Journal articles on the topic 'Electrical conductivity mechanism'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Electrical conductivity mechanism.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Paraskeva, C., A. Kazakopoulos, K. Chrissafis, and O. Kalogirou. "Study of LiMgVO4 electrical conductivity mechanism." Journal of Alloys and Compounds 489, no. 2 (January 2010): 714–18. http://dx.doi.org/10.1016/j.jallcom.2009.09.159.
Full textOrita, Masahiro, Hiroaki Tanji, Masataka Mizuno, Hirohiko Adachi, and Isao Tanaka. "Mechanism of electrical conductivity of transparentInGaZnO4." Physical Review B 61, no. 3 (January 15, 2000): 1811–16. http://dx.doi.org/10.1103/physrevb.61.1811.
Full textEhinger, K., S. Summerfield, and S. Roth. "Electrical conductivity of polyacetylene: nonsolitonic mechanism." Colloid & Polymer Science 263, no. 9 (September 1985): 714–19. http://dx.doi.org/10.1007/bf01422852.
Full textRagimov, S. S., A. A. Saddinova, and A. I. Aliyeva. "Mechanism of Electrical Conductivity and Thermal Conductivity in AgSbSe2." Russian Physics Journal 62, no. 6 (October 2019): 1077–81. http://dx.doi.org/10.1007/s11182-019-01817-6.
Full textGebru, Mulugeta Habte. "Electrical and thermal conductivity of heavily doped n-type silicon." European Physical Journal Applied Physics 90, no. 1 (April 2020): 10102. http://dx.doi.org/10.1051/epjap/2020190332.
Full textRagimov, S. S., A. A. Saddinova, and A. I. Aliyeva. "The mechanism of electrical conductivity and thermal conductivity of AgSbSe2." Izvestiya vysshikh uchebnykh zavedenii. Fizika, no. 6 (June 1, 2019): 139–43. http://dx.doi.org/10.17223/00213411/62/6/139.
Full textJaccard, C. "MECHANISM OF THE ELECTRICAL CONDUCTIVITY IN ICE." Annals of the New York Academy of Sciences 125, no. 2 (December 16, 2006): 390–400. http://dx.doi.org/10.1111/j.1749-6632.1965.tb45405.x.
Full textBelousov, A. I., and E. M. Bushueva. "Mechanism of electrical conductivity of jet fuels." Chemistry and Technology of Fuels and Oils 21, no. 7 (July 1985): 375–80. http://dx.doi.org/10.1007/bf00723848.
Full textAhmadov, G. M., H. B. Ibrahimov, and M. A. Jafarov. "Influence of external factors on the electrical conductivity of Bi2Te2.5Se0.5." Chalcogenide Letters 19, no. 1 (January 2022): 55–60. http://dx.doi.org/10.15251/cl.2022.191.55.
Full textКазанин, М. М., В. В. Каминский, and М. А. Гревцев. "Эффект Пула-Френкеля в поликристаллическом сульфиде европия." Физика и техника полупроводников 53, no. 7 (2019): 887. http://dx.doi.org/10.21883/ftp.2019.07.47862.9075.
Full textAbdel-Wahab, F., A. Merazga, and A. A. Montaser. "Electrical Conductivity Mechanism in Unconventional Lead Vanadate Glasses." Journal of Low Temperature Physics 186, no. 5-6 (December 9, 2016): 372–84. http://dx.doi.org/10.1007/s10909-016-1724-4.
Full textAlvarez, Santiago, Juan Novoa, and Fernando Mota. "The mechanism of electrical conductivity along polyhalide chains." Chemical Physics Letters 132, no. 6 (December 1986): 531–34. http://dx.doi.org/10.1016/0009-2614(86)87118-4.
Full textRies, H. R., W. L. Harries, S. A. T. Long, and E. R. Long. "Mechanism of electrical conductivity in an irradiated polyimide." Journal of Physics and Chemistry of Solids 50, no. 7 (January 1989): 735–38. http://dx.doi.org/10.1016/0022-3697(89)90013-9.
Full textXie, Juan, Menghe Miao, and Yongtang Jia. "Mechanism of Electrical Conductivity in Metallic Fiber-Based Yarns." Autex Research Journal 20, no. 1 (March 1, 2020): 63–68. http://dx.doi.org/10.2478/aut-2019-0008.
Full textFeng, Ya Ning, Rong Yang, Li Ling Ge, Bai Ling Jiang, Masaki Tanemura, and Lei Miao. "Research on Mechanism of Electrical Transport of Carbon Aerogels." Advanced Materials Research 160-162 (November 2010): 1378–82. http://dx.doi.org/10.4028/www.scientific.net/amr.160-162.1378.
Full textGudkov, S. I., A. V. Solnyshkin, D. A. Kiselev, and A. N. Belov. "Electrical conductivity of lithium tantalate thin film." Cerâmica 66, no. 379 (September 2020): 291–96. http://dx.doi.org/10.1590/0366-69132020663792885.
Full textOnlaor, Korakot, S. Khantham, B. Tunhoo, T. Thiwawong, and J. Nukeaw. "Charge Transfer Mechanism in Organic Memory Device." Advanced Materials Research 93-94 (January 2010): 235–38. http://dx.doi.org/10.4028/www.scientific.net/amr.93-94.235.
Full textНифтиев, Н. Н., Ф. М. Мамедов, and М. Б. Мурадов. "Электропроводность монокристаллов MnGaInSе-=SUB=-4-=/SUB=- на переменном токе." Письма в журнал технической физики 46, no. 11 (2020): 19. http://dx.doi.org/10.21883/pjtf.2020.11.49493.18241.
Full textCHANDRA, K. P., R. N. GUPTA, and K. PRASAD. "ELECTRIC MODULUS AND DIELECTRIC STUDIES OF ALIZARIN DOPED ANTHRAQUINONE." International Journal of Modern Physics B 22, no. 14 (June 10, 2008): 2321–31. http://dx.doi.org/10.1142/s0217979208039411.
Full textLee, Shi-Woo, Ji-Haeng Yu, and Sang-Kuk Woo. "Dual Phase Conductive CO2Membranes: Mechanism, Microstructure, and Electrical Conductivity." Journal of the Korean Ceramic Society 44, no. 8 (August 31, 2007): 424–29. http://dx.doi.org/10.4191/kcers.2007.44.8.424.
Full textAmnerkar, R. H., R. N. Ghodpage, N. D. Narkhede, and S. H. Dhawankar. "STUDY OF ELECTRICAL CONDUCTIVITY AND CONDUCTION MECHANISM OF CuNiTiO4." Material Science Research India 3, no. 2 (December 20, 2006): 195–96. http://dx.doi.org/10.13005/msri/030216.
Full textKamoun, S., F. Hlel, and M. Gargouri. "Electrical properties and conductivity mechanism of LiCuFe2(VO4)3." Ionics 20, no. 8 (February 4, 2014): 1103–10. http://dx.doi.org/10.1007/s11581-014-1075-6.
Full textHona, Ram Krishna, Gurjot S. Dhaliwal, and Rajesh Thapa. "Investigation of Grain, Grain Boundary, and Interface Contributions on the Impedance of Ca2FeO5." Applied Sciences 12, no. 6 (March 13, 2022): 2930. http://dx.doi.org/10.3390/app12062930.
Full textKrontiras, Christoforos A., Michael N. Pisanias, John A. Mikroyannidis, and Stavroula N. Georga. "Electrical Conductivity of Pyrolysed Polyamides Derived from 1,4-Bis(2-Cyano-2-Carboxyvinyl)Benzene and Various Aromatic Diamines." High Performance Polymers 9, no. 2 (June 1997): 189–203. http://dx.doi.org/10.1088/0954-0083/9/2/010.
Full textPrasad, N. V., G. Prasad, T. Bhimasankaram, S. V. Suryanarayana, and G. S. Kumar. "Synthesis and Electrical Properties of SmBi5Fe2Ti3O18." Modern Physics Letters B 12, no. 10 (April 30, 1998): 371–81. http://dx.doi.org/10.1142/s0217984998000469.
Full textWei, Xin Lao, and Yu Long LI. "A Measuring Method of Liquid Food Conductivity Based on Pulse Response Measurement Method." Advanced Materials Research 981 (July 2014): 628–31. http://dx.doi.org/10.4028/www.scientific.net/amr.981.628.
Full textKim, Sang-il, and Hyun-Sik Kim. "Calculated Electric Transport Properties of Thermoelectric Semiconductors Under Different Carrier Scattering Mechanisms." Korean Journal of Metals and Materials 59, no. 2 (February 5, 2021): 127–34. http://dx.doi.org/10.3365/kjmm.2021.59.2.127.
Full textNasri, S., A. Oueslati, I. Chaabane, and M. Gargouri. "AC conductivity, electric modulus analysis and electrical conduction mechanism of RbFeP2O7 ceramic compound." Ceramics International 42, no. 12 (September 2016): 14041–48. http://dx.doi.org/10.1016/j.ceramint.2016.06.011.
Full textZeller, Florian, Nirdesh Ojha, Claas Müller, and Holger Reinecke. "Electrical Discharge Milling of Silicon Carbide with Different Electrical Conductivity." Key Engineering Materials 611-612 (May 2014): 677–84. http://dx.doi.org/10.4028/www.scientific.net/kem.611-612.677.
Full textDeepika and Hukum Singh. "Electrical conduction mechanism in films of Se80−xTe20Bix (0 ≤ x ≤ 12) glassy alloys." Canadian Journal of Physics 97, no. 2 (February 2019): 222–26. http://dx.doi.org/10.1139/cjp-2017-0973.
Full textGrebenkina, V. G., D. E. Dyshel, M. D. Smolin, and V. N. Fedorov. "Electrical properties and mechanism of electrical conductivity of ruthenium dioxide-base thick films." Soviet Powder Metallurgy and Metal Ceramics 29, no. 5 (May 1990): 396–99. http://dx.doi.org/10.1007/bf00844963.
Full textSuchanicz, J., K. Kluczewska-Chmielarz, D. Sitko, and G. Jagło. "Electrical transport in lead-free Na0.5Bi0.5TiO3 ceramics." Journal of Advanced Ceramics 10, no. 1 (January 18, 2021): 152–65. http://dx.doi.org/10.1007/s40145-020-0430-5.
Full textPotses, Tatiana, Vladimir Novikov, Kirill Sergeev, and Sergey Leonovich. "Electrical conductivity of cement mortar with the addition of graphene." MATEC Web of Conferences 350 (2021): 00007. http://dx.doi.org/10.1051/matecconf/202135000007.
Full textBaudour, J. L., H. Elbadraoui, F. Bouree, A. Rousset, R. Legros, and B. Gillot. "Cation valence distribution and electrical conductivity mechanism in nickel manganites." Acta Crystallographica Section A Foundations of Crystallography 49, s1 (August 21, 1993): c294. http://dx.doi.org/10.1107/s0108767378091795.
Full textMofakham, S., M. Mazaheri, and M. Akhavan. "Two-dimensional mechanism of electrical conductivity in Gd1−xCexBa2Cu3O7−δ." Journal of Physics: Condensed Matter 20, no. 34 (August 6, 2008): 345221. http://dx.doi.org/10.1088/0953-8984/20/34/345221.
Full textLiu, Caixia, Can Wu, Chao Hao, Ping Liu, Xiaohui Guo, Yugang Zhang, and Ying Huang. "Electrical conductivity transformation mechanism of GNPs/CB/SR nanocomposite foams." Journal of Applied Polymer Science 135, no. 11 (November 16, 2017): 45996. http://dx.doi.org/10.1002/app.45996.
Full textLazarenko, A., L. Vovchenko, Y. Prylutskyy, L. Matzuy, U. Ritter, and P. Scharff. "Mechanism of thermal and electrical conductivity in polymer-nanocarbon composites." Materialwissenschaft und Werkstofftechnik 40, no. 4 (April 2009): 268–72. http://dx.doi.org/10.1002/mawe.200900439.
Full textDi Noto, Vito, Keti Vezzù, Gioele Pagot, and Enrico Negro. "(Keynote) Electrical Response and Conductivity Mechanism in Ion-Exchange Membranes." ECS Meeting Abstracts MA2020-01, no. 51 (May 1, 2020): 2823. http://dx.doi.org/10.1149/ma2020-01512823mtgabs.
Full textLan, Rui, Rie Endo, Masashi Kuwahara, Yoshinao Kobayashi, and Masahiro Susa. "Electrical and Thermal Conductivity and Conduction Mechanism of Ge2Sb2Te5 Alloy." Journal of Electronic Materials 47, no. 6 (November 21, 2017): 3184–88. http://dx.doi.org/10.1007/s11664-017-5932-8.
Full textRadoń, Adrian, Mariola Kądziołka-Gaweł, Dariusz Łukowiec, Piotr Gębara, Katarzyna Cesarz-Andraczke, Aleksandra Kolano-Burian, Patryk Włodarczyk, Marcin Polak, and Rafał Babilas. "Influence of Magnetite Nanoparticles Shape and Spontaneous Surface Oxidation on the Electron Transport Mechanism." Materials 14, no. 18 (September 12, 2021): 5241. http://dx.doi.org/10.3390/ma14185241.
Full textPRASAD, N. V., G. PRASAD, and G. S. KUMAR. "ELECTRICAL PROPERTIES OF RARE EARTH SUBSTITUTED Bi6Fe2Ti3O18 COMPOUND." International Journal of Modern Physics B 16, no. 16 (June 30, 2002): 2231–46. http://dx.doi.org/10.1142/s0217979202010324.
Full textAziz, Shujahadeen B., and Zul Hazrin Z. Abidin. "Electrical Conduction Mechanism in Solid Polymer Electrolytes: New Concepts to Arrhenius Equation." Journal of Soft Matter 2013 (July 24, 2013): 1–8. http://dx.doi.org/10.1155/2013/323868.
Full textTimokhin, Viktor M. "Studying Breakdown and Electrical Hardening of Crystal Materials with Proton Conductivity." Key Engineering Materials 909 (February 4, 2022): 3–12. http://dx.doi.org/10.4028/p-en1raa.
Full textKhiar, A. S. A., S. R. Majid, N. H. Idris, M. F. Hassan, R. Puteh, and A. K. Arof. "Ionic Hopping Transport in Chitosan-Based Polymer Electrolytes." Materials Science Forum 517 (June 2006): 237–41. http://dx.doi.org/10.4028/www.scientific.net/msf.517.237.
Full textWendler, Leonardo, Kethlinn Ramos, and Dulcina Souza. "Influence of ZnO addition on microstructure and proton electrical conductivity of BaZr0.8Y0.2O3-δ ceramics." Processing and Application of Ceramics 15, no. 2 (2021): 202–9. http://dx.doi.org/10.2298/pac2102202w.
Full textYan, Yan-Ying, Qing-An Zhang, Er-Chun Li, and Ya-Feng Zhang. "Ions in Wine and Their Relation to Electrical Conductivity Under Ultrasound Irradiation." Journal of AOAC INTERNATIONAL 100, no. 5 (September 1, 2017): 1516–23. http://dx.doi.org/10.5740/jaoacint.17-0024.
Full textFu, Ren Chun, Jun Du, Hui Huang, and Zhong Cheng Guo. "The Electrical Conductivity Stability of Polyaniline Doped with Three Different Acids." Advanced Materials Research 774-776 (September 2013): 803–6. http://dx.doi.org/10.4028/www.scientific.net/amr.774-776.803.
Full textJung, Woo-Hwan. "Dielectric Relaxation and Hopping Conduction in La2NiO4+δ." Journal of Materials 2013 (February 20, 2013): 1–6. http://dx.doi.org/10.1155/2013/169528.
Full textAlosabi, A. Q., A. A. Al-Muntaser, M. M. El-Nahass, and A. H. Oraby. "Electrical conduction mechanism and dielectric relaxation of bulk disodium phthalocyanine." Physica Scripta 97, no. 5 (April 1, 2022): 055804. http://dx.doi.org/10.1088/1402-4896/ac5ff8.
Full textScipioni, Roberto, Lars Stixrude, and Michael P. Desjarlais. "Electrical conductivity of SiO2 at extreme conditions and planetary dynamos." Proceedings of the National Academy of Sciences 114, no. 34 (August 7, 2017): 9009–13. http://dx.doi.org/10.1073/pnas.1704762114.
Full text