optic probing technique is feasible theoretically and experimentally, but also combine rotational deformation modulation and compressed/stretched deformation modulation to a practical circuit measurement. Commercial software, Ansoft Maxwell 3-D Field Simulator, is employed to verify our measurements. Good agreement is obtained between experiment and simulation results. In addition to 2-D electric-field-vector measurement, we made an attempt to high-frequency real-time measurement. With the trend of low voltage operation in wireless communication, the most serious issue of high-frequency real-time EO probing technique is the improvement of signal to noise ratio. We tried to improve the stability of laser source, control the polarization of incident beam, and utilize Fabry-Perot filter in order to implement high-frequency real-time measurement. A bandwidth of 900 MHz was achieved, which is record-high to our knowledge.
APA, Harvard, Vancouver, ISO, and other styles
29

Chen, Keng-Feng, and 陳耿烽. "Vibration Control of a Structure Using a Vibration Absorber Based on an Electro-rheological Fluid Sandwich Beam." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/ge9bgj.

Full text
Abstract:
碩士
國立臺北科技大學
自動化科技研究所
100
The main objective of this article is to present the achievements of controlling a sandwich cantilever beam embedded with electro-rheological fluid as a tunable vibration absorber. In this study, the sandwich beam filled with electro-rheological fluid inside regards as a structure of the vibration absorber. Electro-rheological fluids change to Bingham behavior from Newtonian flow under electric field. The field cause the suspended particles polarize and connect each other to form chain. The viscosity and the yield stress of the ER fluid increase as electric field so that it is applicable to be the adjustable damping of a tunable vibration absorber. This thesis describes the dynamic properties of the sandwich cantilever beam of which natural frequencies of the beam increase with the electric field. Therefore it is suitable to be the dynamic vibration absorber. According to the experimental results, we design a fuzzy controller to accomplish the tunable vibration absorber in semi-active vibration control. Then compare to the result of self-tuning control method.
APA, Harvard, Vancouver, ISO, and other styles
30

Jhong, Sheng-Cyuan, and 鐘生權. "Study on electro-optical parameter measurements of liquid-crystal cell based on polyimide film using non-contact plasma beam alignment." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/53916371564434873341.

Full text
Abstract:
碩士
國立東華大學
電機工程學系
97
The high optical-electrical performance on display characteristics of liquid crystal (LCD) is strongly demanded in the recently years, and can be evaluated by a series of parameters, such as contrast, response time, driving or threshold voltage, order parameter etc. To obtain the correlations between these parameters are important for understanding the liquid crystal molecule dynamic characteristics on polyimide alignment layer. By statistical analysis, we can establish a model between inter and external LC parameters. It is useful methodology for the future non-contact alignment technology to estimate the LC performance from the model obtained by above analysis. We measure the order parameter by using full band spectrometer to detect their corresponding absorption when the appropriate doping of dichroic azo dye methyl red reacts with liquid crystal to form Guest-Host effect, dye molecular parallel to liquid crystal molecular, and represent the statistical orientation of liquid crystal from the dye’s absorption signal. The response time was measured by using transmittance of laser beams corresponding to the pulse signal feed to the cell. Pre-tilt angle and anchoring energy are also obtained from crystal rotation method and deriving relation between transmission and polarization individually. The data show the order parameter is 0.63, threshold voltage is 3.9V, and response time is 61ms at the process condition of 15 min plasma alignment. The correlations of order parameter between Vt and response time are -0.7366 and -0.9263 individually.
APA, Harvard, Vancouver, ISO, and other styles
31

Huang, Yu-Jun, and 黃昱竣. "Effects of SM570M-CHW steel box column flange thickness and overlap distance of diaphragm and beam flange on electro-slag welding failure." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/rmtgec.

Full text
Abstract:
碩士
國立臺灣大學
土木工程學研究所
107
Steel box columns are widely used in steel structures in Taiwan because both two axes are equally strong. In the moment connections, diaphragm plates are welded inside the box column at the same elevations of beam flanges in order to transfer the beam end moment to the column. Electro-slag welding (ESW) process is commonly applied to attach the diaphragms to the column. The ESW process provides welding efficiency and convenience. However, the high thermal input during this welding procedure results in heat affected zones (HAZs) with an increased hardness and reduced Charpy notch strength. The HAZ may suffer severe stress concentration and fracture in the case of ESW or beam flange eccentricity. In this study, two full-scaled SM570M-CHW high strength steel welded beam-to-box column moment connection specimens were tested, and the key parameters are column flange thickness and beam flange eccentricity with respect to the diaphragm. This study applies finite element model (FEM) analysis as well as stress modified critical strain (SMCS) and degraded significant plastic strain (DSPS) models proposed by Kanvinde and Deierlein in 2004 to predict the fracture instance of ESW under cyclic loading. Two welded beam-to-box column moment connection tests were conducted by Hu in 2018. The test results show that the connection with the 25mm column flange thickness and a 36mm beam flange eccentricity (equals to the diaphragm and beam flange thickness) failed at the 3% IDR cycle. On the contrary, the other connection with the 45mm column flange thickness and the same eccentricity went through 6% IDR cycle without ESW fracture. In the present study, the same column specimen was used. When the beam flange eccentricity was increased to 45mm, the connection with the 25mm column flange thickness failed at the 2% IDR cycle, and the connection with the 45mm column flange thickness still went through 6% IDR cycle without ESW fracture. In order to compute the material parameter λ in the DSPS model, this study conducted circumferential notched tensile (CNT) coupon tests at the ESW and HAZ regions. The finite element models were constructed to analyze the response of the CNT specimens. After conducting regression analysis on the material parameters, this study applied DSPS model and FEM analysis to predict the crack instance of the aforementioned four moment connection tests. The analysis results show that the DSPS model tends to be conservative. This study also carried out parametric study, focusing on the effects of the column flange thickness, the beam flange thickness and overlapping distance of beam flange and diaphragm on ESW fracture. Results show that increasing the column flange thickness, or the overlapping distance of beam flange and diaphragm and decreasing the beam flange thickness reduce the stress concentration near ESW. In order to avoid the ESW fracture, this study recommends that column flange thickness be equal to or larger than diaphragm or beam flange thickness; and overlapping distance of beam flange and diaphragm be larger than one quarter of the diaphragm or beam flange thickness.
APA, Harvard, Vancouver, ISO, and other styles
32

Zakariya, Abdullah. "Monolithically Integrated Broadly Tunable Light Emitters based on Selectively Intermixed Quantum Wells." Doctoral diss., 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6210.

Full text
Abstract:
A monolithically integrated broadly tunable MQW laser that utilizes a combined impurity-free vacancy disordering (IFVD) of quantum wells and optical beam steering techniques is proposed and investigated experimentally. The device consists of a beam-steering section and an optical amplifier section fabricated on a GaAs/AlGaAs quantum well (QW) p-i-n heterostructure. The beam steering section forms a reconfigurable optical waveguide that can be moved laterally by applying separately controlled electrical currents to two parallel contact stripes. The active core of the gain section is divided in into selectively intermixed regions. The selective intermixing of the QW in the gain section results in neighboring regions with different optical bandgaps. The wavelength tuning is accomplished by steering the amplified optical beam through the selected region where it experiences a peak in the gain spectrum determined by the degree of intermixing of the QW. The laser wavelength tunes to the peak in the gain spectrum of that region. The IFVD technique relies on a silica (SiO2) capped rapid thermal annealing and it has been found that the degree of intermixing of the QW with the barrier material is dependent on the thickness of the SiO2 film. The QW sample is first encapsulated with a 400nm thick SiO2 film grown by plasma enhanced chemical vapor deposition (PECVD). In the gain section, the SiO2 film is selectively etched using multiple photolithographic and reactive ion etching steps whereas the SiO2 film is left intact in all the remaining areas including the beam-steering section. The selective area quantum well intermixing is then induced by a single rapid thermal annealing step at 975°C for a 20s duration to realize a structure with quantum well that has different bandgaps in the key regions. Optical characterizations of the intermixed regions have shown a blue shift of peak of the electroluminescence emission of 5nm, 16nm and 33nm for the uncapped, 100nm and 200nm respectively when compared to the as grown sample. The integrated laser exhibited a wavelength tuning range of 17nm (799nm to 816nm). Based on the same principle of QW selective intermixing, we have also designed and fabricated a monolithically integrated multi-wavelength light emitting diode (LED). The LED emits multiple wavelength optical beams from one compact easy to fabricate QW structure. Each wavelength has an independent optical power control, allowing the LED to emit one or more wavelengths at once. The material for the LED is the same AlGaAs/GaAs QW p-i-n heterostructure described above. The device is divided into selectively intermixed regions on a single QW structure using IFVD technique to create localized intermixed regions. Two different designs have been implemented to realize either an LED with multiple output beams of different wavelengths or an LED with a single output beam that has dual wavelength operation capabilities. Experimental results of the multiple output beams LED have demonstrated electrically controlled optical emission of 800nm, 789nm and 772nm. The single output LED has experimentally been shown to produce wavelength emission of 800nm and/or 772nm depending on electrical activation of the two aligned intermixed regions.
Ph.D.
Doctorate
Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering
APA, Harvard, Vancouver, ISO, and other styles
33

Forouzanfar, Sepehr. "Micro-electro-thermo-magnetic Actuators for MEMS Applications." Thesis, 2006. http://hdl.handle.net/10012/3605.

Full text
Abstract:
This research focuses on developing new techniques and designs for highly con- trollable microactuating systems with large force-stroke outputs. A fixed-fixed mi- crobeam is the actuating element in the introduced techniques. Either buckling of a microbridge by thermal stress, lateral deflection of a microbridge by electro- magnetic force, or combined effects of both can be employed for microactuation. The proposed method here is MicroElectroThermoMagnetic Actuation (METMA), which uses the combined techniques of electrical or electro-thermal driving of a mi- crobridge in the presence of a magnetic field. The electrically controllable magnetic field actuates and controls the electrically or electrothermally driven microstruc- tures. METMA provides control with two electrical inputs, the currents driving the microbridge and the current driving the external magnetic field. This method enables a more controllable actuating system. Different designs of microactuators have been implemented by using MEMS Pro as the design software and MUMPs as the standard MEMS fabrication technology. In these designs, a variety of out-of- plane buckling or displacement of fixed-fixed microbeams have been developed and employed as the actuating elements. This paper also introduces a novel actuating technique for larger displacements that uses a two-layer buckling microbridge actu- ated by METMA. Heat transfer principles are applied to investigate temperature distribution in a microbeam, electrothermal heating, and the resulting thermoelas- tic effects. Furthermore, a method for driving microactuators by applying powerful electrical pulses is proposed. The integrated electromagnetic and electrothermal microactuation technique is also studied. A clamped-clamped microbeam carry- ing electrical current has been modeled and simulated in ANSYS. The simulations include electrothermal, thermoelastic, electromagnetic, and electrothermomagnetic effects. The contributions are highlighted, the results are discussed, the research and design limitations are reported, and future works are proposed.
APA, Harvard, Vancouver, ISO, and other styles
34

Yogesh, Prasad K. R. "Generation of Modulated Microwave Signals using Optical Techniques for Onboard Spacecraft Applications." Thesis, 2013. http://etd.iisc.ernet.in/handle/2005/2849.

Full text
Abstract:
This thesis deals with optical synthesis of unmodulated and modulated microwave signals. Generation of microwave signals based on optical heterodyning is discussed in detail. The effect of phase noise of laser on heterodyned output has been studied for different phase noise profiles. Towards this, we propose a generic algorithm to numerically model the linewidth broadening of a laser due to phase noise. Generation of microwave signals is demonstrated practically by conducting an optical heterodyning experiment. Signals ranging in frequency from 12.5 MHz to 27 GHz have been generated. Limitations of optical heterodyning based approach in terms of phase noise performance and frequency stability are discussed and practically demonstrated. A hardware-efficient Optical Phase Locked Loop (OPLL) is proposed to overcome these issues. Phase noise tracking performance of the proposed OPLL has been experimentally demonstrated. Phase noise values as low as -105 dBc/Hz at 10 KHz offset have been achieved. Optical modulators, owing to their extremely low electro-optic response time, can support high frequency modulating signals. This makes them highly attractive in comparison to their microwave counterparts. In this thesis, we propose techniques to generate microwave signals modulated at very high bit rates by down-converting the corresponding modulated optical signals to microwave domain. Down-conversion required for this process is achieved by optical heterodyning. The proposed concept has been theoretically analyzed, simulated and experimentally validated. Amplitude Modulated and ASK modulated microwave signals have been generated as Proof-of-Concept. Limitations posed by OPLL in generation of angle modulated microwave signals by optical heterodyning have been brought out. Schemes overcoming these limitations have been proposed towards generation of BPSK and QPSK modulated microwave signals. Integrated Optics (IO) technology has been studied as a means of implementation of the proposed concepts. IO components like Sinusoidal bends, Y-branch splitters and Electro-Optic-Modulators (EOMs) have been designed towards optical synthesis of modulated microwave signals. Propagation of modulated optical signal through these IO components has also been studied. An all-optic scheme based on Optical Beam Forming is proposed for transmission of QPSK modulated signal. Limitation of phase-shifting based approach, in terms of beam-squint, has been brought out. True-Time-Delay based approach has been proposed for applications demanding wide instantaneous bandwidth to avoid beam-squint. Algorithms / numerical methods required for analyses and simulations associated with the above-mentioned tasks have been evolved. This study is envisaged to provide useful insight into the realization of high-speed, compact, light-weight data transmitting systems based on Integrated Optics for future onboard spacecraft applications. This work, we believe, is a step towards realization of an Integrated Optic System-on-Chip solution for specific microwave data transmission applications.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography