To see the other types of publications on this topic, follow the link: Electric power production – Computer simulation.

Journal articles on the topic 'Electric power production – Computer simulation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Electric power production – Computer simulation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Vera, David, Francisco Jurado, Bárbara de Mena, and Jesús C. Hernández. "A Distributed Generation Hybrid System for Electric Energy Boosting Fueled with Olive Industry Wastes." Energies 12, no. 3 (February 5, 2019): 500. http://dx.doi.org/10.3390/en12030500.

Full text
Abstract:
This paper presents the theoretical model and the simulation of a cutting edge hybrid power system composed of an externally-fired gas turbine (EFGT) coupled with an organic Rankine cycle (ORC) as a bottoming unit for the maximization of electrical power. The power plant is fed with different biomass sources from olive industry wastes (pruning, dry pomace, stones, leaves and twigs), providing more than 550 kW of electric power and a net electrical efficiency of 26.0%. These wastes were burnt directly at atmospheric pressure in an EFGT, producing 400 kW of electric power and exhaust gases at 300 °C. Ten suitable ORC working fluids have been studied to maximize the electric power generation: cyclohexane, isohexane, pentane, isopentane, neopentane, R113, R245fa, R365mfc, R1233zd and methanol. The best fluid was R1233zd, reaching 152.4 kW and 22.1% of ORC thermal efficiency; as drawback, however, R1233zd was not suitable for Combined Heat and Power CHP applications due its lower condensation temperature. Thus, despite R113 gave minor electricity production (137.5 kW) this allowed to generate additional thermal power (506.8 kW) in the way of hot water at 45 °C.
APA, Harvard, Vancouver, ISO, and other styles
2

Uimonen, Semen, and Matti Lehtonen. "Simulation of Electric Vehicle Charging Stations Load Profiles in Office Buildings Based on Occupancy Data." Energies 13, no. 21 (October 31, 2020): 5700. http://dx.doi.org/10.3390/en13215700.

Full text
Abstract:
Transportation vehicles are a large contributor of the carbon dioxide emissions to the atmosphere. Electric Vehicles (EVs) are a promising solution to reduce the CO2 emissions which, however, requires the right electric power production mix for the largest impact. The increase in the electric power consumption caused by the EV charging demand could be matched by the growing share of Renewable Energy Sources (RES) in the power production. EVs are becoming a popular sustainable mean of transportation and the expansion of EV units due to the stochastic nature of charging behavior and increasing share of RES creates additional challenges to the stability in the power systems. Modeling of EV charging fleets allows understanding EV charging capacity and demand response (DR) potential of EV in the power systems. This article focuses on modeling of daily EV charging profiles for buildings with various number of chargers and daily events. The article presents a modeling approach based on the charger occupancy data from the local charging sites. The approach allows one to simulate load profiles and to find how many chargers are necessary to suffice the approximate demand of EV charging from the traffic characteristics, such as arrival time, duration of charging, and maximum charging power. Additionally, to better understand the potential impact of demand response, the modeling approach allows one to compare charging profiles, while adjusting the maximum power consumption of chargers.
APA, Harvard, Vancouver, ISO, and other styles
3

Guggeri, Andrés, and Martín Draper. "Large Eddy Simuation of an Onshore Wind Farm with the Actuator Line Model Including Wind Turbine’s Control Below and Above Rated Wind Speed." Energies 12, no. 18 (September 11, 2019): 3508. http://dx.doi.org/10.3390/en12183508.

Full text
Abstract:
As the size of wind turbines increases and their hub heights become higher, which partially explains the vertiginous increase of wind power worldwide in the last decade, the interaction of wind turbines with the atmospheric boundary layer (ABL) and between each other is becoming more complex. There are different approaches to model and compute the aerodynamic loads, and hence the power production, on wind turbines subject to ABL inflow conditions ranging from the classical Blade Element Momentum (BEM) method to Computational Fluid Dynamic (CFD) approaches. Also, modern multi-MW wind turbines have a torque controller and a collective pitch controller to manage power output, particularly in maximizing power production or when it is required to down-regulate their production. In this work the results of a validated numerical method, based on a Large Eddy Simulation-Actuator Line Model framework, was applied to simulate a real 7.7 MNW onshore wind farm on Uruguay under different wind conditions, and hence operational situations are shown with the aim to assess the capability of this approach to model actual wind farm dynamics. A description of the implementation of these controllers in the CFD solver Caffa3d, presenting the methodology applied to obtain the controller parameters, is included. For validation, the simulation results were compared with 1 Hz data obtained from the Supervisory Control and Data Acquisition System of the wind farm, focusing on the temporal evolution of the following variables: Wind velocity, rotor angular speed, pitch angle, and electric power. In addition to this, simulations applying active power control at the wind turbine level are presented under different de-rate signals, both constant and time-varying, and were subject to different wind speed profiles and wind directions where there was interaction between wind turbines and their wakes.
APA, Harvard, Vancouver, ISO, and other styles
4

Colantoni, Andrea, Mauro Villarini, Vera Marcantonio, Francesco Gallucci, and Massimo Cecchini. "Performance Analysis of a Small-Scale ORC Trigeneration System Powered by the Combustion of Olive Pomace." Energies 12, no. 12 (June 14, 2019): 2279. http://dx.doi.org/10.3390/en12122279.

Full text
Abstract:
The utilisation of low- and medium-temperature energy allows to reduce the energy shortage and environmental pollution problems because low-grade energy is plentiful in nature and renewable as well. In the past two decades, thanks to its feasibility and reliability, the organic Rankine cycle (ORC) has received great attention. The present work is focused on a small-scale (7.5 kW nominal electric power) combined cooling, heating and power ORC system powered by the combustion of olive pomace obtained as a by-product in the olive oil production process from an olive farm situated in the central part of Italy. The analysis of the employment of this energy system is based on experimental data and Aspen Plus simulation, including biomass and combustion tests, biomass availability and energy production analysis, Combined Cooling Heat and Power (CCHP) system sizing and assessment. Different low environmental impact working fluids and various operative process parameters were investigated. Olive pomace has been demonstrated to be suitable for the energy application and, in this case, to be able to satisfy the energy consumption of the same olive farm with the option of responding to further energy users. Global electrical efficiency varied from 12.7% to 19.4%, depending on the organic fluid used and the working pressure at the steam generator.
APA, Harvard, Vancouver, ISO, and other styles
5

Bogdanov, I. I. I., J. A. A. Torres, H. A. A. Akhlaghi, and A. M. M. Kamp. "The Influence of Salt Concentration in Injected Water on Low-Frequency Electrical-Heating-Assisted Bitumen Recovery." SPE Journal 16, no. 03 (March 22, 2011): 548–58. http://dx.doi.org/10.2118/129909-pa.

Full text
Abstract:
Summary Steam injection is often not a good alternative for oil recovery from shallow bitumen reservoirs. For instance, the thin caprock creates the danger of steam breakthrough. For deeper reservoirs, the heat losses from injection wells may be prohibitive. A technology that may be better suited is oil recovery aided by low-frequency electrical heating of the reservoir. This technology, well known for environmental remedial applications, has been field tried recently, yielding promising results. The process uses electric conductivity of connate water to propagate an alternating current between electrodes, inducing the Joule heating of the reservoir. An associated problem is the appearance of hot spots around the electrodes that may be relieved by water circulation. However, the water circulation may have a significant effect on the heating process because the electric conductivity of the circulated water depends on its salt content. To find out the influence of salt concentration on process efficiency, we have studied the process of salt-water recirculation around an electrode using numerical simulation. The physical properties and operational data for Athabasca bitumen have been collected from the literature. The model built with Computer Modelling Group's STARS simulator and tested first with available analytical solutions has been validated, and the proper choice of the underlying grid and numerical tuning parameters has been verified. The process was also simulated at field scale for a common pattern of electrodes and production wells. The salt penetrated into the reservoir, far beyond the major water-circulation zone around the electrodes. This process increases the electric conductivity in a large region between electrodes, which improves the heating of the reservoir. The single-electrode simulation studies using different tools yielded similar results for a simple problem. More-complex (and more-realistic) field-scale simulations show that adding salt enhances the oil production. In practice, an upper concentration limit may be given by corrosion problems at the electrodes. The reservoir simulation of bitumen recovery assisted by low-frequency heating is a challenging multiphysics problem. The understanding of the influence of salt concentration on the circulated water provided by this work is an important key in process-design considerations.
APA, Harvard, Vancouver, ISO, and other styles
6

Arias, Ignacio, Eduardo Zarza, Loreto Valenzuela, Manuel Pérez-García, José Alfonso Romero Ramos, and Rodrigo Escobar. "Modeling and Hourly Time-Scale Characterization of the Main Energy Parameters of Parabolic-Trough Solar Thermal Power Plants Using a Simplified Quasi-Dynamic Model." Energies 14, no. 1 (January 4, 2021): 221. http://dx.doi.org/10.3390/en14010221.

Full text
Abstract:
A simplified mathematical model of parabolic-trough solar thermal power plants, which allow one to carry out an energetic characterization of the main thermal parameters that influence the solar field performance, was evaluated through a comparison of simulation results. Two geographical locations were selected to evaluate the mathematical model proposed in this work—one in each hemisphere—and design considerations according with the practical/operational experience were taken. Furthermore, independent simulations were performed using the System Advisor Model (SAM) software, their results were compared with those obtained by the simplified model. According with the above, the mathematical model allows one to carry out simulations with a high degree of flexibility and adaptability, in which the equations that allow the plant to be energetically characterized are composed of a series of logical conditions that help identify boundary conditions between dawn and sunset, direct normal irradiance transients, and when the thermal energy storage system must compensate the solar field energy deficits to maintain the full load operation of the plant. Due to the above, the developed model allows one to obtain satisfactory simulation results; referring to the net electric power production, this model provides results in both hemispheres with a relative percentage error in the range of [0.28–8.38%] compared with the results obtained with the SAM, with mean square values of 4.57% and 4.21% for sites 1 and 2, respectively.
APA, Harvard, Vancouver, ISO, and other styles
7

González-Acevedo, Hernando, Yecid Muñoz-Maldonado, Adalberto Ospino-Castro, Julian Serrano, Anthony Atencio, and Cristian Jaimes Saavedra. "Design and performance evaluation of a solar tracking panel of single axis in Colombia." International Journal of Electrical and Computer Engineering (IJECE) 11, no. 4 (August 1, 2021): 2889. http://dx.doi.org/10.11591/ijece.v11i4.pp2889-2898.

Full text
Abstract:
This paper presents the mechanical design of a single axis solar tracking system, as well as the electronic design of a system that to record in real time the electric power delivered by the solar tracker and to evaluate its performance. The interface was developed in Labview and it compares the power supplied by the tracker with the power supplied by static solar panel of the same characteristics. The performance is initially simulated using Pv-Syst software, and later validated with the data obtained by the interface. As a result, the use of the solar tracker increases the power delivered by a minimum of 19%, and it can go as high as 47.84%, with an average in increase in power of 19.5% in the monthly energy production. This experimental result was compared with the simulation by Pv-Syst software and shows a difference of only 2.5%, thus validating the reliability of the simulation. This behavior pattern coincides with previous studies carried out for equatorial latitudes.
APA, Harvard, Vancouver, ISO, and other styles
8

Qawaqzeh, Mohamed Zaidan, Oleksandr Miroshnyk, Taras Shchur, Robert Kasner, Adam Idzikowski, Weronika Kruszelnicka, Andrzej Tomporowski, et al. "Research of Emergency Modes of Wind Power Plants Using Computer Simulation." Energies 14, no. 16 (August 6, 2021): 4780. http://dx.doi.org/10.3390/en14164780.

Full text
Abstract:
The aim of this study is to investigate changes in the wind power plant energy production parameters under the conditions of sudden wind changes and voltage drop. To achieve these goals, a simulation of operation of wind power plants was performed. Twelve wind turbines with variable rotational speed equipped with a Fuhrländer FL 2500/104 asynchronous double-fed induction generator (DFIG) were used, each with an installed capacity of 2.5 MW. A general scheme of a wind power plant has been developed using a modular-trunk power distribution scheme. The system consists of wind power modules and a central substation, which allows total power to be supplied to the power system at a voltage of 35 kV. The central substation uses two high voltage switchgears. Four modules were used, each of them consisting of three wind turbines, with a power of 7.5 MW. The simulation of the wind turbines was performed in the MATLAB® Simulink® software environment. The mode of response of the turbines to a change in wind speed, a voltage drop in the 35 kV voltage system, and a one-phase short circuit to the ground in the system of 10.5 kV voltage was explored. The results show that a sudden voltage drop and the appearance of short circuits influence the wind power plant (WPP) operation in a different way independent of regulation mode. The power generation from WPP will be limited when voltage drop occurred for both AC and Voltage regulation mode and during short circuits while WPP is set on AC regulation mode.
APA, Harvard, Vancouver, ISO, and other styles
9

Trota, Ferreira, Gomes, Cabral, and Kallberg. "Power Production Estimates from Geothermal Resources by Means of Small-Size Compact Climeon Heat Power Converters: Case Studies from Portugal (Sete Cidades, Azores and Longroiva Spa, Mainland)." Energies 12, no. 14 (July 23, 2019): 2838. http://dx.doi.org/10.3390/en12142838.

Full text
Abstract:
Renewable forms of energy are increasingly penetrating the electricity market, particularly, geothermal energy. A wide range of resource temperatures and fluid quality are converted mostly using traditional binary power plants and, recently, using Climeon modular units. Portuguese natural geothermal resources are far from precise estimations. Despite the parameter uncertainties, electric power resource estimations of two natural geothermal reservoirs are presented: a volcanic sourced heated high-enthalpy geothermal reservoir in Sete Cidades, São Miguel Island, Azores; and a low-enthalpy geothermal reservoir linked to a fractured zone in a granitic setting in Longroiva, in the northern part of the Portuguese mainland. Based on the volumetric method, we assessed the power potential of geothermal resources in Sete Cidades and Longroiva using a probabilistic methodology—Monte Carlo simulation. The average reserve estimations for Climeon module were 5.66 MWe and 0.64 MWe for Sete Cidades and Longroiva, respectively. This figure was by far higher when compared to traditional binary technology; those differences were mostly attributed to distinct conversions efficiency factors.
APA, Harvard, Vancouver, ISO, and other styles
10

Boretti, Albert, Stefania Castelletto, and Sarim Al-Zubaidy. "Concentrating solar power tower technology: present status and outlook." Nonlinear Engineering 8, no. 1 (January 28, 2019): 10–31. http://dx.doi.org/10.1515/nleng-2017-0171.

Full text
Abstract:
Abstract The paper examines design and operating data of current concentrated solar power (CSP) solar tower (ST) plants. The study includes CSP with or without boost by combustion of natural gas (NG), and with or without thermal energy storage (TES). Latest, actual specific costs per installed capacity are high, 6,085 $/kW for Ivanpah Solar Electric Generating System (ISEGS) with no TES, and 9,227 $/kW for Crescent Dunes with TES. Actual production of electricity is low and less than the expected. Actual capacity factors are 22% for ISEGS, despite combustion of a significant amount of NG exceeding the planned values, and 13% for Crescent Dunes. The design values were 33% and 52%. The study then reviews the proposed technology updates to improve ratio of solar field power to electric power, capacity factor, matching of production and demand, plant’s cost, reliability and life span of plant’s components. Key areas of progress are found in materials and manufacturing processes, design of solar field and receiver, receiver and power block fluids, power cycle parameters, optimal management of daily and seasonal operation of the plant, new TES concepts, integration of solar plant with thermal desalination or combined cycle gas turbine (CCGT) installations and specialization of project.
APA, Harvard, Vancouver, ISO, and other styles
11

Rauh, Andreas, Wiebke Frenkel, and Julia Kersten. "Kalman Filter-Based Online Identification of the Electric Power Characteristic of Solid Oxide Fuel Cells Aiming at Maximum Power Point Tracking." Algorithms 13, no. 3 (March 2, 2020): 58. http://dx.doi.org/10.3390/a13030058.

Full text
Abstract:
High-temperature fuel cells are one of the devices currently investigated for an integration into distributed power supply grids. Such distributed grids aim at the simultaneous production of thermal energy and electricity. To maximize the efficiency of fuel cell systems, it is reasonable to track the point of maximum electric power production and to operate the system in close vicinity to this point. However, variations of gas mass flows, especially the concentration of hydrogen contained in the anode gas, as well as variations of the internal temperature distribution in the fuel cell stack module lead to the fact that the maximum power point changes in dependence of the aforementioned phenomena. Therefore, this paper first proposes a real-time capable stochastic filter approach for the local identification of the electric power characteristic of the fuel cell. Second, based on this estimate, a maximum power point tracking procedure is derived. It is based on an iteration procedure under consideration of the estimation accuracy of the stochastic filter and adjusts the fuel cell’s electric current so that optimal operating points are guaranteed. Numerical simulations, based on real measured data gathered at a test rig available at the Chair of Mechatronics at the University of Rostock, Germany, conclude this paper.
APA, Harvard, Vancouver, ISO, and other styles
12

Ouyang, Bin, Zhichang Yuan, Chao Lu, Lu Qu, and Dongdong Li. "Research on Multi-Time Scale Optimization Strategy of Cold-Thermal-Electric Integrated Energy System Considering Feasible Interval of System Load Rate." Energies 12, no. 17 (August 22, 2019): 3233. http://dx.doi.org/10.3390/en12173233.

Full text
Abstract:
The integrated energy system coupling multi-type energy production terminal to realize multi-energy complementarity and energy ladder utilization is of great significance to alleviate the existing energy production crisis and reduce environmental pollution. In this paper, the topology of the cold-thermal-electricity integrated energy system is built, and the decoupling method is adopted to analyze the feasible interval of load rate under the strong coupling condition, so as to ensure the “source-load” power balance of the system. Establishing a multi-objective optimization function with the lowest system economic operation and pollution gas emission, considering the attribute differences and energy scheduling characteristics of different energy sources of cold, heat and electricity, and adopting different time scales to optimize the operation of the three energy sources of cold, heat and electricity, wherein the operation periods of electric energy, heat energy and cold energy are respectively 15 min, 30 min and 1 h; The multi-objective problem is solved by standard linear weighting method. Finally, the mixed integer nonlinear programming model is calculated by LINGO solver. In the numerical simulation, the hotel summer front load parameters of Zhangjiakou, China are selected for simulation and compared with a single time scale system. The simulation results show that the multi-time scale system reduces the economic operation cost by 15.6% and the pollution gas emission by 22.3% compared with the single time scale system, it also has a wider feasible range of load rate, flexible time allocation, and complementary energy selection.
APA, Harvard, Vancouver, ISO, and other styles
13

Ganiev, Rishat. "Two-way conductivity converters in the technology of tire cord rubberization." E3S Web of Conferences 220 (2020): 01069. http://dx.doi.org/10.1051/e3sconf/202022001069.

Full text
Abstract:
The article deals with the problems of increasing the multi-engine electric drive energy efficiency on the example of the cropped cord production line in manufacture of tires. There are requirements for line electric drives that can have an impact both each other and the overall power grid in the mode of technological braking, as well as the requirements for the availability of protection functions and mutual coordination with the mains supply. To solve this problem, options have been developed to build reversible frequency converters on fully controlled (locked) keys as part of frequency-regulated technological electric drives in the production of cord for car tires with energy recovery. The construction of the reversible frequency converter with the use of autonomous voltage inverters, as well as the results of computer simulations in the reactor and non-reactor circuits of reversible frequency converters in the composition of multi-motor electric drives with a total DC bus are shown.
APA, Harvard, Vancouver, ISO, and other styles
14

Grebski, Michalene, and Anna Maryniak. "Benefits of Installing a Photovoltaic Power-Generation System for a Warehouse Facility." New Trends in Production Engineering 3, no. 1 (August 1, 2020): 332–46. http://dx.doi.org/10.2478/ntpe-2020-0028.

Full text
Abstract:
AbstractSustainability and eco-friendliness of the chain of supply is a subject of interest among many researchers. New eco-friendly solutions are being implemented in production, storage, and transportation of the entire chain of supply. This study focuses on pro-environmental solutions related to warehouse management. The publication describes a project of installing a solar photovoltaic (PV) system to generate electric power at the H&W Warehouse in New Brunswick, New Jersey. The purpose of this publication is to demonstrate the financial and environmental benefits of using sustainable forms of energy. The environmental benefits were calculated from the perspective of lowering the amount of carbon dioxide (CO2) released into the atmosphere. The financial benefits were determined by calculating the net present value (NPV), internal rate of return (IRR) and profitability index (PI) as well as regular and discounted payback. A computer simulation was being used as the research method. Calculations included in the publication have proven that the project being considered is beneficial from the financial and environmental perspectives.
APA, Harvard, Vancouver, ISO, and other styles
15

Grabchak, E. P., E. L. Loginov, and V. U. Chinaliev. "Digital transformation of Russia’s thermal power industry management system for optimization of consumers’ expenditures determined by tariffs and prices." Safety and Reliability of Power Industry 13, no. 2 (July 31, 2020): 84–90. http://dx.doi.org/10.24223/1999-5555-2020-13-2-84-90.

Full text
Abstract:
The development and implementation of a strategy for organizational reconfiguration of a digital heat and power super system to streamline the processes of providing structured technological zones with heat makes the basis for creating a coordinated system for optimizing the tariff and price load on heat and electricity consumers in the Russian economy. Providing the industry with a mechanism for regulating the processes of rendering heat energy services based on the transition to the system of Unified Heat-Supply Organizations (ETOs) and ensuring a return on price trend investment in the heat market with the possibility of transferring departmental reporting and analytics to a single regulatory legal basis enables regulating the operation of the power system as a subsystem of the Russian energy sector with a common information technology platform. It is proposed to develop a methodology for constructing mathematical estimates of reliability indicators of provided heat and power services in the form of analytical relationships and simulation models, taking into account the complex nature of the operation of electric power transmission and heat transportation networks as well as information systems that provide processing, storage and distribution of digital data and documents. The key activities are: development of a methodology for constructing mathematical estimates of reliability indicators of provided heat and power services in the form of analytical relationships and simulation models; development of digital methods for detecting hazardous effects; development of algorithms for storing information in the presence of natural and artificial interference; development of digital methods for optimization, modernization and transformation of production chains and processes, control models and planning procedures to neutralize threats to the reliability of provided heat and power services. The result should be the creation of a computer-based information system for modeling impacts on the electric and heat grid facilities.
APA, Harvard, Vancouver, ISO, and other styles
16

Qarinur, Muhammad, Sho Ogata, Naoki Kinoshita, and Hideaki Yasuhara. "Predictions of Rock Temperature Evolution at the Lahendong Geothermal Field by Coupled Numerical Model with Discrete Fracture Model Scheme." Energies 13, no. 12 (June 25, 2020): 3282. http://dx.doi.org/10.3390/en13123282.

Full text
Abstract:
The comprehensive exploitation of geothermal fields has an impact on the productivity of the reservoirs. To realize sustainable steam production, changes in the rock temperature need to be predicted and controlled. A coupled thermo-hydro-mechanical (THM) model employing COMSOL Multiphysics was proposed to study the characteristics of heat transfer, fluid flow, and solid deformation at the Lahendong geothermal field, in North Sulawesi, Indonesia. The numerical results were compared with analytical and measured data in order to validate the numerical simulation. Based on the results, the predicted temperatures of the production wells showed significant decrease with the production time. In addition, a reduction in the reservoir temperature leads to lower specific gross electrical power within the production well, which should significantly reduce the sustainability of the power plant.
APA, Harvard, Vancouver, ISO, and other styles
17

de Santoli, Livio, Gianluigi Lo Basso, Davide Astiaso Garcia, Giuseppe Piras, and Giulia Spiridigliozzi. "Dynamic Simulation Model of Trans-Critical Carbon Dioxide Heat Pump Application for Boosting Low Temperature Distribution Networks in Dwellings." Energies 12, no. 3 (February 2, 2019): 484. http://dx.doi.org/10.3390/en12030484.

Full text
Abstract:
This research investigates the role of new hybrid energy system applications for developing a new plant refurbishment strategy to deploy small scale smart energy systems. This work deals with a dynamic simulation of trans-critical carbon dioxide heat pump application for boosting low temperature distribution networks to share heat for dwellings. Heat pumps provide high temperature heat to use the traditional emission systems. The new plant layout consists of an air source heat pump, four trans-critical carbon dioxide heat pumps (CO2-HPs), photovoltaic arrays, and a combined heat and power (CHP) for both domestic hot water production and electricity to partially drive the heat pumps. Furthermore, electric storage devices adoption has been evaluated. That layout has been compared to the traditional one based on separated generation systems using several energy performance indicators. Additionally, a sensitivity analysis on the primary energy saving, primary fossil energy consumptions, renewable energy fraction and renewable heat, with changes in building power to heat ratios, has been carried out. Obtained results highlighted that using the hybrid system with storage device it is possible to get a saving of 50% approximately. Consequently, CO2-HPs and hybrid systems adoption could be a viable option to achieve Near Zero Energy Building (NZEB) qualification.
APA, Harvard, Vancouver, ISO, and other styles
18

Fambri, Gabriele, Marco Badami, Dimosthenis Tsagkrasoulis, Vasiliki Katsiki, Georgios Giannakis, and Antonis Papanikolaou. "Demand Flexibility Enabled by Virtual Energy Storage to Improve Renewable Energy Penetration." Energies 13, no. 19 (October 1, 2020): 5128. http://dx.doi.org/10.3390/en13195128.

Full text
Abstract:
The increasing resort to renewable energy distributed generation, which is needed to mitigate anthropogenic CO2 emissions, leads to challenges concerning the proper operation of electric distribution systems. As a result of the intrinsic nature of Renewable Energy Sources (RESs), this generation shows a high volatility and a low predictability that make the balancing of energy production and consumption difficult. At the same time, the electrification of new energy-intensive sectors (such as heating) is expected. This complex scenario paves the way for new sources of flexibility that will have more and more relevance in the coming years. This paper analyses how the electrification of the heating system, combined with an electric flexibility utilisation module, can be used to mitigate the problems related to the fluctuating production of RES. By using Power-to-Heat (P2H) technologies, buildings are able to store the overproduction of RES in the form of thermal energy for end-use according to the principle of the so-called Virtual Energy Storage (VES). A context-aware demand flexibility extraction based on the VES model and the flexibility upscale and utilisation on district-level through grid simulation and energy flow optimisation is presented in the paper. The involved modules have been developed within the PLANET (PLAnning and operational tools for optimising energy flows and synergies between energy NETworks) H2020 European project and interact under a unified co-simulation framework with the PLANET Decision Support System (DSS) for the analysis of multi-energy scenarios. DSS has been used to simulate a realistic future energy scenario, according to which the imbalance problems triggered by RES overproduction are mitigated with the optimal exploitation of the demand flexibility enabled by VES.
APA, Harvard, Vancouver, ISO, and other styles
19

Ouramdane, Oussama, Elhoussin Elbouchikhi, Yassine Amirat, and Ehsan Sedgh Gooya. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends." Energies 14, no. 14 (July 10, 2021): 4166. http://dx.doi.org/10.3390/en14144166.

Full text
Abstract:
The topic of microgrids (MGs) is a fast-growing and very promising field of research in terms of energy production quality, pollution reduction and sustainable development. Moreover, MGs are, above all, designed to considerably improve the autonomy, sustainability, and reliability of future electrical distribution grid. At the same time, aspects of MGs energy management, taking into consideration distribution generation systems, energy storage devices, electric vehicles, and consumption components have been widely investigated. Besides, grid architectures including DC, AC, or hybrid power generation systems, energy dispatching problems modelling, operating modes (islanded or grid connected), MGs sizing, simulations and problems solving optimization approaches, and other aspects, have been raised as topics of great interest for both electrical and computer sciences research communities. Furthermore, the United Nations Framework Convention on Climate Change and government policies and incentives have paved the way to massive electric vehicle (EV) deployment. Hence, several research studies have been conducted to investigate the integration of EVs in national power grid and future MGs. Specifically, EV charging stations’ bi-directional power flow control and energy management have been considerably explored. These issues index challenging research topics, which are in most cases still under progress. This paper gives an overview of MGs technology advancement in recent decades, taking into consideration distributed energy generation (DER), energy storage systems (ESS), EVs, and loads. It reviews the main MGs architecture, operating modes, sizing and energy management systems (EMS) and EVs integration.
APA, Harvard, Vancouver, ISO, and other styles
20

Renno, Carlo, Fabio Petito, Diana D’Agostino, and Francesco Minichiello. "Modeling of a CPV/T-ORC Combined System Adopted for an Industrial User." Energies 13, no. 13 (July 5, 2020): 3476. http://dx.doi.org/10.3390/en13133476.

Full text
Abstract:
The increasing energy demand encourages the use of photovoltaic solar systems coupled to organic rankine cycle (ORC) systems. This paper presents a model of an ORC system coupled with a concentrating photovoltaic and thermal (CPV/T) system. The CPV/T-ORC combined system, described and modeled in this paper, is sized to match the electrical load of a medium industrial user located in the South of Italy. A line-focus configuration of the CPV/T system, constituted by 16 modules with 500 triple-junction cells, is adopted. Different simulations have been realized evaluating also the direct normal irradiance (DNI) by means of the artificial neural network (ANN) and considering three input condition scenarios: Summer, winter, and middle season. Hence, the energy performances of the CPV/T-ORC system have been determined to evaluate if this integrated system can satisfy the industrial user energy loads. In particular, the peak power considered for the industrial machines is about 42 kW while other electrical, heating or cooling loads require a total peak power of 15 kW; a total electric average production of 7500 kWh/month is required. The annual analysis shows that the CPV/T-ORC system allows satisfying 100% of the electric loads from April to September; moreover, in these months the overproduction can be sold to the network or stored for a future use. The covering rates of the electrical loads are equal to 73%, 77%, and 83%, respectively for January, February, and March and 86%, 93%, and 100%, respectively for October, November, and December. Finally, the CPV/T-ORC combined system represents an ideal solution for an industrial user from the energy point of view.
APA, Harvard, Vancouver, ISO, and other styles
21

Strebkov, Dmitriy S., Yuriy Kh Shogenov, and Nikolay Yu Bobovnikov. "Improving the Efficiency of Solar Power Plants." Engineering Technologies and Systems 30, no. 3 (September 30, 2020): 480–97. http://dx.doi.org/10.15507/2658-4123.030.202003.480-497.

Full text
Abstract:
Introduction. An urgent scientific problem is to increase the efficiency of using solar energy in solar power plants (SES). The purpose of the article is to study methods for increasing the efficiency of solar power plants. Materials and Methods. Solar power plants based on modules with a two-sided working surface are considered. Most modern solar power plants use solar modules. The reflection of solar radiation from the earth’s surface provides an increase in the production of electrical energy by 20% compared with modules with a working surface on one side. It is possible to increase the efficiency of using solar energy by increasing the annual production of electric energy through the creation of equal conditions for the use of solar energy by the front and back surfaces of bilateral solar modules. Results. The article presents a solar power plant on a horizontal surface with a vertical arrangement of bilateral solar modules, a solar power station with a deviation of bilateral solar modules from a vertical position, and a solar power plant on the southern slope of the hill with an angle β of the slope to the horizon. The formulas for calculating the sizes of the solar energy reflectors in the meridian direction, the width of the solar energy reflectors, and the angle of inclination of the solar modules to the horizontal surface are given. The results of computer simulation of the parameters of a solar power plant operating in the vicinity of Luxor (Egypt) are presented. Discussion and Conclusion. It is shown that the power generation within the power range of 1 kW takes a peak value for vertically oriented two-sided solar modules with horizontal reflectors of sunlight at the installed capacity utilization factor of 0.45. At the same time, when the solar radiation becomes parallel to the plane of vertical solar modules, there is a decrease in the output of electricity. The proposed design allows equalizing and increasing the output of electricity during the maximum period of solar radiation. Vertically oriented modules are reliable and easy to use while saving space between modules.
APA, Harvard, Vancouver, ISO, and other styles
22

Sun, Liang, Na Zhang, Ning Li, Zhuo-ran Song, and Wei-dong Li. "A Gini Coefficient-Based Impartial and Open Dispatching Model." Energies 13, no. 12 (June 17, 2020): 3146. http://dx.doi.org/10.3390/en13123146.

Full text
Abstract:
According to the existing widely applied impartial and open dispatching models, operation fairness was mainly emphasized, which severely restricted the optimization space of the economy of the overall system operation and affected the economic benefits. To solve the above problems, a scheduling model based on Gini coefficient under impartial and open dispatching principle is proposed in this paper, which can consider the balance between the fairness and economy of system operation. In the proposed model, the Gini coefficient is introduced to describe the fairness of electric energy completion rate among different generation units in the form of constraint conditions. Because the electricity production schedule can reflect the economic income of the electric power enterprise, and the Gini coefficient is used as an economic statistical indicator to evaluate the fairness in the overall distribution of income in social statistics, it is more appropriate to be used to measure the fairness of the power generation dispatching. The objective of the proposed model is to minimize the total operation costs. In the model, the balance between the system operation economy and fairness can be realized by adjusting the Gini coefficient value. The simulation results show that the proposed model is an extension of the traditional model. Compared with the traditional economic dispatching model and normal “impartial and open dispatching” model, the proposed model can better coordinate the relationship between fairness and economy. It could provide more choices for power generation dispatchers. It could also provide a reference for regulatory departments to formulate relevant policies by adjusting the threshold value of the Gini coefficient. Case studies show that the power dispatching decisions according to the proposed model can provide a scientific and fair reference basis for dispatching schemes, and could reduce the generation costs and also achieve optimal allocation of resources on the basis of ensuring fair dispatching.
APA, Harvard, Vancouver, ISO, and other styles
23

Morais, Hugo, Tiago Pinto, and Zita Vale. "Adjacent Markets Influence Over Electricity Trading—Iberian Benchmark Study." Energies 13, no. 11 (June 1, 2020): 2808. http://dx.doi.org/10.3390/en13112808.

Full text
Abstract:
This paper presents a study on the impact of adjacent markets on the electricity market, realizing the advantages of acting in several different markets. The increased use of renewable primary sources to generate electricity and new usages of electricity such as electric mobility are contributing to a better and more rational way of living. The investment in renewable technologies for the distributed generation has been creating new opportunities for owners of such technologies. Besides the selling of electricity and related services (ancillary services) in energy markets, players can participate and negotiate in other markets, such as the carbon/CO2 market, the guarantees of origin market, or provide district heating services selling of steam and hot water among others. These market mechanisms are related to the energy market, originating a wide market strategy improving the benefits of using distributed generators. This paper describes several adjacent markets and how do they complement the electricity market. The paper also shows how the simulation of electricity and adjacent markets can be performed, using an electricity market simulator, and demonstrates, based on market simulations using real data from the Iberian market, that the participation in various complementary markets can enable power producers to obtain extra profits that are essential to cover the production costs and facilities maintenance. The findings of this paper enhance the advantages for investment on energy production based renewable sources and more efficient technologies of energy conversion.
APA, Harvard, Vancouver, ISO, and other styles
24

Al Wahedi, Abdulla, and Yusuf Bicer. "A Case Study in Qatar for Optimal Energy Management of an Autonomous Electric Vehicle Fast Charging Station with Multiple Renewable Energy and Storage Systems." Energies 13, no. 19 (September 30, 2020): 5095. http://dx.doi.org/10.3390/en13195095.

Full text
Abstract:
E-Mobility deployment has attained increased interest during recent years in various countries all over the world. This interest has focused mainly on reducing the reliance on fossil fuel-based means of transportation and decreasing the harmful emissions produced from this sector. To secure the electricity required to satisfy Electric Vehicles’ (EVs’) charging needs without expanding or overloading the existing electricity infrastructure, stand-alone charging stations powered by renewable sources are considered as a reasonable solution. This paper investigates the simulation of the optimal energy management of a proposed grid-independent, multi-generation, fast-charging station in the State of Qatar, which comprises hybrid wind, solar and biofuel systems along with ammonia, hydrogen and battery storage units. The study aims to assess the optimal sizing of the solar, wind and biofuel units to be incorporated in the design along with the optimal ammonia, hydrogen and battery storage capacities to fulfill the daily EV demand in an uninterruptable manner. The main objective is to fast-charge a minimum of 50 EVs daily, while the constraints are the intermittent and volatile nature of renewable energy sources, the stochastic nature of EV demand, local meteorological conditions and land space limitations. The results show that the selection of a 468 kWp concentrated photovoltaic thermal plant, 250 kW-rated wind turbine, 10 kW biodiesel power generator unit and 595 kWh battery storage system, along with the on-site production of hydrogen and ammonia, to generate 200 kW power via fuel cells can achieve the desired target, with a total halt of on-site hydrogen and ammonia production during October and November and 50% reduction during December.
APA, Harvard, Vancouver, ISO, and other styles
25

Dunkelberg, Heiko, Maximilian Sondermann, Henning Meschede, and Jens Hesselbach. "Assessment of Flexibilisation Potential by Changing Energy Sources Using Monte Carlo Simulation." Energies 12, no. 4 (February 21, 2019): 711. http://dx.doi.org/10.3390/en12040711.

Full text
Abstract:
In the fight against anthropogenic climate change, the benefit of the integration of fluctuating renewable energies (wind and photovoltaics) into the electricity grid is a widely proved concept. At the same time, a fluctuating and decentralised supply of energy, especially at lower voltage levels, leads to a local discrepancy in the power balance between generation and consumption. A possible solution in connection with demand side management is the grid-oriented flexibilisation of energy demand. The present study shows how the use of an innovative hybrid-redundant high-temperature heat system (combined heat and power (CHP), power-to-heat system (PtH), gas boiler) can contribute to a flexibilisation of the electrical energy demand of plastics processing companies. In this context, the flexibilisation potential of a company is to be understood as the grid-related change of the energy supply through a change of the energy sources within the framework of the process heat supply. For this purpose, an omniscient control algorithm is developed that specifies the schedule of the individual system components. A sensitivity analysis is used to test the functionality of the control algorithm. Determination of the electrical flexibilisation potential is carried out via a comprehensive simulation study using Monte Carlo methods. For this purpose, the residual load curves of four characteristic distribution grids with a high share of renewable energies as well as heat load profiles of injection moulding machines are taken into consideration. A frequency distribution provides information on the electrical flexibilisation potential to be expected depending on the various combinations. The evaluation is carried out using a specially introduced logic, which identifies grid-relevant changes in the company's power consumption as flexibilisation potential based on a reference load curve. The results show that a reliable energy supply for production is possible despite flexibilisation. Depending on the grid under consideration, there are differences in the exploitation of the potential, which essentially depends on the installed renewable capacity. Depending on the scenario under consideration, an average of up to 1486 kWhel can be shifted in a positive direction and 1199 kWhel in a negative direction.
APA, Harvard, Vancouver, ISO, and other styles
26

Ortega, Arturo, Joseph Praful Tomy, Jonathan Shek, Stephane Paboeuf, and David Ingram. "An Inter-Comparison of Dynamic, Fully Coupled, Electro-Mechanical, Models of Tidal Turbines." Energies 13, no. 20 (October 15, 2020): 5389. http://dx.doi.org/10.3390/en13205389.

Full text
Abstract:
Production of electricity using hydrokinetic tidal turbines has many challenges that must be overcome to ensure reliable, economic and practical solutions. Kinetic energy from flowing water is converted to electricity by a system comprising diverse mechanical and electrical components from the rotor blades up to the electricity grid. To date these have often been modelled using simulations of independent systems, lacking bi-directional, real-time, coupling. This approach leads to critical effects being missed. Turbulence in the flow, results in large velocity fluctuations around the blades, causing rapid variation in the shaft torque and generator speed, and consequently in the voltage seen by the power electronics and so compromising the export power quality. Conversely, grid frequency and voltage changes can also cause the generator speed to change, resulting in changes to the shaft speed and torque and consequently changes to the hydrodynamics acting on the blades. Clearly, fully integrated, bi-directional, models are needed. Here we present two fully coupled models which use different approaches to model the hydrodynamics of rotor blades. The first model uses the Blade Element Momentum Theory (BEMT), resulting in an efficient tool for turbine designers. The second model also uses BEMT, combines this with an actuator line model of the blades coupled to an unsteady computational fluid dynamics simulation by OpenFOAM (CFD/BEMT). Each model is coupled to an OpenModelica model of the electro-mechanical system by an energy balance to compute the shaft speed. Each coupled system simulates the performance of a 1.2 m diameter, three-bladed horizontal axis tidal turbine tested in the University of Edinburgh FloWave Ocean Energy Research Facility. The turbulent flow around the blades and the mechanical-electrical variables during the stable period of operation are analysed. Time series and tabulated average values of thrust, torque, power, and rotational speed, as well as, electrical variables of generator power, electromagnetic torque, voltage and current are presented for the coupled system simulation. The relationship between the mechanical and electrical variables and the results from both tidal turbine approaches are discussed. Our comparison shows that while the BEMT model provides an effective design tool (leading to slightly more conservative designs), the CFD/BEMT simulations show the turbulence influence in the mechanical and electrical variables which can be especially important in assessing an additional source of stresses in the whole electro-mechanical system (though at an increased computational cost).
APA, Harvard, Vancouver, ISO, and other styles
27

Lee, Yongsik, Hyunchul Lee, Jaehyeon Gim, Inyong Seo, and Guenjoon Lee. "Technical Measures to Mitigate Load Fluctuation for Large-Scale Customers to Improve Power System Energy Efficiency." Energies 13, no. 18 (September 14, 2020): 4812. http://dx.doi.org/10.3390/en13184812.

Full text
Abstract:
Industrial equipment such as electric arc furnaces and steel mills are often associated with rapid and high load disturbances, so their power systems require additional control equipment to limit the frequency. However, proper ancillary service fees are not paid in these cases with extreme and variable load demands. The frequency regulation reserve equipment adds to power generation costs. Therefore, variable power generation loads lead to increases in the cost of energy production. We propose a load frequency control method that is applied on the customer end instead of the power supply end to reduce the operating reserve required to improve the energy efficiency of the power system. We analyzed the load fluctuation of steel mill customers using real data sampled at two-second intervals from the energy management system in Korea. We developed an automatic generation control program to simulate the power system’s frequency characteristics. We also propose compensation techniques for mitigation of the system’s frequency deviation at the customer end based on an energy storage system, pump storage hydro generator, customer generator, and plant process adjustment. To recover the frequency deviation, we calculated the compensation facility capacity and analyzed static characteristics, and we proved the feasibility via simulations.
APA, Harvard, Vancouver, ISO, and other styles
28

Antonio Barrozo Budes, Farid, Guillermo Valencia Ochoa, Luis Guillermo Obregon, Adriana Arango-Manrique, and José Ricardo Núñez Álvarez. "Energy, Economic, and Environmental Evaluation of a Proposed Solar-Wind Power On-grid System Using HOMER Pro®: A Case Study in Colombia." Energies 13, no. 7 (April 2, 2020): 1662. http://dx.doi.org/10.3390/en13071662.

Full text
Abstract:
The electrical sector in the Caribbean region of Colombia is currently facing problems that affect its reliability. Many thermo-electric plants are required to fill the gap and ensure energy supply. This paper thus proposes a hybrid renewable energy generation plant that could supply a percentage of the total energy demand and reduce the environmental impact of conventional energy generation. The hybrid plant works with a photovoltaic (PV) system and wind turbine systems, connected in parallel with the grid to supply a renewable fraction of the total energy demand. The investigation was conducted in three steps: the first stage determined locations where the energy system was able to take advantage of renewable sources, the second identified a location that could work more efficiently from an economic perspective, and finally, the third step estimated the number of PV solar panels and wind turbines required to guarantee optimal functioning for this location using, as a main method of calculation, the software HOMER pro® for hybrid optimization with multiple energy resources. The proposed system is expected to not only limit environmental impacts but also decrease total costs of electric grid consumption from thermoelectric plants. The simulations helped identify Puerto Bolivar, Colombia, as the location where the hybrid plant made the best use of non-conventional resources of energy. However, Rancho Grande was found to offer the system more efficiency, while generating a considerable amount of energy at the lowest possible cost. An optimal combination was also obtained—441 PV arrays and 3 wind turbines, resulting in a net present cost (NPC) of $11.8 million and low CO2 production of 244.1 tons per year.
APA, Harvard, Vancouver, ISO, and other styles
29

De Cilladi, Lorenzo, Thomas Corradino, Gian-Franco Dalla Betta, Coralie Neubüser, and Lucio Pancheri. "Fully Depleted Monolithic Active Microstrip Sensors: TCAD Simulation Study of an Innovative Design Concept." Sensors 21, no. 6 (March 11, 2021): 1990. http://dx.doi.org/10.3390/s21061990.

Full text
Abstract:
The paper presents the simulation studies of 10 μμm pitch microstrips on a fully depleted monolithic active CMOS technology and describes their potential to provide a new and cost-effective solution for particle tracking and timing applications. The Fully Depleted Monolithic Active Microstrip Sensors (FD-MAMS) described in this work, which are developed within the framework of the ARCADIA project, are compliant with commercial CMOS fabrication processes. A set of Technology Computer-Aided Design (TCAD) parametric simulations was performed in the perspective of an upcoming engineering production run with the aim of designing FD-MAMS, studying their electrical characteristics, and optimizing the sensor layout for enhanced performance in terms of low capacitance, fast charge collection, and low-power operation. A fine pitch of 10 μμm was chosen to provide high spatial resolution. This small pitch still allows readout electronics to be monolithically integrated in the inter-strip regions, enabling the segmentation of long strips and the implementation of distributed readout architectures. The effects of surface radiation damage expected for total ionizing doses of the order of 10 to 105 krad were also modeled in the simulations. The results of the simulations exhibit promising performance in terms of timing and low power consumption and motivate R&D efforts to further develop FD-MAMS; the results will be experimentally verified through measurements on the test structures that will be available from mid-2021.
APA, Harvard, Vancouver, ISO, and other styles
30

Nikolaou, Triantafyllia, George S. Stavrakakis, and Konstantinos Tsamoudalis. "Modeling and Optimal Dimensioning of a Pumped Hydro Energy Storage System for the Exploitation of the Rejected Wind Energy in the Non-Interconnected Electrical Power System of the Crete Island, Greece." Energies 13, no. 11 (May 28, 2020): 2705. http://dx.doi.org/10.3390/en13112705.

Full text
Abstract:
The aim of the present paper is to investigate the use of the site “Potamon” Dam in the Prefecture of Rethymnon, Crete island, Greece, as a “virtual” renewable electricity supply of a pumped storage plant (PSP) in order to save and exploit the maximum possible part of the rejected wind energy of the autonomous power system of the Crete island. Taking into account the annual time series of the rejected power of the Crete power grid, the present research work targets the optimal configuration of the proposed PSP power station, including the sizing of its individual components as well as the determination of the capacity it could guarantee in order to be economically viable. The rejected electric energy from the actually operating wind farm production, which is not possible to be absorbed by the grid of Crete due to its stable operation limitations, could be absorbed by the here proposed pump storage plant (PSP) and converted to hydraulic energy. This can be achieved by pumping the water from the lower reservoir, which is the existing reservoir of the site “Potamon” Dam, with a storage capacity of about 22.5 million m3, up to the upper reservoir, which must be constructed accordingly. For the proposed PSP’s optimal size determination, established financial indices are used as an evaluation criterion for an investment life cycle of 25 years. The proposed PSP optimization is based on the dynamic mathematical model of the simulation results of the PSP’s hourly operation when incorporated in the Crete power grid for a whole year, performed in the Matlab 2016b computational environment (The MathWorks, Inc., Natick, MA, USA). The results of this research demonstrate the PSP’s technical feasibility and determine the PSP’s optimal CAPEX and the PSP’s whole life-time financial indicators in order that the whole investment be viable. Furthermore, the appropriate selling prices of the electricity produced from the proposed PSP were determined to achieve the PSP’s financial viability. The results comprise the key elements to prove the necessity for the establishment a.s.a.p. of the appropriate legal framework in order to have authorization to exploit the rejected RES (renewable energy sources) electric energy or the major part of it through PSPs, in priority in both the non-interconnected, as well as the interconnected power systems.
APA, Harvard, Vancouver, ISO, and other styles
31

Cheekatamarla, Praveen, and Ahmad Abu-Heiba. "A Comprehensive Review and Qualitative Analysis of Micro-Combined Heat and Power Modeling Approaches." Energies 13, no. 14 (July 11, 2020): 3581. http://dx.doi.org/10.3390/en13143581.

Full text
Abstract:
Concurrent production of electrical and thermal energy from a Combined Heat and Power (CHP) device is an attractive tool to address the growing energy needs of the planet. Micro CHP (µCHP) systems can reduce a building’s primary energy consumption, reduce carbon footprint, and enhance resiliency. Modeling of the µCHP helps understand the system from multiple perspectives and helps discover errors earlier, improves impact analysis and simulation of system solutions for ease of integration with the building. Consequently, there is a need for analysis of the impact of µCHP modeling approach on its reliability and flexibility. The primary objective of this paper is to review the state-of-the art models in the µCHP space with a focus towards internal combustion engine as the primary mover (PM) and limit the study to system modeling, calibration, and validation methodologies. Based on the analysis, recommendations for further model considerations and refinements are presented.
APA, Harvard, Vancouver, ISO, and other styles
32

Rodrigues, Rafael V., and Luiz A. Rossi. "Performance of small wind turbines: simulation of electricity supply to loads connected to the public or isolated grid." Engenharia Agrícola 36, no. 2 (April 2016): 281–90. http://dx.doi.org/10.1590/1809-4430-eng.agric.v36n2p281-290/2016.

Full text
Abstract:
ABSTRACT The successful in the implementation of wind turbines depends on several factors, including: the wind resource at the installation site, the equipment used, project acquisition and operational costs. In this paper, the production of electricity from two small wind turbines was compared through simulation using the computer software HOMER - a national model of 6kW and an imported one of 5kW. The wind resources in three different cities were considered: Campinas (SP/BR), Cubatão (São Paulo/BR) and Roscoe (Texas/ USA). A wind power system connected to the grid and a wind isolated system - batteries were evaluated. The results showed that the energy cost ($/kWh) is strongly dependent on the windmill characteristics and local wind resource. Regarding the isolated wind system – batteries, the full supply guarantee to the simulated electrical load is only achieved with a battery bank with many units and high number of wind turbines, due to the intermittency of wind power.
APA, Harvard, Vancouver, ISO, and other styles
33

de Souza Henriques, Rafaella, Rodney Rezende Saldanha, and Lineker Max Goulart Coelho. "An Air Pollutant Emission Analysis of Brazilian Electricity Production Projections and Other Countries." Energies 12, no. 15 (July 24, 2019): 2851. http://dx.doi.org/10.3390/en12152851.

Full text
Abstract:
In the face of the population’s growing awareness about environmental degradation, air pollutant emissions from electricity production become a very relevant issue. Therefore, the present work aims to evaluate the greenhouse gases (GHG), NOx and SO2 emissions in the Brazilian electricity production, using the expected capacity expansion from Ten-Year Energy Expansion Plan-2027, the current installed capacity of power generation and the electrical load factor. This study was based on data provided by official institutions that are responsible for the electricity sector as well as academic studies of the area. In order to obtain a better analysis of the most likely air pollutant emission values bounds, a Monte Carlo simulation was performed. In addition, the 2017 energy production emissions from Brazil, France, China, and the USA were evaluated and compared. The results indicate that non-renewable sources of energy have a negative environmental impact. In general, the emissions of CO2-eq and NOx per MWh are increasing according to Brazilian energy generation projections, but when compared with global indicator Brazil has an affordable electricity mix in terms of air pollutant emissions.
APA, Harvard, Vancouver, ISO, and other styles
34

Wang, Manran, Li Guo, Jinhao Chen, Bingqi Lv, and Yang Yang. "Superresolution Reconstruction of Electrical Equipment Incipient Fault." Journal of Control Science and Engineering 2018 (August 7, 2018): 1–11. http://dx.doi.org/10.1155/2018/1630402.

Full text
Abstract:
With the rapid development of industry and technology, the electrical power system becomes more complex and the electrical equipment becomes more diverse. Defective equipment is often the cause of industrial accidents and electrical injuries, which can result in serious injuries, such as electrocution, burns, and electrical shocks. In some cases, electrical equipment fault may result in death. However, in some special situation, some fault is very small even invisible, such as equipment aging, holes, and cracks, so the detection of these incipient faults is difficult or even impossible. These potential incipient faults become the biggest hidden danger in the electrical equipment and electricity power system. For these reasons, this paper proposes a superresolution reconstruction method for electrical equipment incipient fault to ensure complete detection in electrical equipment, which aims to guarantee the security of electrical power system operation and industry production. Experimental results show that this method can get a state-of-the-art reconstruction effect of incipient fault, so as to provide reliable fault detection of electrical power system.
APA, Harvard, Vancouver, ISO, and other styles
35

Rogalev, Andrey, Nikolay Rogalev, Vladimir Kindra, Olga Zlyvko, and Andrey Vegera. "A Study of Low-Potential Heat Utilization Methods for Oxy-Fuel Combustion Power Cycles." Energies 14, no. 12 (June 8, 2021): 3364. http://dx.doi.org/10.3390/en14123364.

Full text
Abstract:
The world community is worried about the effects of global warming. A few agreements on the reduction of CO2 emissions have been signed recently. A large part of these emissions is produced by the power production industry. Soon, the requirements for thermal power plant ecology and efficiency performance may become significantly higher. Thus, the contemporary problem is the development of highly efficient power production facilities with low toxic and greenhouse gas emission. An efficient way to reduce CO2 emissions into the atmosphere, which implies maintaining economic growth, is the creation of closed thermodynamic cycles with oxy-fuel combustion. The Allam cycle is one of the most promising among oxy-fuel power plants. A 50 MW pilot Allam cycle plant was built in Texas. The design for a commercial system with an electrical output of 300 MW is under development. This work is devoted to the improvement of the efficiency and environmental safety of oxy-fuel combustion power cycles via the utilization of compressed working fluid heat. The results of computer simulation obtained using AspenONE software demonstrated that an additional circuit in the multi-flow regenerator might increase net efficiency by 3.5%. Besides this, the incorporation of a supercritical carbon dioxide (S–CO2) Brayton cycle with recompression increased the efficiency by 0.2%. Therefore, the maximum net efficiency of the prospective power unit was 51.4%.
APA, Harvard, Vancouver, ISO, and other styles
36

Jin, Ruiyang, Jie Song, Jie Liu, Wei Li, and Chao Lu. "Location and Capacity Optimization of Distributed Energy Storage System in Peak-Shaving." Energies 13, no. 3 (January 21, 2020): 513. http://dx.doi.org/10.3390/en13030513.

Full text
Abstract:
The peak-valley characteristic of electrical load brings high cost in power supply coming from the adjustment of generation to maintain the balance between production and demand. Distributed energy storage system (DESS) technology can deal with the challenge very well. However, the number of devices for DESS is much larger than central energy storage system (CESS), which brings challenges for solving the problem of location selection and capacity allocation with large scale. We formulate the charging/discharging model of DESS and economic analysis. Then, we propose a simulation optimization method to determine the locations to equip with DESSs and the storage capacity of each location. The greedy algorithm with Monte Carlo simulation is applied to solve the location and capacity optimization problem of DESS over a large scale. Compared with the global optimal genetic algorithm, the case study conducted on the load data of a district in Beijing validates the efficiency and superiority of our method.
APA, Harvard, Vancouver, ISO, and other styles
37

Alhrshy, Laurence. "Implementation of Variable Blade Inertia in OpenFAST to Integrate a Flywheel System in the Rotor of a Wind Turbine." Energies 14, no. 10 (May 12, 2021): 2783. http://dx.doi.org/10.3390/en14102783.

Full text
Abstract:
In this paper, the integration of the dynamic behavior of the flywheel system into the load simulation tool OpenFAST is presented. The flywheel system enables a wind turbine to vary the inertia of its rotor blades to control the power production and, most importantly, to affect the vibratory behavior of wind turbine components. Consequently, in order to simulate the behavior of a wind turbine with a flywheel system in its rotor, the variable blade characteristics need to be considered in the load simulation tool. Currently, computer-aided engineering tools for simulating the mechanical loads of wind turbines are not designed to simulate variable blade inertia. Hence, the goal of this paper is to explain how variable inertias of rotor blades are implanted in such load simulation tools as OpenFAST. OpenFAST is used because of it is free, publicly available, and well documentation. Moreover, OpenFAST is open source, which allows modifications in its source code. This add-on in the load simulation is applied to correct rotor mass imbalance. It can also be applied in many cases related to the change in the inertia of wind turbine rotor blades during its operation as, for example, atmospheric ice accretion on the blades, smart blades, etc.
APA, Harvard, Vancouver, ISO, and other styles
38

Sathyan, Sabin, Ugur Aydin, and Anouar Belahcen. "Acoustic Noise Computation of Electrical Motors Using the Boundary Element Method." Energies 13, no. 1 (January 3, 2020): 245. http://dx.doi.org/10.3390/en13010245.

Full text
Abstract:
This paper presents a numerical method and computational results for acoustic noise of electromagnetic origin generated by an induction motor. The computation of noise incorporates three levels of numerical calculation steps, combining both the finite element method and boundary element method. The role of magnetic forces in the production of acoustic noise is established in the paper by showing the magneto-mechanical and vibro-acoustic pathway of energy. The conversion of electrical energy into acoustic energy in an electrical motor through electromagnetic, mechanical, or acoustic platforms is illustrated through numerical computations of magnetic forces, mechanical deformation, and acoustic noise. The magnetic forces were computed through 2D electromagnetic finite element simulation, and the deformation of the stator due to these forces was calculated using 3D structural finite element simulation. Finally, boundary element-based computation was employed to calculate the sound pressure and sound power level in decibels. The use of the boundary element method instead of the finite element method in acoustic computation reduces the computational cost because, unlike finite element analysis, the boundary element approach does not require heavy meshing to model the air surrounding the motor.
APA, Harvard, Vancouver, ISO, and other styles
39

Ikken, Naima, Nour-Eddine Tariba, Abdelhadi Bouknadel, Ahmed Haddou, Hafsa El Omari, and Hamid El Omari. "A fuzzy rule based approach for islanding detection in grid connected inverter systems." International Journal of Electrical and Computer Engineering (IJECE) 11, no. 6 (December 1, 2021): 4759. http://dx.doi.org/10.11591/ijece.v11i6.pp4759-4766.

Full text
Abstract:
<span lang="EN-US">Islanding is when an area of the electrical distribution system is isolated from the electrical system while being powered by distributed generators. An important condition for the interconnection of power plants and distribution systems is the ability of the power plant to detect islands. The presented and proposed method is a combination of best active sandia frequency shift (SFS) method with the intelligent fuzzy logic controller, which has been tested in distributed production using the island detection function. And the choice to improve the method by fuzzy logic control (FLC) is retained, as this process is more effective in decreasing the non-</span><span lang="EN-US">detection zone (NDZ) and in further improving the efficiency of the islanding detection system. This paper proposes a new active islanding detection technique controlled by a fuzzy logic controller, for grid connected photovoltaic (PV) inverters. In addition, the efficiency and performance of the proposed method strategy for islanding detection has been analyzed and tested in the various situations of the network. In addition, the results of the simulations with the <span lang="EN-US">power </span><span lang="EN-US">simulation (</span>PSIM) software will be provided to illustrate the main conclusions and the development of the control. Thus, will be used to show the feasibility and validity of the proposed new algorithm.</span>
APA, Harvard, Vancouver, ISO, and other styles
40

Aminou Moussavou, AA, AK Raji, and M. Adonis. "Controllable and flexible energy production in a water-based photovoltaic/thermal system." International Journal of Engineering & Technology 8, no. 4 (October 19, 2019): 473. http://dx.doi.org/10.14419/ijet.v8i4.29485.

Full text
Abstract:
A combined solar photovoltaic and thermal (PV/T) system is not just a product that makes our life easier, nor is it a luxury. In the future economics will make the use of the PV/T system essential. The purpose of this to improve the energy balance in a PV/T system, by control-ling the thermal energy (useful heat) production for the domestic hot water as well as the electrical production. Simulation and analysis of a simplified model of the PV/T system for cooling the PV cell and heating the working fluid inside of the absorber pipe attached at the back of the PV cell were implemented in MATLAB /Simulink software. The optimal electrical and thermal power were obtained by selecting a par-ticular value of Rse that partially converts the output of the PV cell into useful thermal energy. It was discovered that increasing the chosen value of Rse results in higher heat dissipation in the PV/T cell, an increase in thermal efficiency, and also a decrease in electrical efficiency.
APA, Harvard, Vancouver, ISO, and other styles
41

Bui, Truong M. N., Truong Q. Dinh, James Marco, and Chris Watts. "Development and Real-Time Performance Evaluation of Energy Management Strategy for a Dynamic Positioning Hybrid Electric Marine Vessel." Electronics 10, no. 11 (May 27, 2021): 1280. http://dx.doi.org/10.3390/electronics10111280.

Full text
Abstract:
Hybridisation of energy sources in marine vessels has been recognized as one of the feasible solutions to improve fuel economy and achieve global emission reduction targets in the maritime sector. However, the overall performance of a hybrid vessel system is strongly dependent on the efficiency of the energy management system (EMS) that regulates the power-flow amongst the propulsion sources and the energy storage system (ESS). This study develops a simple but production-feasible and efficient EMS for a dynamic positioning (DP) hybrid electric marine vessel (HEMV) and real-time experimental evaluation within a hardware-in-the-loop (HIL) simulation environment. To support the development and evaluation, map-based performance models of HEMVs’ key components are developed. Control logics that underpin the EMS are then designed and verified. Real-time performance evaluation to assess the performance and applicability of the proposed EMS is conducted, showing the improvement over those of the conventional control strategies. The comparison using key performance indicators (KPIs) demonstrates that the proposed EMS could achieve up to 4.8% fuel saving per voyage, while the overall system performance remains unchanged as compared to that of the conventional vessel.
APA, Harvard, Vancouver, ISO, and other styles
42

Ebhota*, Williams S,, and Pavel Y. Tabakov. "Simplified and Precise Design of Crossflow Turbine Power Transmission Components." International Journal of Engineering and Advanced Technology 10, no. 3 (February 28, 2021): 227–32. http://dx.doi.org/10.35940/ijeat.c2136.0210321.

Full text
Abstract:
Despite the merits of small hydropower (SHP), coupled with the perennial inadequate and unreliable electricity supply in SSA, the huge SHP potential in the region is hugely untapped. This is largely attributed to the lack of adequate technical components for the development of SHP turbines, which are: technical personnel, and production facilities in the region. The hydraulic power possessed by flowing water in SHP resources can be harnessed and transformed into usable electrical energy via the deployment of a hydro turbine plant. Commonly used hydro turbines include crossflow (CFT), Pelton, Turgo, and Francis turbines. Amongst these turbines, CFT is mostly applied in low head sites and has efficiency ranging from 70–85%. The CFT power transmission subsystem is considered vital to its performance; the shaft, which transmits the generated motion to drive the alternator, is the most critical part of the CFT transmission subsystem and it requires careful design and production processes. This study centres on the development of a simplified systematic design process for power transmission shaft, pulley, and belt, to facilitate CFT power generation efficiency. .Further, the study is geared towards boosting CFT technology capacity domestically for the benefit of local production. The hydrological properties of the Ayiba SHP site in Osun state, Nigeria, were adopted for this work as a case study. The head and power for this resource are 11.8 m and 122.4 kW, respectively, and are served as the fundamental parameters for the design of the power transmission subsystem. The design computation shows that a shaft of diameter 65 mm and a D-type of V-belt with a corresponding pulley will be required to transmit the generated turbine power to the alternator. A 3-D model was created based on the design values and this was used to validate the integrity of the shaft by static stimulation. The simulation result, which is based on von Mises was satisfactory as the highest stress obtained in the shaft was 205 N/mm2; resulting in a 2.6 factor of safety.
APA, Harvard, Vancouver, ISO, and other styles
43

Fanney, A. Hunter, Mark W. Davis, Brian P. Dougherty, David L. King, William E. Boyson, and Jay A. Kratochvil. "Comparison of Photovoltaic Module Performance Measurements." Journal of Solar Energy Engineering 128, no. 2 (January 5, 2006): 152–59. http://dx.doi.org/10.1115/1.2192559.

Full text
Abstract:
Computer simulation tools used to predict the energy production of photovoltaic systems are needed in order to make informed economic decisions. These tools require input parameters that characterize module performance under various operational and environmental conditions. Depending upon the complexity of the simulation model, the required input parameters can vary from the limited information found on labels affixed to photovoltaic modules to an extensive set of parameters. The required input parameters are normally obtained indoors using a solar simulator or flash tester, or measured outdoors under natural sunlight. This paper compares measured performance parameters for three photovoltaic modules tested outdoors at the National Institute of Standards and Technology (NIST) and Sandia National Laboratories (SNL). Two of the three modules were custom fabricated using monocrystalline and silicon film cells. The third, a commercially available module, utilized triple-junction amorphous silicon cells. The resulting data allow a comparison to be made between performance parameters measured at two laboratories with differing geographical locations and apparatus. This paper describes the apparatus used to collect the experimental data, test procedures utilized, and resulting performance parameters for each of the three modules. Using a computer simulation model, the impact that differences in measured parameters have on predicted energy production is quantified. Data presented for each module includes power output at standard rating conditions and the influence of incident angle, air mass, and module temperature on each module’s electrical performance. Measurements from the two laboratories are in excellent agreement. The power at standard rating conditions is within 1% for all three modules. Although the magnitude of the individual temperature coefficients varied as much as 17% between the two laboratories, the impact on predicted performance at various temperature levels was minimal, less than 2%. The influence of air mass on the performance of the three modules measured at the laboratories was in excellent agreement. The largest difference in measured results between the two laboratories was noted in the response of the modules to incident angles that exceed 75deg.
APA, Harvard, Vancouver, ISO, and other styles
44

Aguilar, Jonathan, Ainhoa Rubio-Clemente, Laura Velasquez, and Edwin Chica. "Design and Optimization of a Multi-Element Hydrofoil for a Horizontal-Axis Hydrokinetic Turbine." Energies 12, no. 24 (December 9, 2019): 4679. http://dx.doi.org/10.3390/en12244679.

Full text
Abstract:
Hydrokinetic turbines are devices that harness the power from moving water of rivers, canals, and artificial currents without the construction of a dam. The design optimization of the rotor is the most important stage to maximize the power production. The rotor is designed to convert the kinetic energy of the water current into mechanical rotation energy, which is subsequently converted into electrical energy by an electric generator. The rotor blades are critical components that have a large impact on the performance of the turbine. These elements are designed from traditional hydrodynamic profiles (hydrofoils), to directly interact with the water current. Operational effectiveness of the hydrokinetic turbines depends on their performance, which is measured by using the ratio between the lift coefficient (CL) and the drag coefficient (CD) of the selected hydrofoil. High lift forces at low flow rates are required in the design of the blades; therefore, the use of multi-element hydrofoils is commonly regarded as an adequate solution to achieve this goal. In this study, 2D CFD simulations and multi-objective optimization methodology based on surrogate modelling were conducted to design an appropriate multi-element hydrofoil to be used in a horizontal-axis hydrokinetic turbine. The Eppler 420 hydrofoil was utilized for the design of the multi-element hydrofoil composed of a main element and a flap. The multi-element design selected as the optimal one had a gap of 2.825% of the chord length (C1), an overlap of 8.52 %C1, a flap deflection angle (δ) of 19.765°, a flap chord length (C2) of 42.471 %C1, and an angle of attack (α) of –4°.
APA, Harvard, Vancouver, ISO, and other styles
45

Figaj, Rafał, Maciej Żołądek, and Wojciech Goryl. "Dynamic Simulation and Energy Economic Analysis of a Household Hybrid Ground-Solar-Wind System Using TRNSYS Software." Energies 13, no. 14 (July 8, 2020): 3523. http://dx.doi.org/10.3390/en13143523.

Full text
Abstract:
The adoption of micro-scale renewable energy systems in the residential sector has started to be increasingly diffused in recent years. Among the possible systems, ground heat exchangers coupled with reversible heat pumps are an interesting solution for providing space heating and cooling to households. In this context, a possible hybridization of this technology with other renewable sources may lead to significant benefits in terms of energy performance and reduction of the dependency on conventional energy sources. However, the investigation of hybrid systems is not frequently addressed in the literature. The present paper presents a technical, energy, and economic analysis of a hybrid ground-solar-wind system, proving space heating/cooling, domestic hot water, and electrical energy for a household. The system includes vertical ground heat exchangers, a water–water reversible heat pump, photovoltaic/thermal collectors, and a wind turbine. The system with the building is modeled and dynamically simulated in the Transient System Simulation (TRNSYS) software. Daily dynamic operation of the system and the monthly and yearly results are analyzed. In addition, a parametric analysis is performed varying the solar field area and wind turbine power. The yearly results point out that the hybrid system, compared to a conventional system with natural gas boiler and electrical chiller, allows one to reduce the consumption of primary energy of 66.6%, and the production of electrical energy matches 68.6% of the user demand on a yearly basis. On the other hand, the economic results show that that system is not competitive with the conventional solution, because the simple pay back period is 21.6 years, due to the cost of the system components.
APA, Harvard, Vancouver, ISO, and other styles
46

Korendiy, Vitaliy, Roman Zinko, Vasyl Lozynskyy, and Oleksandr Havrylchenko. "Design and operational peculiarities of four-degree-of-freedom double-legged robot with pneumatic drive and turning mechanism." Ukrainian journal of mechanical engineering and materials science 6, no. 1 (2020): 54–71. http://dx.doi.org/10.23939/ujmems2020.01.054.

Full text
Abstract:
Problem statement. Mobile robots are of significant interest among scientists and designers during the last several decades. One of the prospective drives of such robots is based on pneumatically operated walking (stepping) system with no use of electric, heat, magnetic or other types of energy. This allows the use of pneumatically-driven robots in the cases when the use of other energy sources is prohibited (e.g., in some gaseous or fluid mediums). At the same time, the walking (stepping) type of moving increases the manoeuvrability and cross-country capability of the mobile robot, and decreases the harmful effect of its interaction with the supporting surface (e.g., the fertile soil surface) in comparison with wheeled or caterpillar drives. Purpose. The main purpose of this research consists in substantiation of structure and parameters of pneumatic system of four-degree-of-freedom mobile robot with orthogonal walking drive and turning mechanism. Methodology. The research is carried out using the basic laws and principles of mechanics, pneumatics and automation. The numerical experiment is conducted in MathCAD software; the computer simulation of the robot’s motion is performed using SolidWorks software; the modelling of the pneumatic system operation is carried out in Festo FluidSim Pneumatic software. Findings (results) and originality (novelty). The improved structure of the mobile robot with orthogonal walking drive and turning mechanism is proposed. The pneumatically operated system ensuring the robot’s curvilinear motion is substantiated. Practical value. The proposed design of walking robot can be used while designing industrial (production) prototypes of mobile robotic systems for performing various activities in the environments that are not suitable for using electric power or other types of energy sources. Scopes of further investigations. While carrying out further investigations, it is necessary to design the devices for changing motion speed of the robot and the height of lifting of its feet.
APA, Harvard, Vancouver, ISO, and other styles
47

Al_Dujaili, Mohammed Jawad, and Aws Majeed Al_Awadi. "Chirplet signal design by FPGA." International Journal of Electrical and Computer Engineering (IJECE) 11, no. 3 (June 1, 2021): 2120. http://dx.doi.org/10.11591/ijece.v11i3.pp2120-2127.

Full text
Abstract:
The ever-expanding growth of the electronics and communications industries present new challenges for researchers. One of these challenges is the generation of the required bandwidth signal over a specific time frame that is used in a variety of contexts, particularly radar systems. To improve the range resolution in the radar along with better SNR, it is necessary to reduce the signal bandwidth and increase the peak power. There are some restrictions for narrowband signals like power limitation, pulse shaping, and the production of unwanted harmonics. So as a solution pulse compression techniques are suggested. Pulse compression is a process that modulating the transmitted pulse to achieve a wideband signal and then at the receiver, the received signal correlates with the transmitted pulse to achieve narrowband representations of data. Chirp is the most common signal used in pulse compression. The chirp signal is produced using linear frequency modulation. In this study, we attempted to add an amplitude modulation to the chirp signal and evaluate its performance by implementation on FPGA. The outcome signal is called chirplet and simulation will show that it enhance target detection and image quality in imaging radars like SAR.
APA, Harvard, Vancouver, ISO, and other styles
48

Guenounou, Abderrezak, Ali Malek, Michel Aillerie, and Achour Mahrane. "LabVIEW Interface for Controlling a Test Bench for Photovoltaic Modules and Extraction of Various Parameters." International Journal of Power Electronics and Drive Systems (IJPEDS) 6, no. 3 (September 1, 2015): 498. http://dx.doi.org/10.11591/ijpeds.v6.i3.pp498-508.

Full text
Abstract:
Numerical simulation using mathematical models that take into account physical phenomena governing the operation of solar cells is a powerful tool to predict the energy production of photovoltaic modules prior to installation in a given site. These models require some parameters that manufacturers do not generally give. In addition, the availability of a tool for the control and the monitoring of performances of PV modules is of great importance for researchers, manufacturers and distributors of PV solutions. In this paper, a test and characterization protocol of PV modules is presented. It consists of an outdoor computer controlled test bench using a LabVIEW graphical interface. In addition to the measuring of the IV characteristics, it provides all the parameters of PV modules with the possibility to display and print a detailed report for each test. After the presentation of the test bench and the developed graphical interface, the obtained results based on an experimental example are presented.
APA, Harvard, Vancouver, ISO, and other styles
49

Bouramdane, Ayat-allah, Alexis Tantet, and Philippe Drobinski. "Adequacy of Renewable Energy Mixes with Concentrated Solar Power and Photovoltaic in Morocco: Impact of Thermal Storage and Cost." Energies 13, no. 19 (September 29, 2020): 5087. http://dx.doi.org/10.3390/en13195087.

Full text
Abstract:
In this paper, we analyze the sensitivity of the optimal mixes to cost and variability associated with solar technologies and examine the role of Thermal Energy Storage (TES) combined to Concentrated Solar Power (CSP) together with time-space complementarity in reducing the adequacy risk—imposed by variable Renewable Energies (RE)—on the Moroccan electricity system. To do that, we model the optimal recommissioning of RE mixes including Photovoltaic (PV), wind energy and CSP without or with increasing levels of TES. Our objective is to maximize the RE production at a given cost, but also to limit the variance of the RE production stemming from meteorological fluctuations. This mean-variance analysis is a bi-objective optimization problem that is implemented in the E4CLIM modeling platform—which allows us to use climate data to simulate hourly Capacity Factors (CFs) and demand profiles adjusted to observations. We adapt this software to Morocco and its four electrical zones for the year 2018, add new CSP and TES simulation modules, perform some load reduction diagnostics, and account for the different rental costs of the three RE technologies by adding a maximum-cost constraint. We find that the risk decreases with the addition of TES to CSP, the more so as storage is increased keeping the mean capacity factor fixed. On the other hand, due to the higher cost of CSP compared to PV and wind, the maximum-cost constraint prevents the increase of the RE penetration without reducing the share of CSP compared to PV and wind and letting the risk increase in return. Thus, if small level of risk and higher penetrations are targeted, investment must be increased to install more CSP with TES. We also show that regional diversification is key to reduce the risk and that technological diversification is relevant when installing both PV and CSP without storage, but less so as the surplus of energy available for TES is increased and the CSP profiles flatten. Finally, we find that, thanks to TES, CSP is more suited than PV and wind to meet peak loads. This can be measured by the capacity credit, but not by the variance-based risk, suggesting that the latter is only a crude representation of the adequacy risk.
APA, Harvard, Vancouver, ISO, and other styles
50

Abdelwahed, Touati, Majdoul Radouane, Aboulfatah Mohamed, and Rabbah Nabila. "Active filtering capability based on the RSC control of WECS equipped with a DFIG." Indonesian Journal of Electrical Engineering and Computer Science 23, no. 2 (August 1, 2021): 760. http://dx.doi.org/10.11591/ijeecs.v23.i2.pp760-771.

Full text
Abstract:
<p>The increasing integration of decentralized production from renewable energies on the electricity grids should contribute to improving the stability and quality of the energy produced. The main objective of this work is to prove how renewable energy sources can improve the quality of electrical energy in the grid. In particular, controlled by the oriented flux technique, a double - feed induction generator DFIG driven by a wind turbine is together used to produce active power to the electrical network and to compensate the currentharmonics generated by a non - linear load, which leads to improve the supplied energy quality. The Active filtering function consists first of all in identifying the current harmonics using the theory of instantaneous active and reactive powers quality (PQ). Then, the closed loop based on the fast terminal sliding mode control (FTSMC) control allows both the generator to follow the optimal operating point of the wind turbine and to compensate for the current harmonics. The analysis and simulation results using MATLAB/Simulink confirm the effectiveness and the limits of the proposed methods and also show the performances of the law control which provides flexibility, high precision and fast response.</p>
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography