Journal articles on the topic 'Electric field-induced chemical reaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Electric field-induced chemical reaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Huang, Xiaoyan, Chun Tang, Jieqiong Li, et al. "Electric field–induced selective catalysis of single-molecule reaction." Science Advances 5, no. 6 (2019): eaaw3072. http://dx.doi.org/10.1126/sciadv.aaw3072.
Full textLv, Jieyao, Ruiqin Sun, Qifan Yang, Pengfei Gan, Shiyong Yu, and Zhibing Tan. "Research on Electric Field—Induced Catalysis Using Single—Molecule Electrical Measurement." Molecules 28, no. 13 (2023): 4968. http://dx.doi.org/10.3390/molecules28134968.
Full textKumar, S., P. Kumar, and R. Pratap. "Reliability Failure in Microelectronic Interconnects by Electric Current Induced Chemical Reaction." IOP Conference Series: Materials Science and Engineering 1206, no. 1 (2021): 012026. http://dx.doi.org/10.1088/1757-899x/1206/1/012026.
Full textWang, Nan, and Laurence Weatherley. "Electric field-intensified chemical processes and reaction chemistry." Current Opinion in Chemical Engineering 39 (March 2023): 100895. http://dx.doi.org/10.1016/j.coche.2022.100895.
Full textKaplunenko, Volodymyr, and Mykola Kosinov. "Electric field - induced catalysis. Laws of field catalysis." InterConf, no. 26(129) (October 18, 2022): 332–51. http://dx.doi.org/10.51582/interconf.19-20.10.2022.037.
Full textDeng, Jinxiang, Mengjie Li, Yakun Tian, Zhijun Zhang, Lingling Wu, and Lin Hu. "Using Electric Field to Improve the Effect of Microbial-Induced Carbonate Precipitation." Sustainability 15, no. 7 (2023): 5901. http://dx.doi.org/10.3390/su15075901.
Full textBarmina, I., R. Valdmanis, M. Zake, H. Kalis, M. Marinaki, and U. Strautins. "Magnetic Field Control of Combustion Dynamics." Latvian Journal of Physics and Technical Sciences 53, no. 4 (2016): 36–47. http://dx.doi.org/10.1515/lpts-2016-0027.
Full textShamshuddin, M. D., Thirupathi Thumma, and S. R. Mishra. "Thermo-Solutal Chemically Reacting Micropolar Fluid Past a Permeable Stretching Porous Sheet." Defect and Diffusion Forum 392 (April 2019): 42–59. http://dx.doi.org/10.4028/www.scientific.net/ddf.392.42.
Full textGryn'ova, Ganna, and Michelle L. Coote. "Directionality and the Role of Polarization in Electric Field Effects on Radical Stability." Australian Journal of Chemistry 70, no. 4 (2017): 367. http://dx.doi.org/10.1071/ch16579.
Full textBunker, Ian, Ridwan Tobi Ayinla, and Kun Wang. "Single-Molecule Chemical Reactions Unveiled in Molecular Junctions." Processes 10, no. 12 (2022): 2574. http://dx.doi.org/10.3390/pr10122574.
Full textSzydło, Zbigniew A. "Chemical Electricity." Chemistry-Didactics-Ecology-Metrology 26, no. 1-2 (2021): 5–29. http://dx.doi.org/10.2478/cdem-2021-0001.
Full textSharma, M., P. Kumar, А. В. Иржак та ін. "Плавление и электромиграция в тонких пленках хрома". Физика твердого тела 62, № 6 (2020): 880. http://dx.doi.org/10.21883/ftt.2020.06.49342.23m.
Full textPennino, Donald J., and Edmund R. Malinowski. "Reaction field of an oscillating electric dipole and solvent chemical shift." Journal of the Chemical Society, Faraday Transactions 2 83, no. 6 (1987): 939. http://dx.doi.org/10.1039/f29878300939.
Full textHiraki, Yasutaka. "Effects of ion–neutral chemical reactions on dynamics of lightning-induced electric field." Plasma Sources Science and Technology 18, no. 3 (2009): 034020. http://dx.doi.org/10.1088/0963-0252/18/3/034020.
Full textQuintans, C. S., Denis Andrienko, Katrin F. Domke, et al. "Tuning Single-Molecule Conductance by Controlled Electric Field-Induced trans-to-cis Isomerisation." Applied Sciences 11, no. 8 (2021): 3317. http://dx.doi.org/10.3390/app11083317.
Full textAardahl, Christopher L., John F. Widmann, and E. James Davis. "Raman Analysis of Chemical Reactions Resulting from the Collision of Micrometer-Sized Particles." Applied Spectroscopy 52, no. 1 (1998): 47–53. http://dx.doi.org/10.1366/0003702981942627.
Full textGoryushkin, V. F., Yu V. Bendre, and N. S. Zaitsev. "Activation of reaction with participation of a solid metal by electrostatic charge energy on the metal." Physics and Chemistry of Materials Treatment 3 (2021): 60–68. http://dx.doi.org/10.30791/0015-3214-2021-3-60-68.
Full textMunir, Z. A. "Modeling and experimental studies on the effect of thermophysical properties on field-activated combustion synthesis reactions." Pure and Applied Chemistry 72, no. 11 (2000): 2177–86. http://dx.doi.org/10.1351/pac200072112177.
Full textDwivedi, Itisha, Arup Sarkar, Gopalan Rajaraman, and Chandramouli Subramaniam. "Electric-Field-Induced Solid–Gas Interfacial Chemical Reaction in Carbon Nanotube Ensembles: Route toward Ultra-sensitive Gas Detectors." ACS Applied Materials & Interfaces 14, no. 11 (2022): 13271–79. http://dx.doi.org/10.1021/acsami.1c23670.
Full textSantiago Neto, Ruy Batista, and Bernhard Lesche. "Electric field assisted hydrogen fluoride etching of silica." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, no. 2111 (2009): 3447–62. http://dx.doi.org/10.1098/rspa.2009.0216.
Full textHosseini, Seyed Hossein, Amir Abbas Kazemi, and Seyed Arash Hosseini. "Preparation of Polycarbazole Nanofibers Using an Electric Field and the Investigation of Its Electrical Conductivity." Nanomanufacturing 3, no. 1 (2023): 113–22. http://dx.doi.org/10.3390/nanomanufacturing3010007.
Full textRana, Puneet, Nisha Shukla, O. Anwar Bég, A. Kadir, and Bani Singh. "Unsteady electromagnetic radiative nanofluid stagnation-point flow from a stretching sheet with chemically reactive nanoparticles, Stefan blowing effect and entropy generation." Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems 232, no. 2-3 (2018): 69–82. http://dx.doi.org/10.1177/2397791418782030.
Full textZeng, Xingming, Sadaf Bashir Khan, Ayyaz Mahmood, and Shern-Long Lee. "Nanoscale tailoring of supramolecular crystals via an oriented external electric field." Nanoscale 12, no. 28 (2020): 15072–80. http://dx.doi.org/10.1039/d0nr01946a.
Full textMatsuda, Kyle, Luigi De Marco, Jun-Ru Li, et al. "Resonant collisional shielding of reactive molecules using electric fields." Science 370, no. 6522 (2020): 1324–27. http://dx.doi.org/10.1126/science.abe7370.
Full textTsong, Tian Yow, Dao-Sheng Liu, Francoise Chauvin, and R. Dean Astumian. "Resonance electroconformational coupling: A proposed mechanism for energy and signal transductions by membrane proteins." Bioscience Reports 9, no. 1 (1989): 13–26. http://dx.doi.org/10.1007/bf01117508.
Full textCassone, Giuseppe, Fabio Pietrucci, Franz Saija, François Guyot, and A. Marco Saitta. "One-step electric-field driven methane and formaldehyde synthesis from liquid methanol." Chemical Science 8, no. 3 (2017): 2329–36. http://dx.doi.org/10.1039/c6sc04269d.
Full textSong, Xiaozong, Shundong Ge, Yanjiang Niu, and Dengwei Yan. "Effect of external electric field on ultraviolet-induced nanoparticle colloid jet machining." Nanotechnology 33, no. 21 (2022): 215302. http://dx.doi.org/10.1088/1361-6528/ac55d0.
Full textKharlamov, V. F., A. V. Sedov, and S. N. Romashin. "Electron emission from solid surfaces stimulated by electric field and heterogeneous chemical reaction." Technical Physics Letters 30, no. 9 (2004): 753–55. http://dx.doi.org/10.1134/1.1804586.
Full textYang, Kai-Yun, Ing-Chi Leu, Kuan-Zong Fung, et al. "Mechanism of the interfacial reaction between cation-deficient La0.56Li0.33TiO3 and metallic lithium at room temperature." Journal of Materials Research 23, no. 7 (2008): 1813–25. http://dx.doi.org/10.1557/jmr.2008.0255.
Full textLiu, Xingpeng, Heping Huang, Linsen Yang, and Kama Huang. "Degree of Coupling in Microwave-Heating Polar-Molecule Reactions." Molecules 28, no. 3 (2023): 1364. http://dx.doi.org/10.3390/molecules28031364.
Full textPENG, Yongkang, Xiaoyue CHEN, Yeqiang DENG, et al. "Kinetic study of key species and reactions of atmospheric pressure pulsed corona discharge in humid air." Plasma Science and Technology 24, no. 5 (2022): 055404. http://dx.doi.org/10.1088/2058-6272/ac4693.
Full textChmelíková, R., M. Přibyl, F. Tm??j, P. Hasal, and M. Marek. "Effects of an Electric Field on Enzymatic Reaction with Immobilized Enzyme." Chemie Ingenieur Technik 73, no. 6 (2001): 653–54. http://dx.doi.org/10.1002/1522-2640(200106)73:6<653::aid-cite6534444>3.0.co;2-4.
Full textDakhnovskii, Yuri. "Nonadiabatic chemical reactions in a strong time‐dependent electric field: An electron transfer reaction in a polar solvent." Journal of Chemical Physics 100, no. 9 (1994): 6492–99. http://dx.doi.org/10.1063/1.467058.
Full textUmavathi, J. C., J. P. Kumar, R. S. R. Gorla, and B. J. Gireesha. "Effect of Electric Field on Dispersion of a Solute in an MHD Flow through a Vertical Channel With and Without Chemical Reaction." International Journal of Applied Mechanics and Engineering 21, no. 3 (2016): 683–711. http://dx.doi.org/10.1515/ijame-2016-0041.
Full textHolmes, Thomas D., Rachael H. Rothman, and William B. Zimmerman. "Graph Theory Applied to Plasma Chemical Reaction Engineering." Plasma Chemistry and Plasma Processing 41, no. 2 (2021): 531–57. http://dx.doi.org/10.1007/s11090-021-10152-z.
Full textCassone, Giuseppe, Adriano Sofia, Jiri Sponer, A. Marco Saitta, and Franz Saija. "Ab Initio Molecular Dynamics Study of Methanol-Water Mixtures under External Electric Fields." Molecules 25, no. 15 (2020): 3371. http://dx.doi.org/10.3390/molecules25153371.
Full textHuizinga, Menno, Huub A. W. Ragas, Arno H. J. Schrijvers, and Jaap Biemond. "Electric reaction field of a molecular octopole and the solvent proton chemical shift of methane." Journal of the Chemical Society, Faraday Transactions 2 83, no. 11 (1987): 2067. http://dx.doi.org/10.1039/f29878302067.
Full textBaykusheva, Denitsa, Daniel Zindel, Vít Svoboda, et al. "Real-time probing of chirality during a chemical reaction." Proceedings of the National Academy of Sciences 116, no. 48 (2019): 23923–29. http://dx.doi.org/10.1073/pnas.1907189116.
Full textRezaee, Milad, Mostafa Nasrollahi Gisel, and Saman Saffari. "Mathematical Modeling and Sensitivity Analysis on Cadmium Transport in Kaolinite under Direct Current Electric Field." Civil Engineering Journal 3, no. 11 (2017): 1097. http://dx.doi.org/10.28991/cej-030940.
Full textWan, Ningbo, Jichun Jiang, Fan Hu, et al. "Nonuniform Electric Field-Enhanced In-Source Declustering in High-Pressure Photoionization/Photoionization-Induced Chemical Ionization Mass Spectrometry for Operando Catalytic Reaction Monitoring." Analytical Chemistry 93, no. 4 (2021): 2207–14. http://dx.doi.org/10.1021/acs.analchem.0c04081.
Full textSuzuki, S., K. Hamasaki, M. Takahashi, C. Kato, and N. Ohnishi. "Numerical analysis of structural change process in millimeter-wave discharge at subcritical intensity." Physics of Plasmas 29, no. 9 (2022): 093507. http://dx.doi.org/10.1063/5.0096363.
Full textTerzis, Dimitrios, Patrick Hicher, and Lyesse Laloui. "Benefits and drawbacks of applied direct currents for soil improvement via carbonate mineralization." E3S Web of Conferences 195 (2020): 05007. http://dx.doi.org/10.1051/e3sconf/202019505007.
Full textShaik, Sason, David Danovich, Jyothish Joy, Zhanfeng Wang, and Thijs Stuyver. "Electric-Field Mediated Chemistry: Uncovering and Exploiting the Potential of (Oriented) Electric Fields to Exert Chemical Catalysis and Reaction Control." Journal of the American Chemical Society 142, no. 29 (2020): 12551–62. http://dx.doi.org/10.1021/jacs.0c05128.
Full textTobias, William G., Kyle Matsuda, Jun-Ru Li, et al. "Reactions between layer-resolved molecules mediated by dipolar spin exchange." Science 375, no. 6586 (2022): 1299–303. http://dx.doi.org/10.1126/science.abn8525.
Full textLe, Thu Hac Huong, Kazuma Mawatari, Yuriy Pihosh, et al. "Novel sub-100 nm surface chemical modification by optical near-field induced photocatalytic reaction." Microfluidics and Nanofluidics 17, no. 4 (2014): 751–58. http://dx.doi.org/10.1007/s10404-014-1361-7.
Full textAdem, Gossaye Aliy. "Analytic Treatment for Electrical MHD Non-Newtonian Fluid Flow over a Stretching Sheet through a Porous Medium." Advances in Mathematical Physics 2020 (December 28, 2020): 1–14. http://dx.doi.org/10.1155/2020/8879264.
Full textNakano, Naoya, Maki Torimoto, Hiroshi Sampei, et al. "Elucidation of the reaction mechanism on dry reforming of methane in an electric field by in situ DRIFTs." RSC Advances 12, no. 15 (2022): 9036–43. http://dx.doi.org/10.1039/d2ra00402j.
Full textWang, Jing, Fan Yang, Shuai Wang, Hong Zhong, Zai-kun Wu, and Zhan-fang Cao. "Reactivation of nano-Fe3O4/diethanolamine/rGO catalyst by using electric field in Fenton reaction." Journal of the Taiwan Institute of Chemical Engineers 99 (June 2019): 113–22. http://dx.doi.org/10.1016/j.jtice.2019.03.009.
Full textZhu, Zhang, Wang, et al. "Controlling the Growth Locations of Ag Nanoparticles at Nanoscale by Shifting LSPR Hotspots." Nanomaterials 9, no. 11 (2019): 1553. http://dx.doi.org/10.3390/nano9111553.
Full textBoricic, Aleksandar, Milos Jovanovic, and Branko Boricic. "Unsteady magnetohydrodynamic thermal and diffusion boundary layer from a horizontal circular cylinder." Thermal Science 20, suppl. 5 (2016): 1367–80. http://dx.doi.org/10.2298/tsci16s5367b.
Full text