Academic literature on the topic 'Electrical Spin Injection'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrical Spin Injection.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electrical Spin Injection"

1

Mi, Yi Lin, and Jiang Nan Gao. "Effect of Electric-Field on Spin Injection Efficiency in the Organic Semiconductors." Materials Science Forum 852 (April 2016): 704–7. http://dx.doi.org/10.4028/www.scientific.net/msf.852.704.

Full text
Abstract:
The spin injection efficiency in the ferromagnet/ organic semiconductors system (FM/OSE) was studied under an external electric-field. It is found that the spin injection efficiency can be strongly influenced by the spin-dependent electrical conductivity and the downstream spin diffusion length of polarons. With the increase of external electric-field, the downstream spin diffusion length increases and makes the spin-dependent electrical conductivity increase, too. So the spin injection efficiency is enhanced. When the external electric-field increases from 1 to 10 mV/μm at T=80K, the spin injection efficiency increases about 20%. It seems that the downstream spin diffusion length is an significant factor to affect the spin injection efficiency in the FM/ OSE under an external electric-field.
APA, Harvard, Vancouver, ISO, and other styles
2

Mi, Yi Lin, Feng Yan Liu, and Jiang Nan Gao. "Spin Injection in a Ferromagnetic/Organic System." Advanced Materials Research 502 (April 2012): 416–20. http://dx.doi.org/10.4028/www.scientific.net/amr.502.416.

Full text
Abstract:
Spin injection efficiency in the ferromagnet/ organic semiconductors system (FM/OSEs) was explored considering the spin dependence of the electric-conductivity induced by spin injection in the OSEs. It is known that the OSEs is spin polarized, once spin was injected from FM layer to OSEs layer. The up-spin polarons and the down-spin polarons have different density. The spin dependence of the electric-conductivity is so induced. In the literature, it was usually supposed that the electric-conductivity in the spin polarized OSEs is spin independent. So, it is crucial to reflect the physics in the spin injection. Our work shows that the spin-dependent electrical-conductivity is one of the significant factors which affect the spin injection efficiency. The spin injection efficiency increases obviously with the rising of the spin-dependent electrical-conductivity in the same spin injection system. And the effect becomes larger, when the polaron proportion increases. Furthermore, the effects of interfacial electrochemical-potential proportion on the spin injection efficiency in the heterojunction are also included.
APA, Harvard, Vancouver, ISO, and other styles
3

Schmidt, G., and L. W. Molenkamp. "Electrical spin injection into semiconductors." Physica E: Low-dimensional Systems and Nanostructures 9, no. 1 (January 2001): 202–8. http://dx.doi.org/10.1016/s1386-9477(00)00195-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, B. L., M. Sénès, S. Couderc, J. F. Bobo, X. Marie, T. Amand, C. Fontaine, and A. Arnoult. "Optical and electrical spin injection in spin-LED." Physica E: Low-dimensional Systems and Nanostructures 17 (April 2003): 358–60. http://dx.doi.org/10.1016/s1386-9477(02)00809-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hövel, S., N. C. Gerhardt, M. R. Hofmann, F. Y. Lo, A. Ludwig, D. Reuter, A. D. Wieck, et al. "Room temperature electrical spin injection in remanence." Applied Physics Letters 93, no. 2 (July 14, 2008): 021117. http://dx.doi.org/10.1063/1.2957469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schmidt, Georg, and Laurens W. Molenkamp. "Electrical spin injection using dilute magnetic semiconductors." Physica E: Low-dimensional Systems and Nanostructures 10, no. 1-3 (May 2001): 484–88. http://dx.doi.org/10.1016/s1386-9477(01)00142-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fitzgerald, Richard. "Magnetic Semiconductors Enable Efficient Electrical Spin Injection." Physics Today 53, no. 4 (April 2000): 21–22. http://dx.doi.org/10.1063/1.883032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Heedt, S., C. Morgan, K. Weis, D. E. Bürgler, R. Calarco, H. Hardtdegen, D. Grützmacher, and Th Schäpers. "Electrical Spin Injection into InN Semiconductor Nanowires." Nano Letters 12, no. 9 (August 21, 2012): 4437–43. http://dx.doi.org/10.1021/nl301052g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Löffler, W., D. Tröndle, J. Fallert, E. Tsitsishvili, H. Kalt, D. Litvinov, D. Gerthsen, et al. "Electrical spin injection into InGaAs quantum dots." physica status solidi (c) 3, no. 7 (August 2006): 2406–9. http://dx.doi.org/10.1002/pssc.200668004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bibes, M., N. Reyren, E. Lesne, J. M. George, C. Deranlot, S. Collin, A. Barthélémy, and H. Jaffrès. "Towards electrical spin injection into LaAlO 3 –SrTiO 3." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1977 (October 28, 2012): 4958–71. http://dx.doi.org/10.1098/rsta.2012.0201.

Full text
Abstract:
Future spintronics devices will be built from elemental blocks allowing the electrical injection, propagation, manipulation and detection of spin-based information. Owing to their remarkable multi-functional and strongly correlated character, oxide materials already provide such building blocks for charge-based devices such as ferroelectric field-effect transistors (FETs), as well as for spin-based two-terminal devices such as magnetic tunnel junctions, with giant responses in both cases. Until now, the lack of suitable channel materials and the uncertainty of spin-injection conditions in these compounds had however prevented the exploration of similar giant responses in oxide-based lateral spin transport structures. In this paper, we discuss the potential of oxide-based spin FETs and report magnetotransport data that suggest electrical spin injection into the LaAlO 3 –SrTiO 3 interface system. In a local, three-terminal measurement scheme, we analyse the voltage variation associated with the precession of the injected spin accumulation driven by perpendicular or longitudinal magnetic fields (Hanle and ‘inverted’ Hanle effects). The spin accumulation signal appears to be much larger than expected, probably owing to amplification effects by resonant tunnelling through localized states in the LaAlO 3 . We give perspectives on how to achieve direct spin injection with increased detection efficiency, as well on the implementation of efficient top gating schemes for spin manipulation.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Electrical Spin Injection"

1

Beardsley, Jonas T. "Charge-Spin Transport Correlation in Local Electrical Spin Injection in Silicon." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417777678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Yong-Jae. "Electrical injection and detection of spin polarization in InSb/ferromagnet nanostructures." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/28589.

Full text
Abstract:
We present studies of the electical detection of spin injection and transport in InSb/CoFe heterostructures. As a narrow gap semiconductor, InSb has a high mobility and strong spin-orbit interaction. Using ferromagnetic CoFe, lateral InSb/CoFe devices are fabricated by semiconductor processing techniques. The saturation magnetizations of various CoFe electrodes with different widths are calculated from Hall measurements in which the fringing fields of the CoFe electrodes are detected. A magnetic model provides reasonable estimation of the saturation magnetization for micrometer scale geometries. The interface magnetoresistance measurements of InSb/CoFe thin film layered structures present a unique peak at low field, having a symmetric behavior in magnetic field with a critical field Hc and a strong temperature dependence. We attribute our signal to a ferromagnetic phase in the InSb induced by spin injection. In a non-local lateral spin valve measurement, we observed the following. Firstly, Hc of the lateral spin valve signals is identical to Hc of interface magnetoresistance signals. Secondly, the non-local lateral spin valve signals are strongly dependent on temperature, which is also a unique characteristic magnetoresistance. Thirdly, the signals are tunable in response to an applied injector bias. Lastly, the signals are dependent on the exact interfaces. Based on these observations, the detected signals may be considered as spin current signals. The Hall and magnetoresistance signals are measured locally and non-locally in InSb/CoFe Hall devices. The non-local magnetoresistance signals exhibit asymmetric behavior in applied magnetic field which are considered as signatures of spin phenomena. The non-local Hall signals present switching behavior with the CoFe magnetization switching at the coercive field. The non-local Hall signals in a perpendicular field show Hc, similarly seen in non-local lateral spin valves. Inverse spin Hall effect measurements with tilted magnetic fields show an in-plane magnetic field dependence in non-local type Hall signal and a perpendicular magnetic field dependence in the local Hall measurement. We have found that the signal can have its origin in a spin current from our observation of Hc and hysteresis in the magnetization traces. As yet, the spin current transport mechanism is unknown.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Bin. "Electrical bistability in organic semiconductors and spin injection using organic magnetic semiconductor." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1334864514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Apicella, Fernandez Sergio. "Surface energy modification of metal oxide to enhance electron injection in light-emitting devices : charge balance in hybrid OLEDs and OLETs." Thesis, Högskolan i Gävle, Avdelningen för elektronik, matematik och naturvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-25097.

Full text
Abstract:
Organic semiconductors (OSCs) present an electron mobility lower by several orders of magnitude than the hole mobility, giving rise to an electron-hole charge imbalance in organic devices such as organic light-emitting diodes (OLEDs) and organic light-emitting transistors (OLETs). In this thesis project, I tried to achieve an efficient electron transport and injection properties in opto-electronic devices, using inorganic n-type metal oxides (MOs) instead of organic n-type materials and a polyethyleneimine ethoxylated (PEIE) thin layer as electron transport (ETLs) and injection layers (EILs), respectively. In the first part of this thesis, inverted OLEDs were fabricated in order to study the effect of the PEIE layer in-between ZnO and two different emissive layers (EMLs): poly(9,9-dioctylfluorene-alt-benzothiadiazole) polymer (F8BT) and tris(8-hydroxyquinolinato) aluminum small molecule (Alq3), based on a solution and thermal evaporation processes, respectively. Different concentrations (0.80 %, 0.40 %) of PEIE layers were used to further study electron injection capability in OLEDs. After a series of optimizations in the fabrication process, the opto-electrical characterization showed high-performance of devices. The inverted OLEDs reported a maximum luminance over 104 cd m-2 and a maximum external quantum efficiency (EQE) around 1.11 %. The results were attributed to the additional PEIE layer which provided a good electron injection from MOs into EMLs. In the last part of the thesis, OLETs were fabricated and discussed by directly transferring the energy modification layer from OLEDs to OLETs. As metal oxide layer, ZnO:N was employed for OLETs since ZnO:N-based thin film transistors (TFTs) showed better performance than ZnO-based TFTs. Finally, due to their short life-time, OLETs were characterized electrically but not optically.
APA, Harvard, Vancouver, ISO, and other styles
5

Severac, Childerick Henri Louis. "Spin injection into high temperature superconductor." Thesis, University of Birmingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wielhorski, Yanneck. "Transferts de chaleur dans un écoulement de polymère fondu en régime non stationnaire - Application aux procédés d'extrusion et d'injection." Phd thesis, Université de Nantes, 2009. http://tel.archives-ouvertes.fr/tel-00606855.

Full text
Abstract:
Durant la mise en forme des polymères, un phénomène de dégagement de chaleur résultant de la dissipation visqueuse au sein de l'écoulement, plus ou moins important selon les débits considérés, joue un rôle important sur le champ thermique du polymère et du dispositif expérimental. La difficulté de modéliser ce type d'écoulement avec le dispositif expérimental est due, entre autres, aux propriétés thermomécaniques complexes du matériau et aux conditions limites du domaine spatial d'intégration. En effet, ils varient spatialement et temporellement ; leur élaboration est souvent délicate. Ils traduisent les conditions d'expérience telles que la pression et la température d'entrée du polymère, par exemple dans une buse d'injection. Les travaux ont porté sur l'écoulement dans une filière à géométrie cylindrique instrumentée en température et en pression adaptable sur une presse à injecter. Deux campagnes de mesures ont été menées, sur une extrudeuse et sur une presse à injecter. Les conditions expérimentales sont dans les deux cas instationnaires (par nature dans l'injection, et créées par la variation du débit dans les cas de l'extrusion). La buse réalisée dans le cadre de ce projet a donné entière satisfaction, et les mesures ont permis de valider les modèles directs de simulation de l'écoulement dans la buse. On a pu quantifier précisément les effets de la dissipation visqueuse, ainsi que ceux de la variation de température d'entrée dans la buse. Les résultats expérimentaux confirment que les mesures dans les parois métalliques sont bien sensibles aux variations de température d'entrée. Un algorithme d'inversion de ces mesures a été développé et appliqué avec succès aux mesures réalisées sur l'extrudeuse.
APA, Harvard, Vancouver, ISO, and other styles
7

Schreiber, Lars Reiner [Verfasser]. "Time resolved electrical injection of coherent spin packets through a Schottky barrier / vorgelegt von Lars Reiner Schreiber." 2008. http://d-nb.info/989577015/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fernández, Alcazar Lucas Jonatan. "Elementos para una descripción dinámica de la conductancia cuántica en nanohilos magnéticos." Bachelor's thesis, 2011. http://hdl.handle.net/11086/65.

Full text
Abstract:
Tesis (Lic. en Física)--Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física, 2011.
El estudio de conductancia en sistemas ferromagnéticos ha tenido un interés creciente desde el descubrimiento de la magneto-resistencia gigante, llevando al desarrollo de la espintrónica. Desarrollamos herramientas que permitirán profundizar el tratamiento del transporte cuántico en nanohilos ferromagnéticos. La necesidad de una descripción dinámica, asociada a oscilaciones de Rabi, y la consideración de efectos producidos por la temperatura, tal como la decoherencia, nos lleva a una nueva y más eficiente implementación práctica del transporte cuántico decoherente. Esto nos acerca a los experimentos desarrollados localmente y nos abre las puertas a la descripción de fenómenos dinámicos de actual interés tales como movimiento de paredes de dominio o inversión de la magnetización inducida por corriente.
Transporte en metales ferromagnéticos -- Transporte coherente -- Propuesta dinámica : Expansión de Trotter-Suzuki -- Modelo dinámico para la decoherencia -- Propiedad del transporte con decoherencia en el nanohilo ferromagnético.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Electrical Spin Injection"

1

Takahashi, S., and S. Maekawa. Spin Hall Effect. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0012.

Full text
Abstract:
This chapter discusses the spin Hall effect that occurs during spin injection from a ferromagnet to a nonmagnetic conductor in nanostructured devices. This provides a new opportunity for investigating AHE in nonmagnetic conductors. In ferromagnetic materials, the electrical current is carried by up-spin and downspin electrons, with the flow of up-spin electrons being slightly deflected in a transverse direction while that of down-spin electrons being deflected in the opposite direction; this results in an electron flow in the direction perpendicular to both the applied electric field and the magnetization directions. Since up-spin and downspin electrons are strongly imbalanced in ferromagnets, both spin and charge currents are generated in the transverse direction by AHE, the latter of which are observed as the electrical Hall voltage.
APA, Harvard, Vancouver, ISO, and other styles
2

Valenzuela, S. O., and T. Kimura. Experimental observation of the spin Hall effect using electronic nonlocal detection. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0014.

Full text
Abstract:
This chapter shows how the spin Hall effect (SHE) has been described as a source of spin-polarized electrons for electronic applications without the need for ferromagnets or optical injection. Because spin accumulation does not produce an obvious measurable electrical signal, electronic detection of the SHE proved to be elusive and was preceded by optical demonstrations. Several experimental schemes for the electronic detection of the SHE had been originally proposed, including the use of ferromagnetic electrodes to determine the spin accumulation at the edges of the sample. However, the difficulty of sample fabrication and the presence of spin-related phenomena such as anisotropic magnetoresistance or the anomalous Hall effect in the ferromagnetic electrodes could mask or even mimic the SHE signal in the sample layouts.
APA, Harvard, Vancouver, ISO, and other styles
3

Kimura, T., and Y. Otani. Magnetization switching due to nonlocal spin injection. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0021.

Full text
Abstract:
This chapter discusses and presents a schematic illustration of nonlocal spin injection. In this case, the spin-polarized electrons are injected from the ferromagnet and are extracted from the left-hand side of the nonmagnet. This results in the accumulation of nonequilibrium spins in the vicinity of the F/N junctions. Since the electrochemical potential on the left-hand side is lower than that underneath the F/N junction, the electron flows by the electric field. On the right-hand side, although there is no electric field, the diffusion process from the nonequilibrium into the equilibrium state induces the motion of the electrons. Since the excess up-spin electrons exist underneath the F/N junction, the up-spin electrons diffuse into the right-hand side. On the other hand, the deficiency of the down-spin electrons induces the incoming flow of the down-spin electrons opposite to the motion of the up-spin electron.
APA, Harvard, Vancouver, ISO, and other styles
4

Hirohata, A., and J. Y. Kim. Optically Induced and Detected Spin Current. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0006.

Full text
Abstract:
This chapter presents an alternative method of injecting spin-polarized electrons into a nonmagnetic semiconductor through photoexcitation. This method uses circularly-polarized light, whose energy needs to be the same as, or slightly larger than, the semiconductor band-gap, to excite spin-polarized electrons. This process will introduce a spin-polarized electron-hole pair, which can be detected as electrical signals. Such an optically induced spin-polarized current can only be generated in a direct band-gap semiconductor due to the selection rule described in the following sections. This introduction of circularly polarized light can also be used for spin-polarized scanning tunnelling microscopy.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electrical Spin Injection"

1

Kioseoglou, G., C. H. Li, and B. T. Jonker. "Electrical Spin Injection into InGaAs Quantum Dots." In Handbook of Spintronics, 399–430. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6892-5_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kioseoglou, G., C. H. Li, and B. T. Jonker. "Electrical Spin Injection into InGaAs Quantum Dots." In Handbook of Spintronics, 1–27. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-7604-3_19-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schmidt, Georg, and Laurens W. Molenkamp. "Electrical Spin Injection: Spin-Polarized Transport from Magnetic into Non-Magnetic Semiconductors." In Semiconductor Spintronics and Quantum Computation, 93–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05003-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mi, Yilin, Fengyan Liu, and Xiaoqing Zhao. "Spin Injection in a Ferromagnetic/Organic System with Finite Layers." In 2011 International Conference in Electrics, Communication and Automatic Control Proceedings, 889–93. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8849-2_112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jonker, Berend T. "Electrical Spin Injection and Transport in Semiconductors." In Spintronics Handbook: Spin Transport and Magnetism, Second Edition, 59–147. CRC Press, 2019. http://dx.doi.org/10.1201/9780429434235-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Electrical Spin Injection and Transport in Semiconductors." In Handbook of Spin Transport and Magnetism, 346–87. Chapman and Hall/CRC, 2016. http://dx.doi.org/10.1201/b11086-21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jonker, B. T., and M. E. Flatté. "Chapter 7 Electrical Spin Injection and Transport in Semiconductors." In Contemporary Concepts of Condensed Matter Science, 227–72. Elsevier, 2006. http://dx.doi.org/10.1016/s1572-0934(05)01007-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Renucci, Pierre, Henri Jaffres, Jean-Marie George, Thierry Amand, and Xavier Marie. "Electrical Spin Injection in Hybrid Ferromagnetic Metal/Semiconductor Structures." In Handbook of Spintronic Semiconductors, 265–88. Pan Stanford Publishing, 2010. http://dx.doi.org/10.1201/b11120-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Renucci, Pierre, Henri Jaffrès, Jean-Marie George, Thierry Amand, and Xavier Marie. "Electrical Spin Injection in Hybrid Ferromagnetic Metal/Semiconductor Structures." In Handbook of Spintronic Semiconductors, 265–88. Jenny Stanford Publishing, 2019. http://dx.doi.org/10.1201/9780429065507-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electrical Spin Injection"

1

Jonker, Berend T., Olaf M. J. van 't Erve, George Kioseoglou, Aubrey T. Hanbicki, Connie H. Li, Michael Holub, Chaffra Awo-Affouda, and Phillip E. Thompson. "Silicon spintronics: Spin injection, manipulation and electrical detection." In 2009 IEEE International Electron Devices Meeting (IEDM). IEEE, 2009. http://dx.doi.org/10.1109/iedm.2009.5424384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Z., D. Pan, Z. Wang, X. Xu, Y. Wu, J. Miao, S. Yin, J. Zhao, and Y. Jiang. "Electrical spin injection into InAs nanowires by local measurement." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ye, Yu, Xiaobo Yin, Hailong Wang, Ziliang Ye, Hanyu Zhu, Yuan Wang, Jianhua Zhao, and Xiang Zhang. "Electrical Valley Excitation by Spin Injection in Monolayer TMDC." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_si.2015.sth4m.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Golub, L. E., and E. L. Ivchenko. "Electrical spin injection in 2D semiconductors and topological insulators." In THE PHYSICS OF SEMICONDUCTORS: Proceedings of the 31st International Conference on the Physics of Semiconductors (ICPS) 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4848423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rinaldi, Christian, Stefano Bertoli, Matteo Cantoni, Cristian Manzoni, Marco Marangoni, Giulio Cerullo, Massimiliano Bianchi, Roman Sordan, and Riccardo Bertacco. "Determination of spin diffusion length in Germanium by optical and electrical spin injection." In SPIE NanoScience + Engineering, edited by Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2014. http://dx.doi.org/10.1117/12.2061591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Beletskii, N. N., E. M. Ganapolskii, and V. M. Yakovenko. "Efficient Electrical Electron Spin Injection from Ferromagnetic Metals in Nanostructures." In 2007 International Kharkiv Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW). IEEE, 2007. http://dx.doi.org/10.1109/msmw.2007.4294748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Spiesser, A., S. Sharma, H. Saito, R. Jansen, S. Yuasa, and K. Ando. "Electrical spin injection in p-type Si using Fe/MgO contacts." In SPIE NanoScience + Engineering, edited by Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2012. http://dx.doi.org/10.1117/12.930839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Panda, J., Nilay Maji, and T. K. Nath. "Electrical spin injection from CoFe2O4 into p-Si semiconductor across MgO tunnel barrier for spin electronics." In DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jaffrès, Henri, Jean-Marie George, Shiheng Liang, Huaiwen Yang, Bingshan Tao, Stefan McMurtry, Sébastien Petit Watelot, et al. "Electrical spin injection and detection in molybdenum disulfide multilayer channel (Conference Presentation)." In Spintronics XI, edited by Henri Jaffrès, Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hetterich, M., W. Löffler, J. Fallert, T. Passow, B. Daniel, J. Lupaca-Schomber, J. Hetterich, S. Li, C. Klingshirn, and H. Kalt. "Electrical Spin Injection into InGaAs Quantum Dot Ensembles and Single Quantum Dots." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography