Academic literature on the topic 'Electrical discharge plasma'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Electrical discharge plasma.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Electrical discharge plasma"

1

Yang, Dong, Huihui Wang, Bocong Zheng, Xiaobing Zou, Xinxin Wang, and Yangyang Fu. "Application of similarity laws to dual-frequency capacitively coupled radio frequency plasmas with the electrical asymmetry effect." Plasma Sources Science and Technology 31, no. 11 (November 1, 2022): 115002. http://dx.doi.org/10.1088/1361-6595/ac9a6e.

Full text
Abstract:
Abstract Similarity laws (SLs) are useful for correlation and prediction of plasma parameters at different scales, which have been verified for geometrically symmetric capacitive radio-frequency (rf) discharges in nonlocal kinetic regimes. In this work, we demonstrate the applicability of SLs to dual-frequency rf discharges and confirm that similarity relations still hold considering the electrical asymmetry effect (EAE). By simultaneously tuning the control parameters (the gas pressure p, discharge gap d, and driving frequency f), we examine the similarity relations in rf plasmas via fully kinetic particle-in-cell simulations with the external circuits coupled and solved self-consistently. The validity of the SL scalings in dual-frequency rf plasmas with the EAE is confirmed for parameters such as the electron/ion density, ion flux, dc self-bias, ion energy distribution function, and power absorption. Although adjusted by the EAE, the dc self-bias and ion energy distribution functions are identified as similarity invariants under similar discharge conditions. Furthermore, the plasma series resonance phenomenon, filamentation of power depositions of electrons and ions in bulk plasma, and electric field reversal are observed in dual-frequency discharges with the EAE, which can also be exactly replicated under similar discharge conditions. The results further extend the application of SL scaling to dual-frequency rf plasmas, providing a more comprehensive understanding of the scaling characteristics in rf plasmas.
APA, Harvard, Vancouver, ISO, and other styles
2

Syssoev, V. S., M. Y. Naumova, Y. A. Kuznetsov, A. I. Orlov, D. I. Sukharevsky, L. M. Makalsky, and A. V. Kukhno. "Streamer discharge plasma generator." Perspektivnye Materialy 2 (2022): 62–69. http://dx.doi.org/10.30791/1028-978x-2022-2-62-69.

Full text
Abstract:
A description of the developed nanosecond high-voltage generator of low-temperature plasma based on a volume streamer discharge is given. Plasma is formed in a high-voltage three-electrode gap, one of which is at a floating potential. Plasma is formed when a special switch is triggered, which connects a floating potential electrode, pre-charged with positive streamers, to a grounded electrode. The operation of the generator in a pulse-periodic mode greatly simplifies its application in experimental studies. Its design and electrical circuit are described. The main electrical characteristics and parameters of streamer plasma radiation in the optical and ultraviolet ranges are presented. An example of a specific application of a generator plasma for solving problems of water purification from metal ions (by the example of manganese) using electric discharge technology is given. The use of a low-temperature plasma of a streamer discharge for experimental research in the field of propagation of an ultrahigh-frequency (microwave) signal in an ionized region of the atmosphere (thunderstorm cell) is described.
APA, Harvard, Vancouver, ISO, and other styles
3

Tazmeev, K. K., and A. K. Tazmeev. "Features of a burning electric arc superimposed on gas discharge with liquid electrolyte cathode." Journal of Physics: Conference Series 2270, no. 1 (May 1, 2022): 012021. http://dx.doi.org/10.1088/1742-6596/2270/1/012021.

Full text
Abstract:
Abstract The conditions for burning an electric arc in a discharge plasma with a solution cathode have been studied. Both discharges were connected to the same metal anode. The electric arc burned in the current range of 5–10 A. The discharge current with a solution cathode varied within 8-15 A. In the experiments, aqueous solutions of common salt were used. The specific electrical conductivity of the solutions was 10–15 mS/cm. Spectral investigations of arc plasma radiation and discharge with a solution cathode have been carried out. Calculations of the parameters of the electron gas in the plasma column have been performed.
APA, Harvard, Vancouver, ISO, and other styles
4

Ramakrishnan, S. "Technological Challenges in Thermal Plasma Production." Australian Journal of Physics 48, no. 3 (1995): 377. http://dx.doi.org/10.1071/ph950377.

Full text
Abstract:
Thermal plasmas, generated by electric arc discharges, are used in a variety of industrial applications. The electric arc is a constricted electrical discharge with a high temperature in the range 6000-25,000 K. These characteristics are useful in plasma cutting, spraying, welding and specific areas of material processing. The thermal plasma technology is an enabling process technology and its status in the market depends upon its advantages over competing technologies. A few technological challenges to enhance the status of plasma technology are to improve the utilisation of the unique characteristics of the electric arc and to provide enhanced control of the process. In particular, new solutions are required for increasing the plasma-material interaction, controlling the electrode roots and controlling the thermal power generated by the arcing process.
APA, Harvard, Vancouver, ISO, and other styles
5

Popović, I., and M. Zlatanović. "Equivalent Circuits of Unipolar Pulsed Plasma System for Electrical and Optical Signal Analysis." Materials Science Forum 555 (September 2007): 89–94. http://dx.doi.org/10.4028/www.scientific.net/msf.555.89.

Full text
Abstract:
Matching of pulse plasma generators to various gas discharges for surface treatment of materials depends on plasma processing equipment. In order to investigate the influence of pulse plasma generator and gas discharge parameters on electrical signal waveforms during the process of unipolar pulse plasma nitriding, equivalent electrical circuit was introduced. The influence of parasitic inductance of interconnection lines and vacuum chamber physical properties was also included in the given equivalent circuit. Gas discharge characteristics at different process parameters were investigated. It was found that the gas discharge and pulse plasma generator properties, as well as the electrical characteristics of interconnecting lines determined the system electrical signal response. From the analysis of optical signals emitted by the gas discharge it was found that the optical signal response might be represented by a typical RC integrator circuit response with the time constant higher than that of the equivalent electrical circuit of generator load. The conclusion was drawn that the process of charge particles generation is followed by the process of active species generation responsible for thermo-chemical processes on the cathode surface. Thus, the increase of the pulse plasma frequency is limited by the thermo-chemical process efficiency, and not only by the generator switching characteristics or by gas discharge electrical properties.
APA, Harvard, Vancouver, ISO, and other styles
6

Titov, Evgeniy, Ivan Bodrikov, and Dmitry Titov. "Control of the Energy Impact of Electric Discharges in a Liquid Phase." Energies 16, no. 4 (February 8, 2023): 1683. http://dx.doi.org/10.3390/en16041683.

Full text
Abstract:
This paper describes the scheme and algorithm for controlling a laboratory setup that result in low uncertainty and high convergence with respect to the characteristics of electric discharges under the conditions of variable parameters of a reaction medium. The article presents current and voltage oscillograms when processing hydrocarbon raw materials. Methods for calculating the energy impact of electrical discharge are described. A comparison is made between the parameters of electric discharge with current pulse limitations and those without current pulse duration limitations. The proposed approach to controlling the characteristics of electric discharges provides the same parameters of nonthermal nonequilibrium plasma and, as a result, a regular composition of the products of plasma pyrolysis of hydrocarbon raw materials.
APA, Harvard, Vancouver, ISO, and other styles
7

A. khadayeir, Abdulhussain, and Falah H. yousif. "Study of the Effect of Cathode Graphite on I-V Characteristics of Argon DC Glow Discharge." University of Thi-Qar Journal of Science 8, no. 2 (September 12, 2022): 116–19. http://dx.doi.org/10.32792/utq/utjsci.v8i2.872.

Full text
Abstract:
In this paper, the electrical properties of the glowing Argon discharge were studied for the purpose of knowing the parameters of the stable plasma work. The Argon plasma generated from the DC glow discharge has been examined. The glowing discharge system consists of two electrodes , The cathode is made of graphite with a disk of 8cm diameter and 1.7cm thickness. The anode is made of aluminum material with a disk of 8.8cm diameter and 1.1cm thickness. The electrical electrodes are enclosed in a glass cylinder made of pyrex containing argon gas. Several parameters which affect on the state of electric discharge, including gas pressure and the distance between electrodes.(I-V) curves of electrical discharge were measured at different pressures(0.075,0.32,0.65,0.75 and 1.12 torr) and distance between electrodes(2,4,6 and10 cm). By observing the electrical properties (I-V), it is concluded that the electric discharge of the plasma argon gas works within the abnormal glow area and is an important parameter in the deposition process. The higher discharge current of the argon plasma increases with increased pressure, the higher deposition rate was achieved.
APA, Harvard, Vancouver, ISO, and other styles
8

Thagard, Selma Mededovic, and Bruce R. Locke. "Electrical discharge plasma for water treatment." Water Intelligence Online 16 (May 15, 2017): 493–533. http://dx.doi.org/10.2166/9781780407197_0493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zudov, V. N., and A. V. Tupikin. "Effect of an Electric Field on an Optical Breakdown in the Air Stream." SIBERIAN JOURNAL OF PHYSICS 16, no. 2 (January 11, 2022): 48–58. http://dx.doi.org/10.25205/2541-9447-2021-16-2-48-58.

Full text
Abstract:
Experimental data on the effect of an electric field on the plasma of an optical discharge in an air flow have been obtained. Two configurations of an external electric field under the action of an optical discharge on the plasma are considered. To create an electric field, flat (the field along the beam and across the flow) and ring electrodes (the field across the laser beam and along the flow) were used. It was found that there are two modes of combined discharge (optical and electrical). When the field was created symmetrically with respect to the flow axis, an electrical breakdown was observed from the nozzle exit (positively charged electrode) to the focusing point of the laser beam, while no streamers were observed in the optical discharge wake. In another case, an electric discharge is realized between flat electrodes simultaneously with optical breakdown. In a field of constant strength above 3 kV/cm, the presence of an optical discharge plasma promoted electrical breakdown of the medium. In this case, the parameters of the electrical breakdown depended on the shape of the electrodes, the polarity of the applied voltage, and the air flow rate.
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Lei, Xiang Yang Liu, Si Yu Wang, and Ning Fei Wang. "Theoretical and Numerical Analysis of Discharge Characteristics in Pulsed Electromagnetic Accelerators." Advanced Materials Research 765-767 (September 2013): 805–8. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.805.

Full text
Abstract:
Discharge is critical physical process in pulsed electromagnetic accelerators for arc plasma jet device, and its characteristics directly determines the accelerator performance. The mechanisms of discharge plasma and flow in the accelerator are analyzed by magnetohydrodynamics (MHD). The model is coupled with electric circuit model based on weakly nonideal plasma conductivity and ablation model. Calculation results show that there is some nonideal plasma region which has important effects on electrical conductivity; most ablated gases are ionized at the half cycle of the discharge time and are accelerated by Lorentz force to high exhaust velocity; electrical conductivity, plasma temperature and density are increasing with discharge energy unleashed, and gradually reduce in the post-discharge.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Electrical discharge plasma"

1

Kang, Jungwon 1967. "The particle trap and plasma parameter studies in an RF argon discharge." Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/288834.

Full text
Abstract:
Low pressure plasma discharges have been an important process in the manufacturing of microelectronics devices since the late seventies. Therefore, the knowledge and control of the physical and chemical phenomena in plasmas are important for reactor design and process development. In order to understand the process, it is necessary to be able to make accurate measurements of plasma parameters, such as charged particle density, electron temperature, and ion energy. There are three objectives in this research; the first objective is to develop a new automatic electrostatic probe system in order to make accurate measurements of plasma parameters such as plasma potential φ₀, electron temperature Tₑ, electron density nₑ, and electron energy distribution function (EEDF). The second objective is to investigate the forces acting on contaminant particle which can be generate during process. The final objective is to understand the physical nature of the plasma which is very sensitive to changes of processing variables such as rf power and pressure. It was discovered that both ion drag and electrostatic forces induce particle trapping. Additionally, over the range of processing variables explored, the mode of heating transited from ohmic to stochastic, resulting in a variation of the plasma parameters.
APA, Harvard, Vancouver, ISO, and other styles
2

Burnette, David Dean. "Nitric Oxide Studies in Low Temperature Plasmas Generated with a Nanosecond Pulse Sphere Gap Electrical Discharge." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1388746668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ozkan, Alp. "CO2 splitting in a dielectric barrier discharge plasma: understanding of physical and chemical aspects." Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/239300.

Full text
Abstract:
Le dioxyde de carbone, principal gaz à effet de serre lié aux activités humaines, est considéré comme l’un des gaz les plus problématiques pour notre environnement ces dernières années, principalement à cause du réchauffement climatique qu’il engendre. C’est pour cette raison que l’augmentation de sa teneur dans l’atmosphère nous concerne tous quant aux conséquences futures pour notre planète. Afin de limiter l’émission de CO2, sa conversion en composés à valeur ajoutée présente un grand intérêt et est possible notamment via des procédés plasmas. Plus particulièrement, les décharges à barrière diélectrique (DBD) sont utilisées depuis quelques années pour générer des plasmas froids opérant à pression atmosphérique, principalement pour des applications en traitement de surface, mais également pour le traitement d’effluents gazeux.Lors de cette thèse, nous nous sommes focalisés sur le processus de dissociation du CO2 en CO et O2 via un réacteur DBD à flux continu et avons analysé sa conversion et son efficacité énergétique via différentes études. Celles-ci ont été réalisées grâce à plusieurs méthodes de diagnostic, comme par exemple la spectrométrie de masse utilisée pour déterminer la conversion et l’efficacité du processus, la spectroscopie d’émission optique, l’oscilloscope pour une caractérisation électrique, etc. afin d’avoir une meilleure compréhension du comportement des décharges CO2.Dans un premier temps, nous avons réalisé une étude détaillée d’un plasma CO2 pur où nous avons fait varier différents paramètres, tels que le temps de résidence, la fréquence, la puissance, la pulsation de la haute tension et l’épaisseur et la nature du diélectrique. Le CO2 donne lieu généralement à une décharge filamentaire, consistant en de nombreuses microdécharges réparties au niveau de la zone du plasma. Celles-ci constituent la principale source de réactivité dans une DBD. Un aperçu détaillé de l’aspect physique de ces microdécharges a été réalisé grâce à la caractérisation électrique, permettant de mieux comprendre les propriétés électriques de la décharge et des microdécharges. En effet, nous avons pu déterminer l’importance de la tension présente au niveau du plasma, de l’intensité du courant plasma, du nombre de microdécharges et de leur temps de vie sur l’efficacité du processus de dissociation de CO2.Ensuite, nous avons conclu ce travail avec des études combinant le CO2 en phase plasma avec de l’eau ou du méthane afin de produire des molécules à valeur ajoutée telles que les syngas (CO et H2), mais aussi des hydrocarbures (C2H6, C2H4, C2H2 et CH2O) dans le cas de l’ajout du méthane. A travers ces études, nous avons obtenu une meilleure connaissance de la chimie et de la physique qui ont lieu dans ce type de plasma.
Carbon dioxide appears as one of the most problematic gases for the environment, mostly because it is responsible for global warming. This is why its increasing concentration into the atmosphere, mainly due to anthropogenic activities, is a real concern for planet Earth. In order to prevent the release of large amounts of CO2, its conversion into value-added products is of great interest. In this context, plasma-based treatments using dielectric barrier discharges (DBDs) are nowadays more and more used for the conversion of this gas. In this thesis, we investigated the CO2 splitting process into CO and O2 via a flowing cylindrical DBD and we studied its conversion and energy efficiency by means of several diagnostic methods, such as mass spectrometry to determine the conversion and energy efficiency of the process, optical emission spectroscopy for gas temperature measurements, and an oscilloscope for electrical characterization, in order to obtain a better understanding of the CO2 discharge itself.First, we focused on an extensive experimental study of a pure CO2 plasma where different parameters were varied, such as the gas residence time, the operating frequency, the applied power, the pulsation of the AC signal, the thickness and the nature of the dielectric. CO2 discharges typically exhibit a filamentary behavior, consisting of many microdischarges, which act as the main source of reactivity in a DBD. A detailed insight in the physical aspects was achieved by means of an in-depth electrical characterization, allowing more insight in the electrical properties of the discharge and more specifically in the microdischarges, which are spread out throughout the active zone of the plasma. It was found throughout this work that the plasma voltage, which reflects the electric field and thus determines how the charged particles are accelerated, the plasma current, which reflects the electron density, but also the number of microdischarges and their average lifetime, play an important role in the efficiency of the CO2 dissociation process. It was revealed that the microdischarge number is important as it represents the repartition of the locations of reactivity. Indeed, as the microfilaments are more spread out in the same discharge volume, the probability for the CO2 molecules to pass through the reactor and interact with at least one microdischarge filament becomes more important at a larger number of microfilaments.The second part of the thesis was dedicated to discharges combining CO2 and H2O or CH4, both being hydrogen source molecules. The combined CO2/H2O or CO2/CH4 conversion allows forming value-added products like syngas (CO and H2), but also hydrocarbons (C2H6, C2H4, C2H2 and CH2O), at least in the presence of methane. Throughout this study, we tried to obtain a better knowledge of the chemistry and physic behind these conversion processes.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
4

Bubelnik, Matthew. "THE EFFECTS OF ELECTRODE GEOMETRY ON CURRENT PULSE CAUSED BY ELECTRICAL DISCHARGE OVER AN ULTRA-FAST LASER FILAMENT." Master's thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3695.

Full text
Abstract:
The time-resolved electrical conductivity of a short-pulse generated plasma filament in air was studied. Close-coupled metal electrodes were used to discharge the stored energy of a high-voltage capacitor and the resulting microsecond-scale electrical discharge was measured using fast current sensors. Significant differences in the time dependence of the current were seen with the two electrode geometries used. Using sharp-tipped electrodes additional peaks in the time-resolved conductivity were seen, relative to the single peak seen with spherical electrodes. We attribute these additional features to secondary electron collisional ionization brought about by field enhancement at the tips. Additional discrepancies in the currents measured leaving the high-voltage electrode and that returning to ground were also observed. Implications for potential laser-induced discharge applications will be discussed.
M.S.
Other
Optics and Photonics
Optics
APA, Harvard, Vancouver, ISO, and other styles
5

Layly, Jean-Baptiste. "Electric contacts subject to high currents : Fundamental processes and application to the interaction between lightning and aeronautic structures." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX013/document.

Full text
Abstract:
La foudre est un phénomène naturel aléatoire impactant un avion de transport civil en moyenne une fois toutes les 1500 heures de vol. Les forts courants et impulsionnels pouvant parcourir la structure d'un aéronef peuvent induire des contraintes physiques aux conséquences sérieuses en ce qui concerne la sûreté. En particulier, quand un assemblage est parcouru par un courant de type foudre, des champs électriques ainsi des densités d'effet Joule importants peuvent engendrer différents phénomènes de décharge. Le risque d'étincelage est particulièrement critique au niveau des réservoirs de carburant, et différentes technologies de protection et procédures de certification sont employées pour maitriser ce risque. Les résultats expérimentaux laissent penser que la formation de ces décharges est due aux résistances électriques localisées aux interfaces entre les différentes pièces des assemblages. Le but de cette thèse a été de modéliser les phénomènes qui se produisent à une échelle microscopique au niveau de telles résistances de contact soumises à de forts courants impulsionnels de type foudre
Lightning is a natural hazardous event that strikes a civil aircraft on average once per 1500 hours of flight. The corresponding high and impulsive currents that may flow along the structure of the aircraft can generate physical constraints with major consequences regarding safety. In particular, when a fastened assembly is crossed by a lightning current, important electric fields and Joule power densities may give birth to a variety of discharge phenomena. The sparking risk is particularly critical in fuel tanks, and different lightning protection technologies and certification procedures are employed to face it. The ignition of discharges is believed to be mostly due to the local electrical resistance at the interfaces between the parts of the assemblies. The aim of this thesis was to model to phenomena that occur at a microscopic scale of such contact resistances subject to high and impulsive currents
APA, Harvard, Vancouver, ISO, and other styles
6

Efimova, Varvara, Volker Hoffmann, and Jürgen Eckert. "Electrical properties of the µs pulsed glow discharge in a Grimm-type source: comparison of dc and rf modes." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-138728.

Full text
Abstract:
The electrical properties, in particular the U–I characteristics, current and voltage signal shapes within the pulse, are important parameters for the understanding of the processes taking place in the pulsed glow discharge (PGD). The electrical properties are also closely related to the analytical performance of the PGD such as sputtering rates, crater shapes and emission yields. Moreover, the dependence of the U–I plots on the density of the discharge gas can be used to estimate the gas temperature. This result is relevant for the analysis of thermally fragile samples. Nevertheless, there is a lack of PGD studies where the current and voltage signals are considered in detail. Therefore, this article is dedicated to the electrical properties of PGD. The influence of the PGD parameters (duty cycle and pulse duration) on the electrical properties is examined. The results highlight the optimum parameters for particular analytical applications. The question, whether direct current (dc) and radio frequency (rf) discharges behave similarly is also discussed and all experiments are performed for both modes. The comparative studies reveal strong similarities between dc and rf pulsed discharges
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
APA, Harvard, Vancouver, ISO, and other styles
7

Efimova, Varvara, Volker Hoffmann, and Jürgen Eckert. "Electrical properties of the µs pulsed glow discharge in a Grimm-type source: comparison of dc and rf modes." Royal Society of Chemistry, 2011. https://tud.qucosa.de/id/qucosa%3A27775.

Full text
Abstract:
The electrical properties, in particular the U–I characteristics, current and voltage signal shapes within the pulse, are important parameters for the understanding of the processes taking place in the pulsed glow discharge (PGD). The electrical properties are also closely related to the analytical performance of the PGD such as sputtering rates, crater shapes and emission yields. Moreover, the dependence of the U–I plots on the density of the discharge gas can be used to estimate the gas temperature. This result is relevant for the analysis of thermally fragile samples. Nevertheless, there is a lack of PGD studies where the current and voltage signals are considered in detail. Therefore, this article is dedicated to the electrical properties of PGD. The influence of the PGD parameters (duty cycle and pulse duration) on the electrical properties is examined. The results highlight the optimum parameters for particular analytical applications. The question, whether direct current (dc) and radio frequency (rf) discharges behave similarly is also discussed and all experiments are performed for both modes. The comparative studies reveal strong similarities between dc and rf pulsed discharges.
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
APA, Harvard, Vancouver, ISO, and other styles
8

Jinno, Masafumi. "Triggering and Guiding Electrical Discharge, and Plasma Formation by Superposition of Laser Beams - A Fundamental Study on the Controlled Inducing of Lightning -." Kyoto University, 1997. http://hdl.handle.net/2433/154676.

Full text
Abstract:
本文データは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルを基にpdf変換したものである
Kyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第6962号
工博第1645号
新制||工||1083(附属図書館)
UT51-97-L183
京都大学大学院工学研究科電気工学専攻
(主査)教授 橘 邦英, 教授 宅間 董, 教授 藤田 茂夫
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
9

Penkal, Bryan James. "Steps in the Development of a Full Particle-in-Cell, Monte Carlo Simulation of the Plasma in the Discharge Chamber of an Ion Engine." Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1367586856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mokhtari, Ahmed. "Etude et realisation d'un plasma dense quasi-stationnaire et homogene de 1m de long en presence d'un champ magnetique module spatialement." Paris 6, 1988. http://www.theses.fr/1988PA066423.

Full text
Abstract:
Le plasma etudie est faiblement non ideal, il est cree par decharge electrique dans un tube a eclairs lineaire d'1 m de long rempli de xenon sous une pression initiale de 30 torrs. Une etude de l'evolution spatiotemporelle de la decharge permet de definir les meilleurs conditions de fonctionnement du systeme. Le plasma presente une phase quasi-stationnaire de 400 mu s, pendant laquelle ses parametres ont ete determines
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Electrical discharge plasma"

1

R, Viswanathan. Environmentally-induced discharge transient coupling to spacecraft. [Washington, DC]: National Aeronautics and Space Administration, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

R, Viswanathan. Environmentally-induced discharge transient coupling to spacecraft. [Washington, DC]: National Aeronautics and Space Administration, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gas discharge physics. Berlin: Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

P, Raĭzer I͡U. Gas discharge physics. Berlin: Springer-Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1916-, Prokhorov A. M., ed. Medlennoe gorenie lazernoĭ plazmy i opticheskie razri͡a︡dy. Moskva: "Nauka", 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

NATO, Advanced Study Institute on Radiative Processes in Discharge Plasmas (1985 Pitlochry Scotland). Radiative processes in discharge plasmas. New York: Plenum Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

United States. National Aeronautics and Space Administration., ed. Characterization of hollow cathode, ring cusp discharge chambers. Fort Collins, Colo: Dept. of Mechanical Engineering, Colorado State University, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Basic data of plasma physics: The fundamental data on electrical discharges in gases. New York: American Institute of Physics, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stanton, Bonita. Physics and technology of high current discharges in dense gas media and flows. Hauppauge, N.Y: Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lagar'kov, A. N. Ionization waves in electrical breakdown of gases. New York: Springer-Verlag, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Electrical discharge plasma"

1

Mesyats, Gennady A., and Dimitri I. Proskurovsky. "Cathode Flare Plasma." In Pulsed Electrical Discharge in Vacuum, 118–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83698-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lei, Kaizhuo, Ning Li, Hai Huang, Jianguo Huang, and Jiankang Qu. "The Characteristics of Underwater Plasma Discharge Channel and Its Discharge Circuit." In Advanced Electrical and Electronics Engineering, 619–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19712-3_79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Binwal, S., J. K. Joshi, S. K. Karkari, and L. Nair. "Electrical Discharge Characteristics of Magnetized Capacitive Coupled Plasma." In Springer Proceedings in Physics, 603–9. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ding, Liang, Huiqi Zheng, Yuchuan Peng, Qiongying Ren, and Hua Zhao. "Experimental Research on Discharge Mode of Helicon Plasma Thruster." In Lecture Notes in Electrical Engineering, 137–45. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4163-6_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Robert, S., E. Francke, and J. Amouroux. "Hydrodynamic and Electrical Characterization of a Corona Discharge Plasma Reactor." In Advanced Technologies Based on Wave and Beam Generated Plasmas, 483–84. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-0633-9_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Weng, Lingang, Xiaodong Shi, Qing Ye, Keji Qi, Shuai Zhang, Licheng Zheng, and Yujie Liu. "The Application of Pulsed Corona Discharge Plasma Technology in Air Pollution Control." In Lecture Notes in Electrical Engineering, 1190–98. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1528-4_121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fu, Yunhao, Yongxi Lyu, Jingping Shi, and Xiaobo Qu. "Empirical Model of Single Dielectric Barrier Discharge Plasma Actuator for Flow Control." In Lecture Notes in Electrical Engineering, 532–41. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6613-2_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhu, Shaopeng, Xueke Che, Cheng Zhang, Boyuan Deng, Jiaying Ge, Yanghong Wei, and Qian Zhang. "Experimental Study on the Influence of Working Parameters on Slidingarc Plasma Discharge Mode." In Lecture Notes in Electrical Engineering, 830–40. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0408-2_90.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lukes, Petr, Jean-Louis Brisset, and Bruce R. Locke. "Biological Effects of Electrical Discharge Plasma in Water and in Gas-Liquid Environments." In Plasma Chemistry and Catalysis in Gases and Liquids, 309–52. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527649525.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Yidan, Xueying Wang, Lubin Cui, Yunjin Sun, Jun Wu, and Fuqiang Qiao. "Inactivation Efficacy and Applications of Gliding Arc Discharge Plasma in Fresh Pork Meat Preservation." In Lecture Notes in Electrical Engineering, 291–300. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1673-1_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Electrical discharge plasma"

1

Ozaltin, K., F. Bozduman, T. Aktan, L. Oksuz, and G. Tinaz. "Plasma water treatment by electrical discharge methods." In 2011 IEEE 38th International Conference on Plasma Sciences (ICOPS). IEEE, 2011. http://dx.doi.org/10.1109/plasma.2011.5993397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pal, U. N., J. S. Soni, Sonu Kr, M. Kumar, A. K. Sharma, and K. Frank. "Discharge analysis and electrical modeling of a coaxial dielectric barrier discharge (DBD) lamp." In 2008 IEEE 35th International Conference on Plasma Science (ICOPS). IEEE, 2008. http://dx.doi.org/10.1109/plasma.2008.4590905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barnat, E. V., and G. A. Hebner. "Electric field distribution around a biased probe immersed in an electrical discharge." In The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1707108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Don-Kyu, and Sung-Suk Wi. "Improvements of the discharge time lag using TiO2 or MgO powder in plasma discharge cell." In Electrical Engineering 2014. Science & Engineering Research Support soCiety, 2014. http://dx.doi.org/10.14257/astl.2014.65.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gray, Parker, and Alexei V. Saveliev. "Electrical discharge propagating along a liquid fuel jet." In 2010 IEEE 37th International Conference on Plasma Sciences (ICOPS). IEEE, 2010. http://dx.doi.org/10.1109/plasma.2010.5534215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Petrova, Tz B., J. Penano, P. Sprangle, R. Fernsler, and B. Hafizi. "Modeling of Laser -Induced Electrical Discharge in Air." In IEEE Conference Record - Abstracts. 2005 IEEE International Conference on Plasma Science. IEEE, 2005. http://dx.doi.org/10.1109/plasma.2005.359378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zissis, Georges, and Jean-Jacques Damelincourt. "ELECTRICAL DISCHARGE LIGHT SOURCES: A CHALLENGE FOR THE FUTURE." In Progress in Plasma Processing of Materials, 2003. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/itppc-2002.730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hoard, John W., Leaf Worsley, and William C. Follmer. "Electrical Characterization of a Dielectric Barrier Discharge Plasma Device." In International Fuels & Lubricants Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-3635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Starik, A. M., B. I. Loukhovitsky, N. S. Titova, L. V. Bezgin, and V. I. Kopchenov. "Control of combustion by electrical-discharge-excited oxygen molecules." In 2008 IEEE 35th International Conference on Plasma Science (ICOPS). IEEE, 2008. http://dx.doi.org/10.1109/plasma.2008.4590631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mozgina, O., S. Gershman, A. Belkind, K. Becker, and C. Christodoulatos. "Pulsed electrical discharge in bubbled water for environmental applications." In The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1707089.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Electrical discharge plasma"

1

Penetrante, B. M., M. C. Hsiao, J. N. Bardsley, B. T. Merritt, G. E. Vogtlin, A. Kuthi, C. P. Burkhart, and J. R. Bayless. Basic energy efficiency of plasma production in electrical discharge and electron beam reactors. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/491775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rosocha, L. A., J. S. Chang, Kuniko Urashima, S. J. Kim, and A. W. Miziolek. Economic assessment of proposed electric-discharge non-thermal plasma field-pilot demonstration units for NO{sub x} removal in jet-engine exhaust: White paper for SERDP Project CP-1038. Office of Scientific and Technical Information (OSTI), January 1999. http://dx.doi.org/10.2172/325747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography