To see the other types of publications on this topic, follow the link: Electric Vehicles Architecture.

Dissertations / Theses on the topic 'Electric Vehicles Architecture'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 39 dissertations / theses for your research on the topic 'Electric Vehicles Architecture.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Sandoval, Marcelo. "Electric vehicle-intelligent energy management system for frequency regulation application using a distributed, prosumer-based grid control architecture." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47708.

Full text
Abstract:
The world faces the unprecedented challenge of the need change to a new energy era. The introduction of distributed renewable energy and storage together with transportation electrification and deployment of electric and hybrid vehicles, allows traditional consumers to not only consume, but also to produce, or store energy. The active participation of these so called "prosumers", and their interactions may have a significant impact on the operations of the emerging smart grid. However, how these capabilities should be integrated with the overall system operation is unclear. Intelligent energy management systems give users the insight they need to make informed decisions about energy consumption. Properly implemented, intelligent energy management systems can help cut energy use, spending, and emissions. This thesis aims to develop a consumer point of view, user-friendly, intelligent energy management system that enables vehicle drivers to plan their trips, manage their battery pack and under specific circumstances, inject electricity from their plug-in vehicles to power the grid, contributing to frequency regulation.
APA, Harvard, Vancouver, ISO, and other styles
2

Badawy, Mohamed O. "Grid Tied PV/Battery System Architecture and Power Management for Fast Electric Vehicles Charging." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1468858915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Subramani, Praveen. "taking charge : optimizing urban charging infrastructure for shared electric vehicles." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/77815.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 115-117).
This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles is examined and critiqued. A prototype of smartCharge, an integrated locking, charging, and ambient information system for shared electric vehicles is presented. Design methodology, fabrication of mechanical and electrical systems, and testing of the smartCharge system is documented. Urban implementation case studies for such a universal charging and locking station illustrate the potential of optimized infrastructure for shared vehicles to transform urban streetscapes and improve mobility. An analysis of leveraging existing building electrical infrastructure for vehicle charging is conducted, including phasing strategies for deploying rapid charging. Technological constraints to rapid charging such as battery chemistry, pack design, and power input are presented and evaluated. A strategy for buffering rapid electric vehicle charging with commercial uninterruptible power supply (UPS) systems is described. Two recent buildings on the MIT campus are used as case studies to demonstrate the overhead transformational capacity that exists in many modem, multi-purpose buildings. Connectivity between electrified transport, the electrical grid, and renewable energy sources is explored. A vision for personal urban mobility enabled by fleets of shared electric vehicles powered by clean, renewable energy and intelligent charging infrastructure is proposed.
by Praveen Subramani.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
4

Hariri, Abla. "Secure Large Scale Penetration of Electric Vehicles in the Power Grid." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3848.

Full text
Abstract:
As part of the approaches used to meet climate goals set by international environmental agreements, policies are being applied worldwide for promoting the uptake of Electric Vehicles (EV)s. The resulting increase in EV sales and the accompanying expansion in the EV charging infrastructure carry along many challenges, mostly infrastructure-related. A pressing need arises to strengthen the power grid to handle and better manage the electricity demand by this mobile and geo-distributed load. Because the levels of penetration of EVs in the power grid have recently started increasing with the increase in EV sales, the real-time management of en-route EVs, before they connect to the grid, is quite recent and not many research works can be found in the literature covering this topic comprehensively. In this dissertation, advances and novel ideas are developed and presented, seizing the opportunities lying in this mobile load and addressing various challenges that arise in the application of public charging for EVs. A Bilateral Decision Support System (BDSS) is developed here for the management of en-route EVs. The BDSS is a middleware-based MAS that achieves a win-win situation for the EVs and the power grid. In this framework, the two are complementary in a way that the desired benefit of one cannot be achieved without attaining that of the other. A Fuzzy Logic based on-board module is developed for supporting the decision of the EV as to which charging station to charge at. GPU computing is used in the higher-end agents to handle the big amount of data resulting in such a large scale system with mobile and geo-distributed nodes. Cyber security risks that threaten the BDSS are assessed and measures are applied to revoke possible attacks. Furthermore, the Collective Distribution of Mobile Loads (CDML), a service with ancillary potential to the power system, is developed. It comprises a system-level optimization. In this service, the EVs requesting a public charging session are collectively redistributed onto charging stations with the objective of achieving the optimal and secure operation of the power system by reducing active power losses in normal conditions and mitigating line congestions in contingency conditions. The CDML uses the BDSS as an industrially viable tool to achieve the outcomes of the optimization in real time. By participating in this service, the EV is considered as an interacting node in the system-wide communication platform, providing both enhanced self-convenience in terms of access to public chargers, and contribution to the collective effort of providing benefit to the power system under the large scale uptake of EVs. On the EV charger level, several advantages have been reported favoring wireless charging of EVs over wired charging. Given that, new techniques are presented that facilitate the optimization of the magnetic link of wireless EV chargers while considering international EMC standards. The original techniques and developments presented in this dissertation were experimentally verified at the Energy Systems Research Laboratory at FIU.
APA, Harvard, Vancouver, ISO, and other styles
5

Pennycooke, Nicholas (Nicholas D. ). "AEVITA : designing biomimetic vehicle-to-pedestrian communication protocols for autonomously operating & parking on-road electric vehicles." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/77810.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 125-127).
With research institutions from various private, government and academic sectors performing research into autonomous vehicle deployment strategies, the way we think about vehicles must adapt. But what happens when the driver, the main conduit of information transaction between the vehicle and its surroundings, is removed? The EVITA system aims to fill this communication void by giving the autonomous vehicle the means to sense others around it, and react to various stimuli in as intuitive ways as possible by taking design cues from the living world. The system is comprised of various types of sensors (computer vision, UWB beacon tracking, sonar) and actuators (light, sound, mechanical) in order to express recognition of others, announcement of intentions, and portraying the vehicle's general state. All systems are built on the 2 nd version of the 1/2 -scale CityCar concept vehicle, featuring advanced mixed-materials (CFRP + Aluminum) and a significantly more modularized architecture.
by Nicholas Pennycooke.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
6

Chuang, Chih-Chao. "Green mobility Taipei City : with the arrival of mobility-on-demand system with ultra small electric vehicles." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67763.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2011.
Cataloged from PDF version of thesis. Page 250 blank.
Includes bibliographical references (p. 246-249).
Urban form always transforms when new transportation technology is deployed. Urban form and transportation technologies always coevolve. Many new technologies have been developed to solve the problems of greenhouse gas emission, air pollution, energy efficiency, high gas prices, traffic congestion, etc. Electric vehicles (EVs) and Mobility-on-Demand systems are two of these technologies. With the advancement of battery technologies, EVs are become the next mainstream product for Automobile industry. Meanwhile, there are many new concepts about various alternative types of car ownership, such as Mobility-on-Demand (MoD) systems, a one-way rental car sharing systems, for which the Smart Cities group of MIT Media Lab is doing research. The regulation and infrastructure of current cities are mainly designed to accommodate gasoline-powered and private owned vehicles. This thesis addresses how will urban fabric and space transform with the arrivals of EVs and MoD systems and what kind of service and urban infrastructure can be integrated when individual vehicles become a node of mobility network. The thesis focuses on Taipei City as a case study city and develops varies scale design strategies, ranging from charging infrastructure, street, sidewalk, curb, parking infrastructure, to building type. The thesis also discusses the benefit of EVs and MoD system may bring to a city.
by Chih-Chao Chuang.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
7

Satra, Mahaveer Kantilal. "Hybrid Electric Vehicle Model Development and Design of Controls Testing Framework." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595432296730485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tiffin, Daniel Joseph. "Orbital Fueling Architectures Leveraging Commercial Launch Vehicles for More Affordable Human Exploration." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1575590285930015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ozen, Etkin. "Design Of Smart Controllers For Hybrid Electric Vehicles." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606540/index.pdf.

Full text
Abstract:
This thesis focuses on the feasibility of designing a commercial hybrid electric vehicle (HEV). In this work, relevant system models are developed for the vehicle including powertrain, braking system, electrical machines and battery. Based on these models ten different HEV configurations are assembled for detailed assessment of fuel consumption. This thesis also proposes a smart power management strategy which could be applied to any kind of HEV configuration. The suggested expert system deals with the external information about the driving conditions and modes of the driver as well as the internal states of the internal combustion engine efficiency and the state of charge of the battery, and decides on the power distribution between two different power supplies based on the predefined algorithms. The study illustrates the characteristics of the powertrain components for various HEV configurations. The work also shows the power flow of HEV configurations with the developed smart power management system and therefore, the effectiveness of power management strategies has been evaluated in detail.
APA, Harvard, Vancouver, ISO, and other styles
10

Pan-Ngum, Setha. "Alternative vehicle electronic architecture for individual wheel control." Thesis, University of Warwick, 2001. http://wrap.warwick.ac.uk/59476/.

Full text
Abstract:
Electronic control systems have become an integral part of the modern vehicle and their installation rate is still on a sharp rise. Their application areas range from powertrain, chassis and body control to entertainment. Each system is conventionally control led by a centralised controller with hard-wired links to sensors and actuators. As systems have become more complex, a rise in the number of system components and amount of wiring harness has followed. This leads to serious problems on safety, reliability and space limitation. Different networking and vehicle electronic architectures have been developed by others to ease these problems. The thesis proposes an alternative architecture namely Distributed Wheel Architecture, for its potential benefits in terms of vehicle dynamics, safety and ease of functional addition. The architecture would have a networked controller on each wheel to perform its dynamic control including braking, suspension and steering. The project involves conducting a preliminary study and comparing the proposed architecture with four alternative existing or high potential architectures. The areas of study are functionality, complexity, and reliability. Existing ABS, active suspension and four wheel steering systems are evaluated in this work by simulation of their operations using road test data. They are used as exemplary systems, for modelling of the new electronic architecture together with the four alternatives. A prediction technique is developed, based on the derivation of software pseudo code from system specifications, to estimate the microcontroller specifications of all the system ECUs. The estimate indicates the feasibility of implementing the architectures using current microcontrollers. Message transfer on the Controller Area Network (CAN) of each architecture is simulated to find its associated delays, and hence the feasibility of installing CAN in the architectures. Architecture component costs are estimated from the costs of wires, ECUs, sensors and actuators. The number of wires is obtained from the wiring models derived from exemplary system data. ECU peripheral component counts are estimated from their statistical plot against the number of ECU pins of collected ECUs. Architecture component reliability is estimated based on two established reliability handbooks. The results suggest that all of the five architectures could be implemented using present microcontrollers. In addition, critical data transfer via CAN is made within time limits under current levels of message load, indicating the possibility of installing CAN in these architectures. The proposed architecture is expected to· be costlier in terms of components than the rest of the architectures, while it is among the leaders for wiring weight saving. However, it is expected to suffer from a relatively higher probability of system component failure. The proposed architecture is found not economically viable at present, but shows potential in reducing vehicle wire and weight problems.
APA, Harvard, Vancouver, ISO, and other styles
11

Kolli, Abdelfatah. "Analyse d’une architecture de puissance dédiée aux modes traction–recharge dans un véhicule électrique. Optimisation de la commande et fonctionnement en mode dégradé." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112316/document.

Full text
Abstract:
La problématique de recherche abordée dans ce mémoire de thèse découle de l’étude approfondie d’une association convertisseur-machine dédiée aux modes traction et recharge d’un véhicule électrique. Il s’agit d’un onduleur triphasé constitué de trois onduleurs monophasés connectés à une machine triphasée à phases indépendantes.Dans le chapitre II, une étude comparative entre deux solutions industrielles montre que l’architecture étudiée offre des caractéristiques compétitives notamment en termes de rendement global du convertisseur, performances mécaniques, et surface de silicium nécessaire.Par ailleurs, outre la possibilité de mutualiser les trois fonctions du véhicule que sont la traction, la recharge (rapide ou lente) et l’assistance du réseau électrique, cette topologie offre plusieurs atouts : des possibilités variées d’alimentation et donc un potentiel intéressant de reconfiguration en marche dégradée. La thématique abordée dans les chapitres III et IV est donc centrée sur l’optimisation des stratégies de contrôle de cette structure vis-à-vis de deux types de défauts : les imperfections intrinsèques du système d’une part et les défaillances accidentelles d’autre part.Dans un premier temps, un travail approfondi sur les méthodes de modulation de largeur d’impulsion a permis de synthétiser une stratégie offrant une faible sensibilité vis-à-vis des imperfections de la commande et de la non-linéarité du convertisseur. Dans un second temps, il a été montré qu’en cas de défaillance d’un composant à semi-conducteur, il était obligatoire de recourir à la reconfiguration matérielle de la topologie. L’architecture permettant la continuité de service a été étudiée du point de vue de sa commande. Son analyse nous a amenés à proposer une structure de contrôle basée sur des solutions automatiques simples et efficaces. Finalement, le principe du fonctionnement en marche dégradée a été étendu au fonctionnement normal dans le but d’en améliorer le rendement sur cycle
This Ph.D. thesis focuses on a novel combination of a frequency converter and an electric machine specially dedicated to traction drive and battery recharging modes of an electric vehicle (EV). This power architecture is composed of a six legs voltage inverter connected to a three-phase open-end winding machine. Chapter II details a quantitative comparison between two industrial power architectures and concludes that the SOFRACI powertrain is a competitive solution in terms of power converter efficiency, drive mechanical performances, and required silicon area.This architecture offers the attractive possibility of combining three important functions: traction and braking, battery charging and connecting the energy storage to a smart grid. In addition, this topology offers several advantages such as various motor feeding possibilities and a high degree of reconfiguration in degraded operating mode. The third and fourth chapters of this thesis concern the optimization of control strategies with regard to two types of faults: firstly the inherent imperfections in the converter itself (non modeled non-linearity and ineffective synchronization of control values) and secondly accidental failures. In the first case, an analysis of the pulse width modulation (PWM) methods enables the creation of a PWM strategy with a very low sensitivity to PWM uncertainties and the non-linear behavior of the power converter.In the second case, in the event of a faulty semiconductor device, it is shown that a hardware reconfiguration is required to enable an emergency traction mode. The sustainability of the traction mode is then examined with respect to the control strategy. This analysis leads to an innovative control structure based on basic and easy to implement solutions. Finally, the degraded mode operation principles have been extended to normal mode operation for the purpose of enhancing the cycle efficiency
APA, Harvard, Vancouver, ISO, and other styles
12

Ratnam, Aravind. "A system architecture evaluation of MOBI.E : the Portuguese Electric Vehicle network." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76929.

Full text
Abstract:
Thesis (S.M. in Engineering and Management)--Massachusetts Institute of Technology, Engineering Systems Division, System Design and Management Program, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 109-112).
Architecting consumes a relatively small portion of the design process, yet the decisions made at this critical stage will direct the overall course of the implementation and operational process. Well architected systems can deliver competitive advantage by delivering maximized benefits at a competitive cost. These beneficial effects are vital in complex systems such as MOBI.E, which is an integrated charging station network linking various points in Portugal that will enable electric vehicles to recharge. MOBI.E's main mission is to jumpstart the Portuguese sustainable electric mobility industry, promoting the integration of the electric power from renewable sources into the functioning and development of cities. This thesis underscores the importance of electric mobility as well as technology trends that will influence the evolution of MOBI.E by constructing a standalone informal primer on MOBI.E. Application of system architecture tools including the morphological matrix to key steps in the architecting process has been demonstrated and evaluations of MOBI.E's architecture have been conducted. Further, a structured framework for architectural evaluation of complex systems, building upon other frameworks in the literature, has been proposed and utilized to critically evaluate MOBIE's current design against best practices in system architecture. The conclusion of this analysis has been that MOBI.E's design has incorporated appropriate technology, minimized future rework, offered flexibility in design & implementation, ensured scalability, as well as helped meet unexpected future needs.
by Aravind Ratnam.
S.M.in Engineering and Management
APA, Harvard, Vancouver, ISO, and other styles
13

Sotingco, Daniel (Daniel S. ). "A simulation-based assessment of plug-in hybrid electric vehicle architectures." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/74950.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
Page 85 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (p. 81-84).
Plug-in hybrid electric vehicles (PHEVs) are vehicles that utilize power from both an internal combustion engine and an electric battery that can be recharged from the grid. Simulations of series, parallel, and split-architecture PHEVs, as well as parallel and split PHEVs with ultracapacitors, were performed in Autonomie, the vehicle simulation package released by Argonne National Laboratory as the successor to the Powertrain System Analysis Toolkit (PSAT). The PHEV configurations were parameterized by battery capacity, motor peak power, engine peak power, and ultracapacitor capacity if applicable. Results were compared to EPA data for the Chevrolet Volt and Toyota Prius, showing close agreement on values for fuel consumption, charge-depleting range, and acceleration time. While most PHEVs today are of the series or split variety, analysis of the simulation results indicates that including features from a parallel architecture could improve performance without undue additional cost from components. In addition, ultracapacitors were found to have a significant positive effect on all-electric fuel consumption. Furthermore, pricing models were created to predict approximate MSRP and 5-year cost-to-own for future PHEVs. These models were incorporated into a graphical user interface built using MATLAB that allows access to the simulation results in a way that is accessible to the average consumer.
by Daniel Sotingco.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
14

Kabalan, Bilal. "Systematic methodology for generation and design of hybrid vehicle powertrains." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSE1048.

Full text
Abstract:
Pour répondre aux objectifs de consommation des flottes de véhicules, au normes d’émissions de polluants et aux nouvelles demandes de l’usager, les constructeurs automobiles doivent développer des motorisations hybrides et électriques. Réaliser une chaine de traction hybride reste cependant une tâche difficile. Ces systèmes sont complexes et possèdent de nombreuses variables réparties sur différents niveaux : architecture, technologie des composants, dimensionnement et contrôle/commande. L’industrie manque encore d’environnements et d’outils pouvant aider à l’exploration de l’ensemble de l’espace de dimensionnement et à trouver la meilleure solution parmi tous ces niveaux. Cette thèse propose une méthodologie systématique pour répondre au moins partiellement à ce besoin. Partant d’un ensemble de composants, cette méthodologie permet de générer automatiquement tous les graphes d’architectures possibles en utilisant la technique de programmation par contraintes. Une représentation dédiée est développée pour visualiser ces graphes. Les éléments de boites de vitesse (embrayages, synchroniseurs) sont représentés avec un niveau de détails approprié pour générer de nouvelles transmission mécaniques sans trop complexifier le problème. Les graphes obtenus sont ensuite transformés en d’autres types de représentation : 0ABC Table (décrivant les connections mécaniques entre les composants), Modes Table (décrivant les modes de fonctionnement disponibles dans les architectures) et Modes Table + (décrivant pour chaque mode le rendement et le rapport de réduction global des chemins de transfert de l’énergie entre tous les composants). Sur la base de cette représentation, les nombreuses architectures générées sont filtrées et seules les plus prometteuses sont sélectionnées. Elles sont ensuite automatiquement évaluées et optimisées avec un modèle général spécifiquement développé pour calculer les performances et la consommation de toute les architectures générées. Ce modèle est inséré dans un processus d’optimisation à deux niveaux ; un algorithme génétique GA est utilisé pour le dimensionnement des composants et la programmation dynamique est utilisée au niveau contrôle (gestion de l’énergie) du système. Un cas d’étude est ensuite réalisé pour montrer le potentiel de cette méthodologie. Nous générons ainsi automatiquement toutes les architectures qui incluent un ensemble de composants défini à l’avance, et le filtrage automatique élimine les architectures présupposées non efficaces et sélectionnent les plus prometteuses pour l’optimisation. Les résultats montrent que la méthodologie proposée permet d’aboutir à une architecture meilleure (consommation diminuée de 5%) que celles imaginées de prime abord (en dehors de toute méthodologie)
To meet the vehicle fleet-wide average CO2 targets, the stringent pollutant emissions standards, and the clients’ new demands, the automakers realized the inevitable need to offer more hybrid and electric powertrains. Designing a hybrid powertrain remains however a complex task. It is an intricate system involving numerous variables that are spread over different levels: architecture, component technologies, sizing, and control. The industry lacks frameworks or tools that help in exploring the entire design space and in finding the global optimal solution on all these levels. This thesis proposes a systematic methodology that tries to answer a part of this need. Starting from a set of chosen components, the methodology automatically generates all the possible graphs of architectures using constraint-programming techniques. A tailored representation is developed to picture these graphs. The gearbox elements (clutches, synchronizer units) are represented with a level of details appropriate to generate the new-trend dedicated hybrid gearboxes, without making the problem too complex. The graphs are then transformed into other types of representation: 0ABC Table (describing the mechanical connections between the components), Modes Table (describing the available modes in the architectures) and Modes Table + (describing for each available mode the global efficiency and ratio of the power flow between all the components). Based on these representations, the architectures are filtered and the most promising ones are selected. They are automatically assessed and optimized using a general hybrid model specifically developed to calculate the performance and fuel consumption of all the generated architectures. This model is inserted inside a bi-level optimization process: Genetic Algorithm GA is used on the sizing and components level, while Dynamic Programming DP is used on the control level. A case study is performed and the capability of the methodology is proven. It succeeded in automatically generating all the graphs of possible architectures, and filtering dismissed architectures that were then proven not efficient. It also selected the most promising architectures for optimization. The results show that the proposed methodology succeeded in finding an architecture better than the ones proposed without the methodology (consumption about 5% lower)
APA, Harvard, Vancouver, ISO, and other styles
15

Matczynski, Michael J. "A distributed embedded software architecture for multiple Unmanned Aerial Vehicles." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37210.

Full text
Abstract:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
Includes bibliographical references (leaves 52-54).
In order to deploy intelligent, next-generation applications on Unmanned Aerial Vehicles (UAVs), we must first develop a software architecture that supports onboard computation and flexible communication. This thesis presents an Onboard Planning Module developed from an embedded PC/104 Linux-based computer that communicates directly with the UAV's autopilot to retrieve telemetry data and update the UAV's flight path. A serial communication program exchanges data with the UAV's autopilot while a multithreaded module enables concurrent onboard Mixed-Integer Linear Programming (MILP) optimization. The Mission Manager Graphical User Interface (GUI) monitors the status of each Onboard Planning Module on a team of UAVs using the onboard planning protocol. Two task assignment scenarios are simulated to demonstrate the system operating with both a single and multiple UAV task selection algorithm.
by Michael J. Matczynski.
M.Eng.
APA, Harvard, Vancouver, ISO, and other styles
16

Alochet, Marc. "Rupture technologique et dynamique d’une industrie : la transition vers l’électromobilité Will the scale-up of electric vehicles (EV) disrupt the architecture of the automotive industry? Automobile industry, towards an electric autonomous mobility service industry? A sociotechnical transition-based approach Systemicinnovation and project learning: from firm to ecosystem learning capability How do servitization impact on project management? Some examples from the emergence of MaaS Are Chinese regulations shaping the worldwide EVs industry?" Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX088.

Full text
Abstract:
Des réglementations strictes obligent les constructeurs à investir massivement dans la production de véhicules électriques. L'électrification est une innovation systémique et sa massification devrait perturber la conception dominante des véhicules. "Cette perturbation pourrait-elle déstabiliser durablement l'architecture d’une industrie considérée comme très résiliente ?"Une étude empirique de la chaîne de valeur de la traction électrique, confirme, à ce jour, la résilience de cette industrie dont les constructeurs automobiles restent l'acteur central et que l'électrification seule ne suffit pas à déstabiliser. Mais les innovations technologiques, les nouveaux défis sociétaux, les nouveaux acteurs puissants de la mobilité influencent l'avenir de cette industrie. "Cette combinaison de facteurs internes et externes à l'industrie pourrait-elle favoriser une dynamique de rupture ?" En analysant 10 cas de services de mobilité innovants au niveau mondial, cette thèse identifie 3 types idéaux : "service de mobilité ajouté au produit", "robotaxi", "plate-forme ouverte de mobilité territorialisée". Si le premier est une extension naturelle de l'activité des constructeurs, les deux derniers ont le potentiel de déstabiliser cette industrie. Une comparaison, entre la Chine et l'Europe, de la gouvernance des réglementations environnementales, indique que la Chine est en situation d’imposer désormais ses normes dans le monde entier grâce à une capacité de planification alliant directivité, intrusion et agilité. Théoriquement, cette thèse confirme les théories stratégiques et l’utilisation du paradigme de la STT pour étudier les transitions dans cette industrie. Elle contribue aux domaines de la gestion de l'innovation et de la servitisation en proposant un espace de conception pour le développement des services de mobilité et confirme que le projet est un important vecteur d'apprentissage dans un écosystème naissant. Elle soutient l'hypothèse d'une avalanche de causalités convergentes conduisant à la déstabilisation de l'architecture historique de l'industrie automobile et que les modes de régulation entre ces différents facteurs vont façonner ces déstabilisations potentielles
Strict regulations force global players to invest heavily in the production of electric vehicles. Electrification is a systemic innovation whose massification should disrupt the vehicle dominant design. “Could this disruption durably destabilize the industrial architecture of a sector, considered as very resilient?”An empirical study on the electric traction value chain, confirms, to date, the resilience of this industry as carmakers remain the focal actor: electrification alone is not enough to destabilize this industry!But, technological innovations, new societal challenges, new powerful players in the mobility market influence the future of this industry.“Could this combination of factors internal and external to the industry facilitate a disruptive dynamic?”By analyzing 10 case studies of innovative mobility services worldwide, this thesis identifies 3 ideal types: “mobility service added to product”, “robotaxi”, “territorialized open mobility platform”. If the first one is a natural extension of The carmakers' business, the last two have the potential to destabilize the automotive industry.An empirical comparison, between China and Europe, of the governance of environmental regulations, states that China is now in capacity to impose its standards worldwide through a planning capacity combining directiveness, intrusiveness and agility.Theoretically, it confirms strategic theories and the interest of building upon the STT paradigm to shed light on transitions in this industry. It contributes to innovation management and servitization fields by proposing a design space for the development of mobility services and confirms that project is an important learning vector in a nascent ecosystem. This thesis supports the hypothesis of an avalanche of converging causalities leading to the destabilization of the historical architecture of the automotive industry. In accordance with the theory of transitions, the modes of regulation between these different factors will shape these potential destabilizations
APA, Harvard, Vancouver, ISO, and other styles
17

Boyd, Steven J. "Hybrid Electric Vehicle Control Strategy Based on Power Loss Calculations." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/34970.

Full text
Abstract:
Defining an operation strategy for a Split Parallel Architecture (SPA) Hybrid Electric Vehicle (HEV) is accomplished through calculating powertrain component losses. The results of these calculations define how the vehicle can decrease fuel consumption while maintaining low vehicle emissions. For a HEV, simply operating the vehicle's engine in its regions of high efficiency does not guarantee the most efficient vehicle operation. The results presented are meant only to define a literal strategy; that is, an understanding as to why the vehicle should operate in a certain way under the given conditions. The literature review gives a background of hybrid vehicle control publications, and without the SPA HEV addressed or a hybrid analysis based on loss calculations between engine only and hybrid modes, there is a need for this paper. Once the REVLSE architecture and components are understood, the hybrid modes are explained. Then the losses for each hybrid mode are calculated, and both the conversion and assist efficiencies are detailed. The conversion efficiency represents the amount of additional fuel required to store a certain amount of energy in the battery, and this marginal efficiency can be higher than peak engine efficiency itself. This allows electric only propulsion to be evaluated against the engine only mode, and at low torques the electric motor is more efficient despite the roundtrip losses of the hybrid system.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
18

Bovee, Katherine Marie. "Design of the Architecture and Supervisory Control Strategy for a Parallel-Series Plug-in Hybrid Electric Vehicle." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1343416437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Beltran, Gabriel. "Analysis and simulation of the Advanced Amphibious Assault Vehicle (AAAV) electrical system architecture." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2000. http://handle.dtic.mil/100.2/ADA379858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Davis, Jesse H. Z. (Jesse Harper Zehring) 1980. "Hardware & software architecture for multi-level unmanned autonomous vehicle design." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/16968.

Full text
Abstract:
Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.
Includes bibliographical references (p. 95-96).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
The theory, simulation, design, and construction of a radically new type of unmanned aerial vehicle (UAV) are discussed. The vehicle architecture is based on a commercially available non-autonomous flyer called the Vectron Blackhawk Flying Saucer. Due to its full body rotation, the craft is more inherently gyroscopically stable than other more common types of UAVs. This morphology was chosen because it has never before been made autonomous, so the theory, simulation, design, and construction were all done from fundamental principles as an example of original multi-level autonomous development.
by Jesse H.Z. Davis.
M.Eng.
APA, Harvard, Vancouver, ISO, and other styles
21

Romeu, Lezama Juan J. "Architectural innovation in the automotive industry : Tesla and the renaissance of the battery electric vehicle." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107365.

Full text
Abstract:
Thesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, School of Engineering, System Design and Management Program, Engineering and Management Program, 2016.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 111-115).
With the launch of the Tesla Model S all-electric premium sedan, it is evident that, in at least some segments of the automotive market, there is significant demand for battery electric vehicles (BEVs) that have fundamentally different, and for these segments at least, superior attributes to conventional gasoline-powered, gasoline-electric hybrids or previous generations of battery-powered electric vehicles. It appears that BEVs may be in the trajectory to become the dominant design in the automotive industry, replacing the internal combustion engine (ICE) architecture. Tesla's architectural innovation is both in the product and the process domains, its essential difference being how the system architecture evolved from clearly defined stakeholder's needs to elements of function and form as embodiment of a state-of-the art concept. Tesla architected a BEV system that goes significantly beyond the pre-established requirements and outdated standards of the industry, enabling a dynamic organization and a faster product development process focused on rapid improvement and sub-system innovation. It has also built the entire supporting architecture around the product, at the system-of-systems level, resulting in a delightful end-to-end experience. Tesla is leading the transformation of the automotive ecosystem and, by doing so, it is challenging incumbent automakers in the race to sustainable transportation.
by Juan J. Romeu Lezama.
S.M. in Engineering and Management
APA, Harvard, Vancouver, ISO, and other styles
22

King, Jonathan Charles. "Model-Based Design of a Plug-In Hybrid Electric Vehicle Control Strategy." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/34962.

Full text
Abstract:
For years the trend in the automotive industry has been toward more complex electronic control systems. The number of electronic control units (ECUs) in vehicles is ever increasing as is the complexity of communication networks among the ECUs. Increasing fuel economy standards and the increasing cost of fuel is driving hybridization and electrification of the automobile. Achieving superior fuel economy with a hybrid powertrain requires an effective and optimized control system. On the other hand, mathematical modeling and simulation tools have become extremely advanced and have turned simulation into a powerful design tool. The combination of increasing control system complexity and simulation technology has led to an industry wide trend toward model based control design. Rather than using models to analyze and validate real world testing data, simulation is now the primary tool used in the design process long before real world testing is possible. Modeling is used in every step from architecture selection to control system validation before on-road testing begins. The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is participating in the 2011-2014 EcoCAR 2 competition in which the team is tasked with re-engineering the powertrain of a GM donated vehicle. The primary goals of the competition are to reduce well to wheels (WTW) petroleum energy use (PEU) and reduce WTW greenhouse gas (GHG) and criteria emissions while maintaining performance, safety, and consumer acceptability. This paper will present systematic methodology for using model based design techniques for architecture selection, control system design, control strategy optimization, and controller validation to meet the goals of the competition. Simple energy management and efficiency analysis will form the primary basis of architecture selection. Using a novel method, a series-parallel powertrain architecture is selected. The control system architecture and requirements is defined using a systematic approach based around the interactions between control units. Vehicle communication networks are designed to facilitate efficient data flow. Software-in-the-loop (SIL) simulation with Mathworks Simulink is used to refine a control strategy to maximize fuel economy. Finally hardware-in-the-loop (HIL) testing on a dSPACE HIL simulator is demonstrated for performance improvements, as well as for safety critical controller validation. The end product of this design study is a control system that has reached a high level of parameter optimization and validation ready for on-road testing in a vehicle.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
23

Lark, William 1981. "The anatomy of an urban modular electric vehicle : how the architecture of the CityCar enhances personal mobility and supporting industries." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78201.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 121-124).
Growing populations, increasing middle-class, and rapid urbanization - for today's urban dweller, all of these escalating factors continue to contribute to problems of excessive energy use, road congestion, pollution due to carbon emissions, and inefficient personal transit. Considering that the average vehicle in a city weighs thousands of pounds, usually caries only one person per trip, and expends significant proportions of its gasoline simply searching for resources such as parking, new efficient and intelligent modes of transportation are in need of exploration. This dissertation presents the design and development of an electric vehicle called the "CityCar" that confronts the aforementioned problems of urban mobility with a novel vehicle architecture. The assembly of the CityCar derives from a subset of "urban modular electric vehicle" (uMEV) components in which five core units are combined to create a variety of solutions for urban personal mobility. Drastically decreasing the granularity of the vehicle's subcomponents into larger interchangeable modules, the uMEV platform expands options for fleet customization while simultaneously addressing the complex rapport between automotive manufacturers and their suppliers through a responsibility shift among their respective subcomponents. Transforming its anatomy from complex mechanically-dominant entities to electrically-dominant modular components enables unique design features within the uMEV fleet. The CityCar for example exploits technologies such as a folding chassis to reduce its footprint by 40% and Robot Wheels that each are allotted between 72 to 120-degrees of rotation to together enable a seven-foot turning circle. Just over 1,000 pounds, its lightweight zero-emitting electric platform, comprised of significantly fewer parts, curbs negative externalities that today's automobiles create in city environments. Additionally, the vehicle platform developed from the assembly of several core units empowers a consortium of suppliers to self-coordinate through a unique modular business model. Lastly, the CityCar specific uMEV confronts problems within urban transit by providing a nimble folding mobility solution tailored specifically to crowded cities. Benefits, such as a 5:1 parking density and its reduced maintenance demands, are especially reinforced in the context of shared personal transportation services like Mobility-on-Demand.
by William Lark, Jr.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
24

Basson, Lionel. "Control allocation as part of a fault-tolerant control architecture for UAVs." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6722.

Full text
Abstract:
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2011.
ENGLISH ABSTRACT: The development of a control allocation system for use as part of a fault-tolerant control (FTC) system in unmanned aerial vehicles (UAVs) is presented. This system plays a vital role in minimising the possibility that a fault will necessitate the reconfiguration of the control, guidance or navigation systems of the aircraft by minimising the difference between the desired and achievable aircraft performance parameters. This is achieved by optimising the allocation of control effort commanded by the virtual actuators to the physical actuators present on the aircraft. A simple general six degree of freedom aircraft model is presented that contains all of the relevant terms needed to find the trim biases of the aircraft actuators and evaluate the performance of the virtual actuators. This model was used to develop a control allocation formulation that optimises the performance of the virtual actuators of the aircraft while minimising adverse effects and avoiding actuator saturation. The resulting problem formulation was formulated as a multi-objective optimisation problem which was solved using the sequential quadratic programming method. The control allocation system was practically implemented and tested. A number of failure categories of varying severity were defined and two aircraft with different levels of actuator redundancy were used to test the system. The control allocation algorithm was evaluated for each failure category, aircraft test case and for a number of differing control allocation system configurations. A number of enhancements were then made to the control allocation system which included adding frequency-based allocation and adapting the algorithm for an unconventional ducted-fan UAV. The control allocation system is shown to be applicable to a number of different conventional aircraft configurations with no alterations as well as being applicable to unconventional aircraft with minor alterations. The control allocation system is shown to be capable of handling both single and multiple actuator failures and the importance of actuator redundancy is highlighted as a factor that influences the effectiveness of control allocation. The control allocation system can be effectively used as part of a FTC system or as a tool that can be used to investigate control allocation and aircraft redundancy.
AFRIKAANSE OPSOMMING: Die ontwikkeling van ’n beheertoekenning sisteem vir gebruik as deel van ’n fout verdraagsame beheersisteem in onbemande lugvaartuie word voorgelê. Hierdie sisteem speel ’n essensiële rol in die vermindering van die moontlikheid dat ’n fout die herkonfigurasie van die beheer, bestuur of navigasiesisteme van die vaartuig tot gevolg sal hê, deur die verskil te verminder tussen die verlangde en bereikbare werkverrigtingsraamwerk van die vaartuig. Dit word bereik deur die optimisering van die toekenning van beheerpoging aangevoer deur die virtuele aktueerders na die fisiese aktueerders teenwoordig op die vaartuig. ’n Eenvoudige algemene ses grade van vryheid lugvaartuig model word voorgestel wat al die relevante terme bevat wat benodig word om die onewewigtigheid verstelling van die vaartuig se aktueerders te vind en die werksverrigting van die virtuele aktueerders te evalueer. Hierdie model is gebruik om ’n beheer toekenning formulering te ontwikkel wat die werkverrigting van die virtuele aktueerders van die vaartuig optimiseer terwyl nadelige gevolge verminder word asook aktueerder versadiging vermy word. Die gevolglike probleem formulering is omskryf as ’n multi-doel optimiserings probleem wat opgelos is deur gebruik van die sekwensiële kwadratiese programmerings metode. Die beheertoekenning sisteem is prakties geïmplementeer en getoets. ’n Aantal fout kategorieë van verskillende grade van erns is gedefinieer en twee vaartuie met verskillende vlakke van aktueerder oortolligheid is gebruik om die sisteem te toets. Die beheer toekenning algoritme is geëvalueer vir elke fout kategorie, vaartuig toetsgeval, asook vir ’n aantal verskillende beheertoekenning sisteem konfigurasies. ’n Aantal verbeterings is aangebring aan die beheertoekenning sisteem, naamlik die toevoeging van frekwensie gebaseerde toekenning en wysiging van die algoritme vir ’n onkonvensionele onbemande geleide waaier lugvaartuig. Die beheertoekenning sisteem is van toepassing op ’n aantal verskillende konvensionele vaartuig konfigurasies met geen verstellings asook van toepassing op onkonvensionele vaartuie met geringe verstellings. Die beheertoekenning sisteem kan beide enkel- en veelvoudige aktueerder tekortkominge hanteer en die belangrikheid van aktueerder oortolligheid is beklemtoon as ’n faktor wat die effektiwiteit van beheertoekenning beïnvloed. Die beheertoekenning sisteem kan effektief geïmplementeer word as deel van ’n fout verdraagsame beheersisteem of as ’n werktuig om beheertoekenning en vaartuig oortolligheid te ondersoek.
APA, Harvard, Vancouver, ISO, and other styles
25

Coopmans, Calvin. "Architecture, Inertial Navigation, and Payload Designs for Low-Cost Unmanned Aerial Vehicle-Based Personal Remote Sensing." DigitalCommons@USU, 2010. https://digitalcommons.usu.edu/etd/692.

Full text
Abstract:
This thesis presents work done towards a Personal Remote Sensing (PRS) system: small Unmanned Aerial Vehicles (UAVs) with electronic, control, and sensing subsystems. Based on papers presented to conferences (AutoTestCon2008 and MESA2009), as well as other work on PRS, multiple levels of engineering are detailed: complex multi-UAV data flow; attitude estimation filters; real-time microprocessor functionality; and small, mobile power systems. Wherever possible, Open-Source tools and designs have been used, modified, or studied, providing excellent cost to performance ratios in most cases. First, the overall PRS UAV architecture, AggieAir, is presented with a motivating examples (GhostEye and EagleEye camera payloads). Then, AggieNav, an inertial navigation system for small UAVs, is detailed, along with information about a Kalman filter for estimation of UAV navigation, position, and attitude. Finally the Spatial Environment Autonomous Logger (SEAL), a general-purpose wireless datalogger for small UAV applications, is presented, with application examples with and without small UAVs. This work represents designs based on two years of organic small UAV system growth, and provides integrated solutions to many problems of small UAV communication, sensing, and control.
APA, Harvard, Vancouver, ISO, and other styles
26

Werner, Quentin. "Model-based optimization of electrical system in the early development stage of hybrid drivetrains." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0109.

Full text
Abstract:
Cette thèse analyse les challenges auxquels sont confrontés les composants électriques pour les systèmes de traction hybrides. L’analyse de ces composants et de leurs interactions en tant qu’entité indépendante est un sujet de recherche important afin de dimensionner de manière optimale le système au lieu de combiner des composants optimaux. Les véhicules hybrides sont un domaine de recherche qui suscite un grand intérêt parce qu’il s’agit d’une solution efficace à court terme afin de préparer la transition énergétique vers les véhicules à zéro émission. Malgré les avantages de cette solution, c’est un sujet de recherche complexe car les composants électriques doivent être intégrés dans un système de propulsion conventionnel. Ainsi le but de ce travail de recherche est axé sur la détermination de méthodes appropriées pour étudier les composants électriques et les contributions apportées par cette thèse visent à répondre à la problématique suivante : déterminer le niveau suffisant de détails pour modéliser les systèmes électriques pour les systèmes de traction pour véhicules hybrides afin d’identifier le dimensionnement idéal des composants pour différents systèmes pendant la phase de développement. Afin de résoudre cette problématique, ce rapport est divisé en quatre parties au sein de six chapitres. D’abord l’état de l’art des véhicules hybrides, des composants électriques ainsi que des méthodes d’optimisation associées sont présentés (chapitre 1). Ensuite, pour chaque composant (chapitre 2 à 4), des méthodes de modélisation appropriées sont déterminées afin de les modéliser mais aussi afin d’évaluer leur intégration dans le système de propulsion. Puis, une solution pour l’étude du système globale est déterminée à partir de l’analyse de travaux précédents (chapitre 5). Finalement, une approche d’optimisation est développée et permet d’analyser différents systèmes ainsi que l’influence de différents paramètres sur le dimensionnement (chapitre 6). Grâce à l’analyse du développement actuel et des travaux précédents sur le sujet ainsi qu’au développement d’outils de simulation, cette thèse étudie et analyse les relations entre le niveau de tension et de courant, et les performances du système dans différents cas. Les résultats permettent de déterminer l’influence de ces paramètres sur les composants ainsi que l’impact de l’environnement industriel sur les résultats. En tenant compte du cadre législatif actuel, les résultats convergent globalement tous dans la même direction : une réduction du niveau de tension, respectivement une augmentation du courant, entraine une amélioration du système global par rapport aux méthodes de dimensionnent actuelles. Ces observations sont liées à l’architecture, au cycle d’évaluation et à l’environnement considérés mais les méthodes et l’approche développée ont posé les bases pour étendre les connaissances dans le domaine de l’optimisation des véhicules hybrides. En plus de l’optimisation générale, des cas particuliers sont analysés afin de montrer la modularité des méthodes et l’influence de paramètres supplémentaires (système 48V ou convertisseur Boost). Afin de conclure, cette thèse a mis en place les bases pour l’étude des composants électriques pour les véhicules hybrides. De part un environnement fluctuant et les nombreuses technologies possibles, ce sujet suscite encore un grand intérêt et les points suivants peuvent être encore étudiés de manière plus détaillée : * Application des méthodes pour d’autres systèmes de propulsion (autre architectures hybrides, véhicule à pile à combustible ou tout électrique), * Étude de nouvelles technologies comme le carbure de silicium pour l’électronique de puissance, la machine à reluctance variable ou le sulfure de lithium pour les batteries, * Analyse d’autre cycle d’évaluation ainsi que leur cadre législatif, * Mise en place de structures additionnelles pour l’électronique de puissance, * Validations supplémentaires avec d’autres composants
This work analyses the challenges faced by the electric components for traction purpose in hybrid drivetrains. It investigates the components and their interactions as an independent entity in order to refine the scope of investigation and to find the best combinations of components instead of the best components combinations. Hybrid vehicle is currently a topic of high interest because it stands for a suitable short-term solution towards zero emission vehicle. Despite its advantages, it is a challenging topic because the components need to be integrated in a conventional drivetrain architecture. Therefore, the focus of this work is set on the determination of the right methods to investigate only the electric components for traction purpose. The aim and the contributions of this work lies thereby in the resolution of the following statement: Determine the sufficient level of details in modeling electric components at the system level and develop models and tools to perform dynamic simulations of these components and their interactions in a global system analysis to identify ideal designs of various drivetrain electric components during the design process. To address these challenges, this work is divided in four main parts within six chapters. First the current status of the hybrid vehicle, the electric components and the associated optimization methods and simulation are presented (first chapter). Then for each component, the right modeling approach is defined in order to investigate the electrical, mechanical and thermal behavior of the components as well as methods to evaluate their integration in the drivetrain (second to fourth chapter). After this, a suitable method is defined to evaluate the global system and to investigate the interactions between the components based on the review of relevant previous works (chapter five). Finally, the last chapter presents the optimization approach considered in this work and the results by analyzing different system and cases (chapter six). Thanks to the analysis of the current status, previous works and the development of the simulations tools, this work investigates the relationships between the voltage, the current and the power in different cases. The results enable, under the considered assumptions of the work, to determine the influence of these parameters on the components and of the industrial environment on the optimization results. Considering the current legislative frame, all the results converge toward the same observation referred to the reference systems: a reduction of the voltage and an increase of the current leads to an improvement of the integration and the performance of the system. These observations are linked with the considered architecture, driving cycle and development environment but the developed methods and approaches have set the basis to extend the knowledge for the optimization of the electric system for traction purpose. Beside the main optimization, special cases are investigated to show the influence of additional parameters (increase of the power, 48V-system, machine technology, boost-converter…) In order to conclude, this work have set the basis for further investigations about the electric components for traction purpose in more electrified vehicle. Due to the constantly changing environment, the new technologies and the various legislative frame, this topic remains of high interest and the following challenges still need to be deeper investigated: * Application of the methods for other drivetrain architecture (series hybrid, power-split hybrid, fuel-cell vehicle, full electric vehicle), * Investigation of new technologies such as silicon-carbide for the power electronics, lithium–sulfur battery or switch reluctance machine, * Investigation of other driving cycle, legislative frame, * Integration of additional power electronics structure, * Further validation of the modeling approaches with additional components
APA, Harvard, Vancouver, ISO, and other styles
27

Sellergren, Albin. "Intra-Vehicle Connectivity : Case study and channel characterization." Thesis, Uppsala universitet, Signaler och System, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-353678.

Full text
Abstract:
The purpose of this thesis was to investigate the feasibility of a wireless architectural approach for intra-vehicle communications. The current wired architecture was compared to a wireless approach based on three prominent wireless protocols, namely Bluetooth Low-Energy, Ultra Wide-Band, and 60 GHz Millimeter wave technology. The evaluation was focused on their potential use within the intra-vehicle domain, and judged by characterizing properties such as frequency, bandwidth utilization, and power efficiency. A theoretical study targeting the propagating behavior of electromagnetic waves was also involved. In particular, wireless behavior has been investigated both in general aspects as well as specifically aimed towards the intra-vehicle application. The theoretical study was then concluded and presented with a course of action regarding wireless connectivity. Beneficial design considerations, potentials and challenges were highlighted together with a discussion on the feasibility of a wireless architectural approach. Suggestions for future work and research have been given, which include further expansion of targeted protocols, alleviating the restricted security aspects, and extend the physical aspects onto more software based approaches.
APA, Harvard, Vancouver, ISO, and other styles
28

Abdrakhmanov, Rustem. "Sub-optimal Energy Management Architecture for Intelligent Hybrid Electric Bus : Deterministic vs. Stochastic DP strategy in Urban Conditions." Thesis, Université Clermont Auvergne‎ (2017-2020), 2019. http://www.theses.fr/2019CLFAC020/document.

Full text
Abstract:
Cette thèse propose des stratégies de gestion de l'énergie conçues pour un bus urbain électrique hybride. Le système de commande hybride devrait créer une stratégie efficace de coordination du flux d’énergie entre le moteur thermique, la batterie, les moteurs électriques et hydrauliques. Tout d'abord, une approche basée sur la programmation dynamique déterministe (DDP) a été proposée : algorithme d'optimisation simultanée de la vitesse et de la puissance pour un trajet donné (limité par la distance parcourue et le temps de parcours). Cet algorithme s’avère être gourmand en temps de calcul, il n’a pas été donc possible de l’utiliser en temps réel. Pour remédier à cet inconvénient, une base de données de profils optimaux basée sur DP (OPD-DP) a été construite pour une application en temps réel. Ensuite, une technique de programmation dynamique stochastique (SDP) a été utilisée pour générer simultanément et d’une manière optimale un profil approprié de la vitesse du Bus ainsi que sa stratégie de partage de puissance correspondante. Cette approche prend en compte à la fois la nature stochastique du comportement de conduite et les conditions de circulations urbaines (soumises à de multiples aléas). Le problème d’optimisation énergétique formulé, en tant que problème intrinsèquement multi-objectif, a été transformé en plusieurs problèmes à objectif unique avec contraintes utilisant une méthode ε-constraint afin de déterminer un ensemble de solutions optimales (le front de Pareto).En milieu urbain, en raison des conditions de circulation, des feux de circulation, un bus rencontre fréquemment des situations Stop&Go. Cela se traduit par une consommation d'énergie accrue lors notamment des démarrages. En ce sens, une stratégie de régulation de vitesse adaptative adaptée avec Stop&Go (eACCwSG) apporte un avantage indéniable. L'algorithme lisse le profil de vitesse pendant les phases d'accélération et de freinage du Bus. Une autre caractéristique importante de cet algorithme est l’aspect sécurité, étant donné que l’ACCwSG permet de maintenir une distance de sécurité afin d’éviter les collisions et d’appliquer un freinage en douceur. Comme il a été mentionné précédemment, un freinage en douceur assure le confort des passagers
This PhD thesis proposes Energy Management Strategies conceived for a hybrid electrical urban bus. The hybrid control system should create an efficient strategy of coordinating the flow of energy between the heat engine, battery, electrical and hydraulic motors. Firstly, a Deterministic Dynamic Programming (DDP) based approach has been proposed: simultaneous speed and powersplit optimization algorithm for a given trip (constrained by the traveled distance and time limit). This algorithm turned out to be highly time consuming so it cannot be used in real-time. To overcome this drawback, an Optimal Profiles Database based on DP (OPD-DP) has been constructed for real-time application. Afterwards, a Stochastic Dynamic Programming (SDP) technique is used to simultaneously generate an optimal speed profile and related powersplit strategy. This approach takes into account a stochastic nature of the driving behavior and urban conditions. The formulated energy optimization problem, being intrinsically multi-objective problem, has been transformed into several single-objective ones with constraints using an ε-constraint method to determine a set of optimal solutions (the Pareto Front).In urban environment, due to traffic conditions, traffic lights, a bus encounters frequent Stop&Go situations. This results in increased energy consumption during the starts. In this sense, a relevant Eco Adaptive Cruise Control with Stop&Go (eACCwSG) strategy brings the undeniable benefit. The algorithm smooths speed profile during acceleration and braking phases. One more important feature of this algorithm is the safety aspect, as eACCwSG permits to maintain a safety distance in order to avoid collision and apply a smooth braking. As it was mentioned before, smooth braking ensures passengers comfort
APA, Harvard, Vancouver, ISO, and other styles
29

Ravey, Alexandre. "Conception et gestion de l'énergie des architectures pour véhicules hybrides électriques." Phd thesis, Université de Technologie de Belfort-Montbeliard, 2012. http://tel.archives-ouvertes.fr/tel-00863541.

Full text
Abstract:
Depuis une dizaine d'années, les constructeurs et les grands groupesdu secteur de l'automobile se sont mobilisés autour de la recherche et dudéveloppement de nouveaux prototypes de véhicules économes (moins consommateursd'énergie) et propres (moins de rejets de polluants) tels queles véhicules hybrides et tout électriques. C'est une nouvelle mutation. Ellefait profondément évoluer l'automobile, d'une architecture de propulsionthermique, devenue maîtrisée mais fortement polluante, vers une tractionélectrique ou hybride plus complexe et peu, voire pas du tout, maîtrisée ;le nombre de composants (sources d'énergie, actionneurs, contrôleurs, calculateurs,...) devient important, de nature multidisciplinaire et possédantbeaucoup de non linéarités. De plus, faute de maturité dans ce domaine, àce jour l'industrie de l'automobile ne possède pas encore les connaissancessuffisantes nécessaires à la modélisation, à la simulation et à la conceptionde ces nouveaux véhicules et plus particulièrement les dispositifs relatifs auxsources d'énergie et aux différents actionneurs de propulsion.Les travaux de cette thèse visent à donner des méthodes de conceptiond'une chaine de traction hybride et d'en gérer la gestion de l'énergie. Lathèse s'appuie sur l'exemple de la conception et la gestion de l'énergie d'unvéhicule hybride basé sur une pile à combustible et des batteries.Dans un premier temps, un méthode de dimensionnement des composantsde la chaine de traction est présentée : Elle consiste en l'étude statistique decycle de conduite générés pseudo aléatoirement représentatif de la conduiteen condition réelle de véhicule. Un générateur de cycle de conduite à été créeet est présenté, et la méthode de dimensionnement de la source primaire, iciune pile a combustible, ainsi que le source secondaire de puissance, ici desbatteries, est détaillée. Un exemple est pris pour illustrer cette méthode avecla conception d'un véhicule de type camion poubelle décrivant des cycles deconduites urbains à arrêts fréquents.Dans un second temps, la gestion de l'énergie de la chaine de traction hybridesérie est étudiée : une gestion de l'énergie "offline" est présentée, basé surl'optimisation par programmation dynamique. Cette optimisation permetd'avoir le découpage de la puissance par les deux sources de la chaine detraction de manière optimal pour un cycle précis. De part l'aspect déterministede la programmation dynamique, les résultats servent de référence quant aufuturs développements de gestion temps réel.Un contrôleur temps réel basé sur la logique floue est ainsi exposé et lesrésultats sont comparés par rapport à la gestion "offline". Le contrôleurest ensuite optimisé et rendu adaptatif par un algorithme génétique et unalgorithme de reconnaissance de type de profil routier.Enfin, une introduction à la gestion de l'énergie dans les véhicules hybrides de type : "plug in" est présentée : Elle repose sur le principe de la déterminationde la distance restante à parcourir par la reconnaissance de la destination àl'aide d'une matrice de probabilité de Markov.
APA, Harvard, Vancouver, ISO, and other styles
30

Soltani, Amirmasoud. "Low cost integration of Electric Power-Assisted Steering (EPAS) with Enhanced Stability Program (ESP)." Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/8829.

Full text
Abstract:
Vehicle Dynamics Control (VDC) systems (also known as Active Chassis systems) are mechatronic systems developed for improving vehicle comfort, handling and/or stability. Traditionally, most of these systems have been individually developed and manufactured by various suppliers and utilised by automotive manufacturers. These decentralised control systems usually improve one aspect of vehicle performance and in some cases even worsen some other features of the vehicle. Although the benefit of the stand-alone VDC systems has been proven, however, by increasing the number of the active systems in vehicles, the importance of controlling them in a coordinated and integrated manner to reduce the system complexity, eliminate the possible conflicts as well as expand the system operational envelope, has become predominant. The subject of Integrated Vehicle Dynamics Control (IVDC) for improving the overall vehicle performance in the existence of several VDC active systems has recently become the topic of many research and development activities in both academia and industries Several approaches have been proposed for integration of vehicle control systems, which range from the simple and obvious solution of networking the sensors, actuators and processors signals through different protocols like CAN or FlexRay, to some sort of complicated multi-layered, multi-variable control architectures. In fact, development of an integrated control system is a challenging multidisciplinary task and should be able to reduce the complexity, increase the flexibility and improve the overall performance of the vehicle. The aim of this thesis is to develop a low-cost control scheme for integration of Electric Power-Assisted Steering (EPAS) system with Enhanced Stability Program (ESP) system to improve driver comfort as well as vehicle safety. In this dissertation, a systematic approach toward a modular, flexible and reconfigurable control architecture for integrated vehicle dynamics control systems is proposed which can be implemented in real time environment with low computational cost. The proposed control architecture, so named “Integrated Vehicle Control System (IVCS)”, is customised for integration of EPAS and ESP control systems. IVCS architecture consists of three cascade control loops, including high-level vehicle control, low-level (steering torque and brake slip) control and smart actuator (EPAS and EHB) control systems. The controllers are designed based on Youla parameterisation (closed-loop shaping) method. A fast, adaptive and reconfigurable control allocation scheme is proposed to coordinate the control of EPAS and ESP systems. An integrated ESP & ESP HiL/RCP system including the real EPAS and Electro Hydraulic Brake (EHB) smart actuators integrated with a virtual vehicle model (using CarMaker/HiL®) with driver in the loop capability is designed and utilised as a rapid control development platform to verify and validate the developed control systems in real time environment. Integrated Vehicle Dynamic Control is one of the most promising and challenging research and development topics. A general architecture and control logic of the IVDC system based on a modular and reconfigurable control allocation scheme for redundant systems is presented in this research. The proposed fault tolerant configuration is applicable for not only integrated control of EPAS and ESP system but also for integration of other types of the vehicle active systems which could be the subject of future works.
APA, Harvard, Vancouver, ISO, and other styles
31

Janiaud, Noëlle. "Modélisation du système de puissance du véhicule électrique en régime transitoire en vue de l'optimisation de l'autonomie, des performances et des coûts associés." Phd thesis, Supélec, 2011. http://tel.archives-ouvertes.fr/tel-00660749.

Full text
Abstract:
Dans le contexte automobile actuel de réduction des émissions de CO2, une réponse semble être apportée par le véhicule électrique. De nombreuses questions se posent alors, notamment concernant l'autonomie, d'autant plus que le nombre de consommateurs électriques dans les véhicules est en constante augmentation. Il est nécessaire de concevoir un groupe-motopropulseur électrique alliant autonomie et performances en considérant les contraintes de coût auxquelles est confronté tout constructeur.Concernant les outils de conception, très nombreux sont les constructeurs qui s'orientent vers d'autres solutions que la réalisation de prototypes en faisant appel à la simulation numérique dès le début du cycle en V pour optimiser leur prédimensionnement et assurer un gain non négligeable sur les délais et les coûts. Les travaux de thèse s'articulent ainsi autour de deux axes. Une première étape consiste à modéliser le réseau électrique automobile (chaîne de traction, système de confort thermique et réseau 14V) afin de simuler son fonctionnement en régime dynamique. L'aspect dynamique est important : des cartographies de pertes ne peuvent suffire si nous nous intéressons aux performances du véhicule en termes d'accélérations. D'autre part, l'autonomie est impactée de façon non négligeable par cet aspect dynamique.Dans une seconde étape, nous procéderons à l'optimisation du système de puissance. Les critères qui nous intéressent, autonomie et performances, sont antagonistes, ce qui donne lieu à la recherche de " meilleurs " compromis. Nous distinguons l'optimisation des lois de pilotage des organes de l'optimisation de l'architecture, les deux étant menées séquentiellement.
APA, Harvard, Vancouver, ISO, and other styles
32

(10292552), Omar Nabeel Nezamuddin. "Proposal of wireless charging method and architecture to increase range in electric vehicles." Thesis, 2021.

Find full text
Abstract:
Electric vehicles (EVs) face a major issue before becoming the norm of society, that is, their lack of range when it comes to long trips. Fast charging stations are a good step forward to help make it simpler for EVs, but it is still not as convenient when compared to vehicles with an internal combustion engine (ICE). Plenty of infrastructure changes have been proposed in the literature attempting to tackle this issue, but they typically tend to be either an expensive solution or a difficult practical implementation.
This dissertation presents two solutions to help increase the range of EVs: a novel wireless charging method and a multi-motor architecture for EVs. The first proposed solution involves the ability for EVs to charge while en route from another vehicle, which will be referred to from here on as vehicle-to-vehicle recharging (VVR). The aim of this system is to bring an innovative way for EVs to charge their battery without getting off route on a highway. The electric vehicle can request such a service from a designated charger vehicle on demand and receive electric power wirelessly while en route. The vehicles that provide energy (charger vehicles) through wireless power transfer (WPT) only need to be semi-autonomous in order to ``engage'' or ``disengage'' during a trip. Also, a novel method for wireless power transfer will be presented, where the emitter (TX) or receiver (RX) pads can change angles to improve the efficiency of power transmission. This type of WPT system would be suitable for the VVR system presented in this dissertation, along with other applications.
The second solution presented here will be an architecture for EVs with three or more different electric motors to help prolong the state of charge (SOC) of the battery. The key here is to use motors with different high efficiency regions. The proposed control algorithm optimizes the use of the motors on-board to keep them running in their most efficient regions. With this architecture, the powertrain would see a combined efficiency map that incorporates the best operating points of the motors. Therefore, the proposed architecture will allow the EV to operate with a higher range for a given battery capacity.
The state-of-the-art is divided into four subsections relevant to the proposed solutions and where most of the innovations to reduce the burden of charging EVs can be found: (1) infrastructure changes, (2) device level innovations, (3) autonomous vehicles, and (4) electric vehicle architectures. The infrastructure changes highlight some of the proposed systems that aim to help EVs become a convenient solution to the public. Device level innovations covers some of the literature on technology that addresses EVs in terms of WPT. The autonomous vehicle subsection covers the importance of such technology in terms of safety and reliability, that could be implemented on the VVR system. Finally, the EV architectures covers the current typologies used in EVs. Furthermore, modeling, analysis, and simulation is presented to validate the feasibility of the proposed VVR system, the WPT system, and the multi-motor architecture for EVs.
APA, Harvard, Vancouver, ISO, and other styles
33

Nezamuddin, Omar. "Proposal of Wireless Charging Method and Architecture to Increase Range in Electric Vehicles." Thesis, 2021. http://dx.doi.org/10.7912/C2/8.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
Electric vehicles (EVs) face a major issue before becoming the norm of society, that is, their lack of range when it comes to long trips. Fast charging stations are a good step forward to help make it simpler for EVs, but it is still not as convenient when compared to vehicles with an internal combustion engine (ICE). Plenty of infrastructure changes have been proposed in the literature attempting to tackle this issue, but they typically tend to be either an expensive solution or a difficult practical implementation. This dissertation presents two solutions to help increase the range of EVs: a novel wireless charging method and a multi-motor architecture for EVs. The first proposed solution involves the ability for EVs to charge while en route from another vehicle, which will be referred to from here on as vehicle-to-vehicle recharging (VVR). The aim of this system is to bring an innovative way for EVs to charge their battery without getting off route on a highway. The electric vehicle can request such a service from a designated charger vehicle on demand and receive electric power wirelessly while en route. The vehicles that provide energy (charger vehicles) through wireless power transfer (WPT) only need to be semi-autonomous in order to ``engage'' or ``disengage'' during a trip. Also, a novel method for wireless power transfer will be presented, where the emitter (TX) or receiver (RX) pads can change angles to improve the efficiency of power transmission. This type of WPT system would be suitable for the VVR system presented in this dissertation, along with other applications. The second solution presented here will be an architecture for EVs with three or more different electric motors to help prolong the state of charge (SOC) of the battery. The key here is to use motors with different high efficiency regions. The proposed control algorithm optimizes the use of the motors on-board to keep them running in their most efficient regions. With this architecture, the powertrain would see a combined efficiency map that incorporates the best operating points of the motors. Therefore, the proposed architecture will allow the EV to operate with a higher range for a given battery capacity. The state-of-the-art is divided into four subsections relevant to the proposed solutions and where most of the innovations to reduce the burden of charging EVs can be found: (1) infrastructure changes, (2) device level innovations, (3) autonomous vehicles, and (4) electric vehicle architectures. The infrastructure changes highlight some of the proposed systems that aim to help EVs become a convenient solution to the public. Device level innovations covers some of the literature on technology that addresses EVs in terms of WPT. The autonomous vehicle subsection covers the importance of such technology in terms of safety and reliability, that could be implemented on the VVR system. Finally, the EV architectures covers the current typologies used in EVs. Furthermore, modeling, analysis, and simulation is presented to validate the feasibility of the proposed VVR system, the WPT system, and the multi-motor architecture for EVs.
APA, Harvard, Vancouver, ISO, and other styles
34

Chanumolu, Raviteja. "A Novel Hybrid Vehicle Architecture : Modeling, Simulation and Experiments." Thesis, 2017. http://etd.iisc.ernet.in/2005/3585.

Full text
Abstract:
Electric and hybrid vehicles are particularly suited for use in urban areas since city transportation is mainly characterized by relatively short driving distances, low continuous power requirements, long idling times and high availability of regenerative braking energy. These characteristics, when carefully incorporated into the design process, create valuable opportunities for developing clean, efficient and cost effective urban vehicle propulsion systems. In the first part of the thesis, we present data collected in the city of Bangalore, India from a very commonly seen mode of transportation for hire in India and other emerging economies, namely a three-wheeled vehicle known as the “auto-rickshaw”. From a statistical analysis, it is shown that the typical range is 72.5 km with a mean speed of 12.5 km/h. More than 60% of the time the auto-rickshaw is stationary or has a speed of less than 5 km/h. From a model of the auto-rickshaw, it is shown from simulations that 4 kW DC motor and about 10 kWh of electrical energy is enough to meet 80% of typical requirement. Based on this finding, in this thesis, a novel parallel hybrid architecture is proposed where two 2 kW DC hub motors are directly mounted on the wheels and an internal combustion (IC) engine output is connected to the stator of the DC hub motors to provide additional power when required. To match load and speed, a continuously variable transmission (CVT) is placed in-between the IC engine and the DC hub motor. The proposed hybrid configuration adds speed to the wheel output unlike the normal power split configuration which adds torque. One of the main objective of this work is to study and compare the performance of the above novel speed-addition and compare with the typical torque-addition configuration. A MATLAB/Simulink model for both the configurations, with DC hub motor and a small IC engine, has been created and the fuel consumption has been calculated. It is shown that the proposed speed-addition concept gives better fuel efficiency for the standard modified Indian Driving Cycle. The models have also been compared for actual driving data and an optimal control strategy has been developed using dynamic programming. It is again shown that the proposed speed-addition concept results in better fuel economy. In the last part of the thesis, a low cost experimental test-bed consisting of an auto-rickshaw IC engine, a CVT and a 2 kW DC hub motor has been developed to validate the speed-addition concept and compare with the torque-addition configuration. The torque-speed curves of the IC engine, the DC motor and both of them together, in the speed and torque-addition configuration, have been obtained. It is shown that the speed-addition concept does indeed work and the obtained results are significantly different from the torque-addition configuration.
APA, Harvard, Vancouver, ISO, and other styles
35

Leite, Pedro Nuno Barbosa. "A Self-Guided Docking Architecture for Autonomous Surface Vehicles." Master's thesis, 2019. https://hdl.handle.net/10216/121192.

Full text
Abstract:
Autonomous Surface Vehicles (ASVs) provide the ideal platform to further explore the many opportunities in the cargo shipping industry, by making it more profitable and safer. Information retrieved from a 3D LIDAR, IMU, GPS, and Camera is combined to extract the geometric features of the floating platform and to estimate the relative position and orientation of the moor to the ASV. Then, a trajectory is planned to a specific target position, guaranteeing that the ASV will not collide with the mooring facility. To ensure that the sensors are within range of operation, a module has been developed to generate a trajectory that will deliver the ASV to a catch zone where it is able to function properly.A High-Level controler is also implemented, resorting to an heuristic to evaluate if the ASV is within this operating range and also its current orientation relative to the docking platform.
APA, Harvard, Vancouver, ISO, and other styles
36

Chiu, Chun-Lung, and 邱俊龍. "Study on Architecture-Oriented Vehicle Electronic Product Requirement Model." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/75510828151476928874.

Full text
Abstract:
碩士
國立中山大學
資訊管理學系研究所
101
The electronic system in automobiles has become more important in providing safety, comfort and entertainment, at the same time less harmful to the environment. Due to the fact that there are varieties in automobile electronic devises, product development has become more complex. For example, shortening product development period while maintaining quality and fulfilling requirements of each company are all important issues. The development of automobile electronic products cannot only emphasize on functionality but also need to be more customer-oriented to fulfill the needs and expectations of the users. The initial phase of product development should focus on confirming the types of products with clients in order to develop and manufacture into what have been expected. The goal of product development expected by the market has obvious differences with the actual products that have been manufactured. The reason for the differences is the emphasis on functionality during the initial phase of product development. Also, the development process has focused mainly on technological development instead of customer expectations and the changes that occur during the product life cycle, which brings in the need for “Requirements Management.” Problems such as large amount of development cost, compensation, loss of order and reliability can be resolved through the application of “Requirements Management.” Through observation and interviews with management team and project managing engineers, what is lacking is the method of demand analysis for system engineer of suppliers during the demand analysis stage to better analyze customer needs and to combine with existing system; thus managers can utilize the requirement analysis method to familiarize with the product. In addition, system engineers can better distribute resources and confirm demands. Based on the architecture-oriented model for auto electrical products, demand analysis method can clearly integrated different aspects, including structural and behavioral. These statistics can be utilized in the following phases during project development, such as system design, production, testing, and proofing stages, especially where integration with software, electrical and structural system is important and complex for the development of auto electrical products. The architecture-oriented model can maintain consistency and can be traceable along with the requirements model.
APA, Harvard, Vancouver, ISO, and other styles
37

Van, Wieringen Matt. "Design and development of a custom dual fuel (hydrogen and gasoline) power system for an extended range electric vehicle architecture." Thesis, 2009. http://hdl.handle.net/10155/39.

Full text
Abstract:
In recent decades there has been a growing global concern with regards to vehicle-generated green house gas (GHG) emissions and the resulting air pollution. Currently, gasoline and diesel are the most widely used automotive fuels and are refined from crude oil which is a nonrenewable resource. When they are combusted in an Internal Combustion Engine (ICE) they release significant amounts of air pollutants and Green House Gasses (GHG’s), such as NOx, CO2, SOx, CO, and PM10 into the atmosphere. The results of a feasibility study indicate that intermediary automotive propulsion systems are needed in order to begin a transition from fossil fuels to a clean, renewable transportation system. The Extended Range Electric Vehicle (E-REV) has been identified as an ideal intermediate vehicle technology. In this context, the objective of this thesis is to establish the scientific and engineering fundamentals for the design and development of a Dual-Fuel (hydrogen + Gasoline) Power Generation System for the E-REV sustainable mobility architecture. The devised power generation system is comprised of hydrogen and gasoline storage reservoirs, their respective fuelling systems, a Spark Ignition Internal Combustion Engine (SI ICE), an electric generator, batteries, as well as supplementary electronic systems. The batteries are used to provide power directly to the electric motors and are recharged with both the on-board electric generator and via plug-in capabilities. The developed prototype vehicle, which used a commercial Dune Buggy as a test bed, combined with the on-board rechargeable LiFePO4 battery pack, can provide the users with a daily commute range of ~ 65 [km] relying solely on the battery’s electric power, whereas for longer duration trips the use of the on-board generator would be necessary. The developed Dual-Fuel E-REV power generation system offers the following benefits when compared to the original gasoline ICE architecture: reduced emissions, improved acceleration (47% ↑), improved range (75% ↑), improved fuel economy (22% ↑) and decreased average fuel cost/km (29% ↓).
APA, Harvard, Vancouver, ISO, and other styles
38

(5931110), Durvesh Pathak. "Compressed Convolutional Neural Network for Autonomous Systems." Thesis, 2019.

Find full text
Abstract:
The word “Perception” seems to be intuitive and maybe the most straightforward problem for the human brain because as a child we have been trained to classify images, detect objects, but for computers, it can be a daunting task. Giving intuition and reasoning to a computer which has mere capabilities to accept commands and process those commands is a big challenge. However, recent leaps in hardware development, sophisticated software frameworks, and mathematical techniques have made it a little less daunting if not easy. There are various applications built around to the concept of “Perception”. These applications require substantial computational resources, expensive hardware, and some sophisticated software frameworks. Building an application for perception for the embedded system is an entirely different ballgame. Embedded system is a culmination of hardware, software and peripherals developed for specific tasks with imposed constraints on memory and power. Therefore, the applications developed should keep in mind the memory and power constraints imposed due to the nature of these systems.Before 2012, the problems related to “Perception” such as classification, object detection were solved using algorithms with manually engineered features. However, in recent years, instead of manually engineering the features, these features are learned through learning algorithms. The game-changing architecture of Convolution Neural Networks proposed in 2012 by Alex K, provided a tremendous momentum in the direction of pushing Neural networks for perception. This thesis is an attempt to develop a convolution neural network architecture for embedded systems, i.e. an architecture that has a small model size and competitive accuracy. Recreate state-of-the-art architectures using fire module’s concept to reduce the model size of the architecture. The proposed compact models are feasible for deployment on embedded devices such as the Bluebox 2.0. Furthermore, attempts are made to integrate the compact Convolution Neural Network with object detection pipelines.
APA, Harvard, Vancouver, ISO, and other styles
39

(10701084), James Lawrence Stewart. "Designing Optical Metastructures for IR Sensing, Discernment and Signature Reduction." Thesis, 2021.

Find full text
Abstract:
Increasing flexibility of light manipulation is vital for various domains including both biomedical and military applications, where a lack of photon control could become critical. The efforts conducted and projected within this proposal are focused on three major areas: semi-continuous planar thin film photomodification for infrared (IR) filtering, nanosphere core-shell structures for obscurance, and all-dielectric sub-wavelength focal lenses for advanced IR sensing.Through a collaborative effort with the Army Research Office, we advanced the tunability of planar plasmonic filters with cutoff wavelengths in the 10–16μm range with photomodification using a 10.6μm CO2laser. Surface-enhanced molecular absorption in concert with three-dimensional (3D) Au nano-structures with inherent broad absorption in the IR band was a novel approach utilized to create such planar filters.Expanding on these, efforts and the results of the 2-dimensional (2D) semicontinuous Au plasmonic planar filtering, we further advanced our research with 3D Au nano-coreshell structures to enable levitated long-wavelength pass filter obscurants. We exploited the radiative effects of Au nano-structures that mimic conventional apertures or antennas, though these structures are on the nanometer scale and demonstrated the filtering characteristics through flow cell.In parallel with our plasmonic filtering we designed, manufactured and tested low loss dielectric microlenses for IR radiation based on a dielectric metasurface layer by patterning a SI substrate and etching to sub-micron depths. For a proof-of-concept lens demonstration,we chose a fine patterned array of nano-pillars with variable diameters.Merging our plasmonic filtering and dielectric microlens efforts, we created a holographic lenslet by designing and simulating a low loss focusing metasurface lens with engineered nano-scaled features to converge off-axis IR radiation. An array of nano-pillars with varied diameter and fixed height and periodicity was chosen for ease of fabrication with single layer etching
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography