To see the other types of publications on this topic, follow the link: Electrical Spin Injection.

Journal articles on the topic 'Electrical Spin Injection'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Electrical Spin Injection.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mi, Yi Lin, and Jiang Nan Gao. "Effect of Electric-Field on Spin Injection Efficiency in the Organic Semiconductors." Materials Science Forum 852 (April 2016): 704–7. http://dx.doi.org/10.4028/www.scientific.net/msf.852.704.

Full text
Abstract:
The spin injection efficiency in the ferromagnet/ organic semiconductors system (FM/OSE) was studied under an external electric-field. It is found that the spin injection efficiency can be strongly influenced by the spin-dependent electrical conductivity and the downstream spin diffusion length of polarons. With the increase of external electric-field, the downstream spin diffusion length increases and makes the spin-dependent electrical conductivity increase, too. So the spin injection efficiency is enhanced. When the external electric-field increases from 1 to 10 mV/μm at T=80K, the spin injection efficiency increases about 20%. It seems that the downstream spin diffusion length is an significant factor to affect the spin injection efficiency in the FM/ OSE under an external electric-field.
APA, Harvard, Vancouver, ISO, and other styles
2

Mi, Yi Lin, Feng Yan Liu, and Jiang Nan Gao. "Spin Injection in a Ferromagnetic/Organic System." Advanced Materials Research 502 (April 2012): 416–20. http://dx.doi.org/10.4028/www.scientific.net/amr.502.416.

Full text
Abstract:
Spin injection efficiency in the ferromagnet/ organic semiconductors system (FM/OSEs) was explored considering the spin dependence of the electric-conductivity induced by spin injection in the OSEs. It is known that the OSEs is spin polarized, once spin was injected from FM layer to OSEs layer. The up-spin polarons and the down-spin polarons have different density. The spin dependence of the electric-conductivity is so induced. In the literature, it was usually supposed that the electric-conductivity in the spin polarized OSEs is spin independent. So, it is crucial to reflect the physics in the spin injection. Our work shows that the spin-dependent electrical-conductivity is one of the significant factors which affect the spin injection efficiency. The spin injection efficiency increases obviously with the rising of the spin-dependent electrical-conductivity in the same spin injection system. And the effect becomes larger, when the polaron proportion increases. Furthermore, the effects of interfacial electrochemical-potential proportion on the spin injection efficiency in the heterojunction are also included.
APA, Harvard, Vancouver, ISO, and other styles
3

Schmidt, G., and L. W. Molenkamp. "Electrical spin injection into semiconductors." Physica E: Low-dimensional Systems and Nanostructures 9, no. 1 (January 2001): 202–8. http://dx.doi.org/10.1016/s1386-9477(00)00195-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, B. L., M. Sénès, S. Couderc, J. F. Bobo, X. Marie, T. Amand, C. Fontaine, and A. Arnoult. "Optical and electrical spin injection in spin-LED." Physica E: Low-dimensional Systems and Nanostructures 17 (April 2003): 358–60. http://dx.doi.org/10.1016/s1386-9477(02)00809-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hövel, S., N. C. Gerhardt, M. R. Hofmann, F. Y. Lo, A. Ludwig, D. Reuter, A. D. Wieck, et al. "Room temperature electrical spin injection in remanence." Applied Physics Letters 93, no. 2 (July 14, 2008): 021117. http://dx.doi.org/10.1063/1.2957469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schmidt, Georg, and Laurens W. Molenkamp. "Electrical spin injection using dilute magnetic semiconductors." Physica E: Low-dimensional Systems and Nanostructures 10, no. 1-3 (May 2001): 484–88. http://dx.doi.org/10.1016/s1386-9477(01)00142-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fitzgerald, Richard. "Magnetic Semiconductors Enable Efficient Electrical Spin Injection." Physics Today 53, no. 4 (April 2000): 21–22. http://dx.doi.org/10.1063/1.883032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Heedt, S., C. Morgan, K. Weis, D. E. Bürgler, R. Calarco, H. Hardtdegen, D. Grützmacher, and Th Schäpers. "Electrical Spin Injection into InN Semiconductor Nanowires." Nano Letters 12, no. 9 (August 21, 2012): 4437–43. http://dx.doi.org/10.1021/nl301052g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Löffler, W., D. Tröndle, J. Fallert, E. Tsitsishvili, H. Kalt, D. Litvinov, D. Gerthsen, et al. "Electrical spin injection into InGaAs quantum dots." physica status solidi (c) 3, no. 7 (August 2006): 2406–9. http://dx.doi.org/10.1002/pssc.200668004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bibes, M., N. Reyren, E. Lesne, J. M. George, C. Deranlot, S. Collin, A. Barthélémy, and H. Jaffrès. "Towards electrical spin injection into LaAlO 3 –SrTiO 3." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1977 (October 28, 2012): 4958–71. http://dx.doi.org/10.1098/rsta.2012.0201.

Full text
Abstract:
Future spintronics devices will be built from elemental blocks allowing the electrical injection, propagation, manipulation and detection of spin-based information. Owing to their remarkable multi-functional and strongly correlated character, oxide materials already provide such building blocks for charge-based devices such as ferroelectric field-effect transistors (FETs), as well as for spin-based two-terminal devices such as magnetic tunnel junctions, with giant responses in both cases. Until now, the lack of suitable channel materials and the uncertainty of spin-injection conditions in these compounds had however prevented the exploration of similar giant responses in oxide-based lateral spin transport structures. In this paper, we discuss the potential of oxide-based spin FETs and report magnetotransport data that suggest electrical spin injection into the LaAlO 3 –SrTiO 3 interface system. In a local, three-terminal measurement scheme, we analyse the voltage variation associated with the precession of the injected spin accumulation driven by perpendicular or longitudinal magnetic fields (Hanle and ‘inverted’ Hanle effects). The spin accumulation signal appears to be much larger than expected, probably owing to amplification effects by resonant tunnelling through localized states in the LaAlO 3 . We give perspectives on how to achieve direct spin injection with increased detection efficiency, as well on the implementation of efficient top gating schemes for spin manipulation.
APA, Harvard, Vancouver, ISO, and other styles
11

Yunus, M., P. P. Ruden, and D. L. Smith. "Ambipolar electrical spin injection and spin transport in organic semiconductors." Journal of Applied Physics 103, no. 10 (May 15, 2008): 103714. http://dx.doi.org/10.1063/1.2917215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jonker, B. T., S. C. Erwin, A. Petrou, and A. G. Petukhov. "Electrical Spin Injection and Transport in Semiconductor Spintronic Devices." MRS Bulletin 28, no. 10 (October 2003): 740–48. http://dx.doi.org/10.1557/mrs2003.216.

Full text
Abstract:
AbstractSemiconductor heterostructures that utilize carrier spin as a new degree of freedom offer entirely new functionality and enhanced performance over conventional devices. We describe the essential requirements for implementing this technology, focusing on the materials and interface issues relevant to electrical spin injection into a semiconductor. These are discussed and illustrated in the context of several prototype semiconductor spintronic devices, including spin-polarized light-emitting diodes and resonant tunneling structures such as the resonant interband tunneling diode.
APA, Harvard, Vancouver, ISO, and other styles
13

Fuhrer, A., S. F. Alvarado, G. Salis, and R. Allenspach. "Fast electrical switching of spin injection in nonlocal spin transport devices." Applied Physics Letters 98, no. 20 (May 16, 2011): 202104. http://dx.doi.org/10.1063/1.3590726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Truong, V. G., P. H. Binh, P. Renucci, M. Tran, Y. Lu, H. Jaffrès, J. M. George, et al. "High speed pulsed electrical spin injection in spin-light emitting diode." Applied Physics Letters 94, no. 14 (April 6, 2009): 141109. http://dx.doi.org/10.1063/1.3110990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jonker, B. T., Y. D. Park, B. R. Bennett, H. D. Cheong, G. Kioseoglou, and A. Petrou. "Robust electrical spin injection into a semiconductor heterostructure." Physical Review B 62, no. 12 (September 15, 2000): 8180–83. http://dx.doi.org/10.1103/physrevb.62.8180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ohno, Y., D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom. "Electrical spin injection in a ferromagnetic semiconductor heterostructure." Nature 402, no. 6763 (December 1999): 790–92. http://dx.doi.org/10.1038/45509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Young, D. K., E. Johnston-Halperin, D. D. Awschalom, Y. Ohno, and H. Ohno. "Anisotropic electrical spin injection in ferromagnetic semiconductor heterostructures." Applied Physics Letters 80, no. 9 (March 4, 2002): 1598–600. http://dx.doi.org/10.1063/1.1458535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Dennis, C. L., J. F. Gregg, G. J. Ensell, and S. M. Thompson. "Evidence for electrical spin tunnel injection into silicon." Journal of Applied Physics 100, no. 4 (August 15, 2006): 043717. http://dx.doi.org/10.1063/1.2229870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Schmidt, Georg, Laurens W. Molenkamp, and Gerrit W. Bauer. "Electrical injection of spin polarized electrons into GaAs." Materials Science and Engineering: C 15, no. 1-2 (August 2001): 83–88. http://dx.doi.org/10.1016/s0928-4931(01)00265-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ohno, Y., I. Arata, F. Matsukura, H. Ohno, D. K. Young, B. Beschoten, and D. D. Awschalom. "Electrical spin injection in ferromagnetic/nonmagnetic semiconductor heterostructures." Physica E: Low-dimensional Systems and Nanostructures 10, no. 1-3 (May 2001): 489–92. http://dx.doi.org/10.1016/s1386-9477(01)00143-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hanbicki, A. T., G. Kioseoglou, M. A. Holub, O. M. J. van ’t Erve, and B. T. Jonker. "Electrical spin injection from Fe into ZnSe(001)." Applied Physics Letters 94, no. 8 (February 23, 2009): 082507. http://dx.doi.org/10.1063/1.3089837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ploog, Klaus H. "Epitaxial ferromagnet-semiconductor heterostructures for electrical spin injection." Journal of Crystal Growth 268, no. 3-4 (August 2004): 329–35. http://dx.doi.org/10.1016/j.jcrysgro.2004.04.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Oestreich, M., M. Bender, J. H bner, D. H gele, W. W. R hle, Th Hartmann, P. J. Klar, et al. "Spin injection, spin transport and spin coherence." Semiconductor Science and Technology 17, no. 4 (March 21, 2002): 285–97. http://dx.doi.org/10.1088/0268-1242/17/4/302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Weng, Sheng-Yueh, M. Sanjoy Singh, Cheng-Feng Hong, Wen-Teng Lin, Po-Hsun Wu, Ssu-Yen Huang, Jauyn Grace Lin, Yu-Hsun Chu, Wen-Chung Chiang, and Minn-Tsong Lin. "Effective spin injection into the organic semiconductor PTCDA evaluated by a normalization method." Applied Physics Letters 121, no. 23 (December 5, 2022): 232401. http://dx.doi.org/10.1063/5.0106446.

Full text
Abstract:
Studies of spin current injection, transport, and interface control have drawn attention recently for efficient organic spintronic devices. In this study, we apply both spin pumping (SP) and the longitudinal spin Seebeck effect (LSSE) to inject spin currents into a π-conjugated organic semiconductor, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and characterize injection and transport by measuring inverse spin Hall voltage [Formula: see text] in spin detectors. A normalization factor introduced to SP analysis eliminates a contribution provoked by deviation of spin sources and leads to a more accurate determination of the spin diffusion length in PTCDA. While SP with Permalloy as a spin source is effective in generating detectable [Formula: see text], the LSSE from yttrium iron garnet shows no convincing sign of spin injection. In addition, spin-flip scattering induced by hybrid states undermining electrical spin injection is negligible in SP. These results are attributed to interfaces between spin sources and PTCDA, indicative of the importance of injection methods and material choices.
APA, Harvard, Vancouver, ISO, and other styles
25

Asshoff, Pablo, Wolfgang Löffler, Jochen Zimmer, Heiko Füser, Harald Flügge, Heinz Kalt, and Michael Hetterich. "Spin-polarization dynamics in InGaAs quantum dots during pulsed electrical spin-injection." Applied Physics Letters 95, no. 20 (November 16, 2009): 202105. http://dx.doi.org/10.1063/1.3265917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ku, J., J. Chang, S. Han, J. Ha, and J. Eom. "Electrical spin injection and accumulation in ferromagnetic/Au/ferromagnetic lateral spin valves." Journal of Applied Physics 99, no. 8 (April 15, 2006): 08H705. http://dx.doi.org/10.1063/1.2167628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Liu, B. L., P. Renucci, H. Carrère, M. Sénès, X. Marie, T. Amand, J. F. Bobo, C. Fontaine, A. Arnoult, and Phi Hoa Binh. "Spin injection probed by combined optical and electrical techniques in spin-LED." physica status solidi (c) 1, no. 3 (February 2004): 475–78. http://dx.doi.org/10.1002/pssc.200304020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Patil, Tarkeshwar C. "Ferromagnetic Schottky Contact for GaN Based Spin Devices." WSEAS TRANSACTIONS ON ELECTRONICS 12 (August 2, 2021): 55–60. http://dx.doi.org/10.37394/232017.2021.12.8.

Full text
Abstract:
In this paper, ferromagnetic Schottky contacts for GaN based spin injection are being studied. The electrical characterization of this Co/n-GaN and Fe/n-GaN Schottky contacts showing the zero-bias barrier height comes closer to unity as the temperature is increased. Also, the Richardson constant is extracted for this Schottky contact. Both the zero-bias barrier height and the Richardson constant are verified both experimentally as well as theoretically. Thus, this Schottky contacts will serve as spin injector for GaN based spin devices specifically for GaCrN based devices
APA, Harvard, Vancouver, ISO, and other styles
29

SINSARP, ASAWIN, TAKASHI MANAGO, FUMIYOSHI TAKANO, and HIRO AKINAGA. "ELECTRICAL SPIN INJECTION FROM AN IRON-RICH IRON–PLATINUM THIN FILM INTO GALLIUM ARSENIDE." Journal of Nonlinear Optical Physics & Materials 17, no. 01 (March 2008): 105–9. http://dx.doi.org/10.1142/s0218863508003993.

Full text
Abstract:
We fabricated an FePt / MgO tunneling junction ( Fe 55 atomic %) on a GaAs -based light-emitting-diode structure. The out-of-plane magnetization of the FePt thin film was confirmed by a magneto-optical measurement. The electrical spin injection from FePt into GaAs at room temperature was studied using the technique of spin-polarized electroluminescence. The spin polarization of the injected electrons under the magnetic field of 1 T was at least 6.0%. The remnant polarization at 0 T, which indicates the spin injection without a magnetic field, was at least 3.3%.
APA, Harvard, Vancouver, ISO, and other styles
30

Sasaki, Tomoyuki, Tohru Oikawa, Toshio Suzuki, Masashi Shiraishi, Yoshishige Suzuki, and Katsumichi Tagami. "Electrical Spin Injection into Silicon Using MgO Tunnel Barrier." Applied Physics Express 2 (May 15, 2009): 053003. http://dx.doi.org/10.1143/apex.2.053003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Taniyama, Tomoyasu, Eiji Wada, Mitsuru Itoh, and Masahito Yamaguchi. "Electrical and optical spin injection in ferromagnet/semiconductor heterostructures." NPG Asia Materials 3, no. 7 (July 2011): 65–73. http://dx.doi.org/10.1038/asiamat.2011.84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Li, C. H., G. Kioseoglou, A. T. Hanbicki, R. Goswami, C. S. Hellberg, B. T. Jonker, M. Yasar, and A. Petrou. "Electrical spin injection into the InAs∕GaAs wetting layer." Applied Physics Letters 91, no. 26 (December 24, 2007): 262504. http://dx.doi.org/10.1063/1.2827585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Schoonus, J. J. H. M., O. Kurnosikov, H. J. M. Swagten, B. Koopmans, E. J. Geluk, F. Karouta, W. Van Roy, and G. Borghs. "Towards all-electrical spin injection and detection in GaAs." physica status solidi (c) 3, no. 12 (December 2006): 4176–79. http://dx.doi.org/10.1002/pssc.200672818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

CYWIŃSKI, ŁUKASZ, HANAN DERY, PARIN DALAL, and L. J. SHAM. "ELECTRICAL EXPRESSION OF SPIN ACCUMULATION IN FERROMAGNET/SEMICONDUCTOR STRUCTURES." Modern Physics Letters B 21, no. 23 (October 10, 2007): 1509–29. http://dx.doi.org/10.1142/s021798490701395x.

Full text
Abstract:
We treat the spin injection and extraction via a ferromagnetic metal/semiconductor Schottky barrier as a quantum scattering problem. This enables the theory to explain a number of phenomena involving spin-dependent current through the Schottky barrier, especially the counter-intuitive spin polarization direction in the semiconductor due to current extraction seen in recent experiments. A possible explanation of this phenomenon involves taking into account the spin-dependent inelastic scattering via the bound states in the interface region. The quantum-mechanical treatment of spin transport through the interface is coupled with the semiclassical description of transport in the adjoining media, in which we take into account the in-plane spin diffusion along the interface in the planar geometry used in experiments. The theory forms the basis of the calculation of spin-dependent current flow in multi-terminal systems, consisting of a semiconductor channel with many ferromagnetic contacts attached, in which the spin accumulation created by spin injection/extraction can be efficiently sensed by electrical means. A three-terminal system can be used as a magnetic memory cell with the bit of information encoded in the magnetization of one of the contacts. Using five terminals we construct a reprogrammable logic gate, in which the logic inputs and the functionality are encoded in magnetizations of the four terminals, while the current out of the fifth one gives a result of the operation.
APA, Harvard, Vancouver, ISO, and other styles
35

VALENZUELA, SERGIO O. "NONLOCAL ELECTRONIC SPIN DETECTION, SPIN ACCUMULATION AND THE SPIN HALL EFFECT." International Journal of Modern Physics B 23, no. 11 (April 30, 2009): 2413–38. http://dx.doi.org/10.1142/s021797920905290x.

Full text
Abstract:
In recent years, electrical spin injection and detection has grown into a lively area of research in the field of spintronics. Spin injection into a paramagnetic material is usually achieved by means of a ferromagnetic source, whereas the induced spin accumulation or associated spin currents are detected by means of a second ferromagnet or the reciprocal spin Hall effect, respectively. This article reviews the current status of this subject, describing both recent progress and well-established results. The emphasis is on experimental techniques and accomplishments that brought about important advances in spin phenomena and possible technological applications. These advances include, amongst others, the characterization of spin diffusion and precession in a variety of materials, such as metals, semiconductors and graphene, the determination of the spin polarization of tunneling electrons as a function of the bias voltage, and the implementation of magnetization reversal in nanoscale ferromagnetic particles with pure spin currents.
APA, Harvard, Vancouver, ISO, and other styles
36

KÜMMELL, T., M. GHALI, J. HUANG, R. ARIANS, G. BACHER, J. WENISCH, and K. BRUNNER. "ELECTRICAL INJECTION AND OPTICAL READOUT OF SPIN STATES IN A SINGLE QUANTUM DOT." International Journal of Modern Physics B 23, no. 12n13 (May 20, 2009): 2826–35. http://dx.doi.org/10.1142/s0217979209062402.

Full text
Abstract:
We demonstrate electrically driven spin injection into a single semiconductor quantum dot. Spin polarized electrons are transferred from a diluted magnetic semiconductor ( ZnMnSe ) into InAs quantum dots embedded into GaAs barriers. The spin information can be extracted directly from the polarization degree of the electroluminescence signal stemming from an individual quantum dot. By slightly modifying the device design, we demonstrate a concept to electrically charge the quantum dot by a spin polarized electron and present a simple way to probe this spin state optically.
APA, Harvard, Vancouver, ISO, and other styles
37

Tao, B. S., P. Barate, J. Frougier, P. Renucci, B. Xu, A. Djeffal, H. Jaffrès, et al. "Electrical spin injection into GaAs based light emitting diodes using perpendicular magnetic tunnel junction-type spin injector." Applied Physics Letters 108, no. 15 (April 11, 2016): 152404. http://dx.doi.org/10.1063/1.4945768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Banerjee, D., R. Adari, S. Sankaranarayan, A. Kumar, S. Ganguly, R. W. Aldhaheri, M. A. Hussain, A. S. Balamesh, and D. Saha. "Electrical spin injection using GaCrN in a GaN based spin light emitting diode." Applied Physics Letters 103, no. 24 (December 9, 2013): 242408. http://dx.doi.org/10.1063/1.4848836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Jonker, B. T., A. T. Hanbicki, Y. D. Park, G. Itskos, M. Furis, G. Kioseoglou, A. Petrou, and X. Wei. "Quantifying electrical spin injection: Component-resolved electroluminescence from spin-polarized light-emitting diodes." Applied Physics Letters 79, no. 19 (November 5, 2001): 3098–100. http://dx.doi.org/10.1063/1.1416164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Oh, Eunsoon, T. K. Lee, J. H. Park, J. H. Choi, Y. J. Park, K. H. Shin, and K. Y. Kim. "Carrier lifetime and spin relaxation time study for electrical spin injection into GaAs." Journal of Applied Physics 106, no. 4 (August 15, 2009): 043515. http://dx.doi.org/10.1063/1.3186026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Lin, Zhichao, Mahmoud Rasly, and Tetsuya Uemura. "Electrical detection of nuclear spin-echo signals in an electron spin injection system." Applied Physics Letters 110, no. 23 (June 5, 2017): 232404. http://dx.doi.org/10.1063/1.4985650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Xiaowei, Yumeng Yang, Ying Wang, Ziyan Luo, Hang Xie, and Yihong Wu. "Spin accumulation in permalloy-ZnO heterostructures from both electrical injection and spin pumping." Journal of Physics D: Applied Physics 50, no. 45 (October 20, 2017): 455004. http://dx.doi.org/10.1088/1361-6463/aa889a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Crooker, S. A., M. Furis, X. Lou, P. A. Crowell, D. L. Smith, C. Adelmann, and C. J. Palmstrøm. "Optical and electrical spin injection and spin transport in hybrid Fe/GaAs devices." Journal of Applied Physics 101, no. 8 (April 15, 2007): 081716. http://dx.doi.org/10.1063/1.2722785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Schmidt, G., R. Fiederling, M. Keim, G. Reuscher, T. Gruber, W. Ossau, A. Waag, and L. W. Molenkamp. "Demonstration of electrical spin injection into a semiconductor using a semimagnetic spin aligner." Superlattices and Microstructures 27, no. 5-6 (May 2000): 297–300. http://dx.doi.org/10.1006/spmi.2000.0830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gerhardt, Nils C., and Martin R. Hofmann. "Spin-Controlled Vertical-Cavity Surface-Emitting Lasers." Advances in Optical Technologies 2012 (March 14, 2012): 1–15. http://dx.doi.org/10.1155/2012/268949.

Full text
Abstract:
We discuss the concept of spin-controlled vertical-cavity surface-emitting lasers (VCSELs) and analyze it with respect to potential room-temperature applications in spin-optoelectronic devices. Spin-optoelectronics is based on the optical selection rules as they provide a direct connection between the spin polarization of the recombining carriers and the circular polarization of the emitted photons. By means of optical excitation and numerical simulations we show that spin-controlled VCSELs promise to have superior properties to conventional devices such as threshold reduction, spin control of the emission, or even much faster dynamics. Possible concepts for room-temperature electrical spin injection without large external magnetic fields are summarized, and the progress on the field of purely electrically pumped spin-VCSELs is reviewed.
APA, Harvard, Vancouver, ISO, and other styles
46

Tereshchenko, Oleg E., Vladimir A. Golyashov, Vadim S. Rusetsky, Danil A. Kustov, Andrey V. Mironov, and Alexander Yu Demin. "Vacuum Spin LED: First Step towards Vacuum Semiconductor Spintronics." Nanomaterials 13, no. 3 (January 19, 2023): 422. http://dx.doi.org/10.3390/nano13030422.

Full text
Abstract:
Improving the efficiency of spin generation, injection, and detection remains a key challenge for semiconductor spintronics. Electrical injection and optical orientation are two methods of creating spin polarization in semiconductors, which traditionally require specially tailored p-n junctions, tunnel or Schottky barriers. Alternatively, we introduce here a novel concept for spin-polarized electron emission/injection combining the optocoupler principle based on vacuum spin-polarized light-emitting diode (spin VLED) making it possible to measure the free electron beam polarization injected into the III-V heterostructure with quantum wells (QWs) based on the detection of polarized cathodoluminescence (CL). To study the spin-dependent emission/injection, we developed spin VLEDs, which consist of a compact proximity-focused vacuum tube with a spin-polarized electron source (p-GaAs(Cs,O) or Na2KSb) and the spin detector (III-V heterostructure), both activated to a negative electron affinity (NEA) state. The coupling between the photon helicity and the spin angular momentum of the electrons in the photoemission and injection/detection processes is realized without using either magnetic material or a magnetic field. Spin-current detection efficiency in spin VLED is found to be 27% at room temperature. The created vacuum spin LED paves the way for optical generation and spin manipulation in the developing vacuum semiconductor spintronics.
APA, Harvard, Vancouver, ISO, and other styles
47

Тарасов, А. С., А. В. Лукьяненко, И. А. Бондарев, И. А. Яковлев, С. Н. Варнаков, С. Г. Овчинников, and Н. В. Волков. "Эффект спиновой аккумуляции в эпитаксиальной структуре Fe-=SUB=-3-=/SUB=-Si/n-Si и влияние на него электрического смещения." Письма в журнал технической физики 46, no. 13 (2020): 43. http://dx.doi.org/10.21883/pjtf.2020.13.49591.18106.

Full text
Abstract:
The electrical injection of a spin-polarized current into silicon was demonstrated in the Fe3Si/n-Si epitaxial structure. The spin accumulation effect was studied by measuring local and nonlocal voltage signals in a specially prepared 4-terminal device. The detected effect of electrical bias on the spin signal is discussed and compared with other results reported for ferromagnet/semiconductor structures.
APA, Harvard, Vancouver, ISO, and other styles
48

Bebenin, N. G. "Time-dependent spin injection." Solid-State Electronics 186 (December 2021): 108174. http://dx.doi.org/10.1016/j.sse.2021.108174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bhattacharya, Aniruddha, Md Zunaid Baten, and Pallab Bhattacharya. "Electrical spin injection and detection of spin precession in room temperature bulk GaN lateral spin valves." Applied Physics Letters 108, no. 4 (January 25, 2016): 042406. http://dx.doi.org/10.1063/1.4940888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Rinaldi, C., S. Bertoli, M. Asa, L. Baldrati, C. Manzoni, M. Marangoni, G. Cerullo, et al. "Determination of the spin diffusion length in germanium by spin optical orientation and electrical spin injection." Journal of Physics D: Applied Physics 49, no. 42 (September 22, 2016): 425104. http://dx.doi.org/10.1088/0022-3727/49/42/425104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography