Contents
Academic literature on the topic 'Élagage de forêts aléatoires'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Élagage de forêts aléatoires.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Élagage de forêts aléatoires"
LAYELMAM, Mohammed. "Production des cartes de probabilité de présence des criquets pèlerins sur le territoire marocain à partir des données de télédétection." Revue Française de Photogrammétrie et de Télédétection, no. 216 (April 19, 2018): 49–59. http://dx.doi.org/10.52638/rfpt.2018.324.
Full textMatsaguim Nguimdo, Cédric Aurélien, and Emmanuel D. Tiomo. "FORET D'ARBRES ALEATOIRES ET CLASSIFICATION D'IMAGES SATELLITES : RELATION ENTRE LA PRECISION DU MODELE D'ENTRAINEMENT ET LA PRECISION GLOBALE DE LA CLASSIFICATION." Revue Française de Photogrammétrie et de Télédétection, no. 222 (November 26, 2020): 3–14. http://dx.doi.org/10.52638/rfpt.2020.477.
Full textBeguet, Benoît, Nesrine Chehata, Samia Boukir, and Dominique Guyon. "Quantification et cartographie de la structure forestière à partir de la texture des images Pléiades." Revue Française de Photogrammétrie et de Télédétection, no. 208 (September 5, 2014): 83–88. http://dx.doi.org/10.52638/rfpt.2014.126.
Full textChehata, Nesrine, Karim Ghariani, Arnaud Le Bris, and Philippe Lagacherie. "Apport des images pléiades pour la délimitation des parcelles agricoles à grande échelle." Revue Française de Photogrammétrie et de Télédétection, no. 209 (January 29, 2015): 165–71. http://dx.doi.org/10.52638/rfpt.2015.220.
Full textLe Bris, Arnaud, Cyril Wendl, Nesrine Chehata, Anne Puissant, and Tristan Postadjian. "Fusion tardive d'images SPOT-6/7 et de données multi-temporelles Sentinel-2 pour la détection de la tâche urbaine." Revue Française de Photogrammétrie et de Télédétection, no. 217-218 (September 21, 2018): 87–97. http://dx.doi.org/10.52638/rfpt.2018.415.
Full textFerraz, Antonio. "DÉTECTION À HAUTE RÉSOLUTION SPATIALE DE LA DESSERTE FORESTIÈRE EN MILIEU MONTAGNEUX." Revue Française de Photogrammétrie et de Télédétection 1, no. 211-212 (December 6, 2015): 103–17. http://dx.doi.org/10.52638/rfpt.2015.549.
Full textMorales, Alejandro H., and Ekaterina A. Vassilieva. "Bijective evaluation of the connection coefficients of the double coset algebra." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AO,..., Proceedings (January 1, 2011). http://dx.doi.org/10.46298/dmtcs.2944.
Full textDossa, Maximilien. "Des forêts aléatoires pour déchiffrer les commentaires sur Amazon La compatibilité du lecteur d'écran est activée." Management & Data Science, June 2020. http://dx.doi.org/10.36863/mds.a.13696.
Full textBeal, Pierre, Emmanuel Buisson, Victor Bruyere, Benjamin Chabanon, Gwenaëlle Hourdin, BouAlem Mesbah, and David Poulet. "VIGIPOL : Pollution à l'ozone : mise en place d'un outil de vigilance par application des techniques des forêts aléatoires." Pollution atmosphérique, N°198-199 (2008). http://dx.doi.org/10.4267/pollution-atmospherique.1331.
Full textHabonayo, Richard, Akomian Fortuné Azihou, Gbèwonmèdéa Hospice Dassou, André Nduwimana, Aristide Cossi Adomou, and Bernadette Habonimana. "Influence de la liane envahissante Sericostachys scandens Gilg & Lopr. (Amaranthaceae) sur la structure des peuplements ligneux du Parc National de la Kibira au Burundi." Tropicultura, 2023. http://dx.doi.org/10.25518/2295-8010.2227.
Full textDissertations / Theses on the topic "Élagage de forêts aléatoires"
Cherfaoui, Farah. "Echantillonnage pour l'accélération des méthodes à noyaux et sélection gloutonne pour les représentations parcimonieuses." Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0256.
Full textThe contributions of this thesis are divided into two parts. The first part is dedicated to the acceleration of kernel methods and the second to optimization under sparsity constraints. Kernel methods are widely known and used in machine learning. However, the complexity of their implementation is high and they become unusable when the number of data is large. We first propose an approximation of Ridge leverage scores. We then use these scores to define a probability distribution for the sampling process of the Nyström method in order to speed up the kernel methods. We then propose a new kernel-based framework for representing and comparing discrete probability distributions. We then exploit the link between our framework and the maximum mean discrepancy to propose an accurate and fast approximation of the latter. The second part of this thesis is devoted to optimization with sparsity constraint for signal optimization and random forest pruning. First, we prove under certain conditions on the coherence of the dictionary, the reconstruction and convergence properties of the Frank-Wolfe algorithm. Then, we use the OMP algorithm to reduce the size of random forests and thus reduce the size needed for its storage. The pruned forest consists of a subset of trees from the initial forest selected and weighted by OMP in order to minimize its empirical prediction error
Zirakiza, Brice. "Forêts Aléatoires PAC-Bayésiennes." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29815/29815.pdf.
Full textIn this master's thesis, we present at first an algorithm of the state of the art called Random Forests introduced by Léo Breiman. This algorithm construct a uniformly weighted majority vote of decision trees built using the CART algorithm without pruning. Thereafter, we introduce an algorithm that we called SORF. The SORF algorithm is based on the PAC-Bayes approach, which in order to minimize the risk of Bayes classifier, minimizes the risk of the Gibbs classifier with a regularizer. The risk of Gibbs classifier is indeed a convex function which is an upper bound of the risk of Bayes classifier. To find the distribution that would be optimal, the SORF algorithm is reduced to being a simple quadratic program minimizing the quadratic risk of Gibbs classifier to seek a distribution Q of base classifiers which are trees of the forest. Empirical results show that generally SORF is almost as efficient as Random forests, and in some cases, it can even outperform Random forests.
Zirakiza, Brice, and Brice Zirakiza. "Forêts Aléatoires PAC-Bayésiennes." Master's thesis, Université Laval, 2013. http://hdl.handle.net/20.500.11794/24036.
Full textDans ce mémoire de maîtrise, nous présentons dans un premier temps un algorithme de l'état de l'art appelé Forêts aléatoires introduit par Léo Breiman. Cet algorithme effectue un vote de majorité uniforme d'arbres de décision construits en utilisant l'algorithme CART sans élagage. Par après, nous introduisons l'algorithme que nous avons nommé SORF. L'algorithme SORF s'inspire de l'approche PAC-Bayes, qui pour minimiser le risque du classificateur de Bayes, minimise le risque du classificateur de Gibbs avec un régularisateur. Le risque du classificateur de Gibbs constitue en effet, une fonction convexe bornant supérieurement le risque du classificateur de Bayes. Pour chercher la distribution qui pourrait être optimale, l'algorithme SORF se réduit à être un simple programme quadratique minimisant le risque quadratique de Gibbs pour chercher une distribution Q sur les classificateurs de base qui sont des arbres de la forêt. Les résultasts empiriques montrent que généralement SORF est presqu'aussi bien performant que les forêts aléatoires, et que dans certains cas, il peut même mieux performer que les forêts aléatoires.
In this master's thesis, we present at first an algorithm of the state of the art called Random Forests introduced by Léo Breiman. This algorithm construct a uniformly weighted majority vote of decision trees built using the CART algorithm without pruning. Thereafter, we introduce an algorithm that we called SORF. The SORF algorithm is based on the PAC-Bayes approach, which in order to minimize the risk of Bayes classifier, minimizes the risk of the Gibbs classifier with a regularizer. The risk of Gibbs classifier is indeed a convex function which is an upper bound of the risk of Bayes classifier. To find the distribution that would be optimal, the SORF algorithm is reduced to being a simple quadratic program minimizing the quadratic risk of Gibbs classifier to seek a distribution Q of base classifiers which are trees of the forest. Empirical results show that generally SORF is almost as efficient as Random forests, and in some cases, it can even outperform Random forests.
In this master's thesis, we present at first an algorithm of the state of the art called Random Forests introduced by Léo Breiman. This algorithm construct a uniformly weighted majority vote of decision trees built using the CART algorithm without pruning. Thereafter, we introduce an algorithm that we called SORF. The SORF algorithm is based on the PAC-Bayes approach, which in order to minimize the risk of Bayes classifier, minimizes the risk of the Gibbs classifier with a regularizer. The risk of Gibbs classifier is indeed a convex function which is an upper bound of the risk of Bayes classifier. To find the distribution that would be optimal, the SORF algorithm is reduced to being a simple quadratic program minimizing the quadratic risk of Gibbs classifier to seek a distribution Q of base classifiers which are trees of the forest. Empirical results show that generally SORF is almost as efficient as Random forests, and in some cases, it can even outperform Random forests.
Scornet, Erwan. "Apprentissage et forêts aléatoires." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066533/document.
Full textThis is devoted to a nonparametric estimation method called random forests, introduced by Breiman in 2001. Extensively used in a variety of areas, random forests exhibit good empirical performance and can handle massive data sets. However, the mathematical forces driving the algorithm remain largely unknown. After reviewing theoretical literature, we focus on the link between infinite forests (theoretically analyzed) and finite forests (used in practice) aiming at narrowing the gap between theory and practice. In particular, we propose a way to select the number of trees such that the errors of finite and infinite forests are similar. On the other hand, we study quantile forests, a type of algorithms close in spirit to Breiman's forests. In this context, we prove the benefit of trees aggregation: while each tree of quantile forest is not consistent, with a proper subsampling step, the forest is. Next, we show the connection between forests and some particular kernel estimates, which can be made explicit in some cases. We also establish upper bounds on the rate of convergence for these kernel estimates. Then we demonstrate two theorems on the consistency of both pruned and unpruned Breiman forests. We stress the importance of subsampling to demonstrate the consistency of the unpruned Breiman's forests. At last, we present the results of a Dreamchallenge whose goal was to predict the toxicity of several compounds for several patients based on their genetic profile
Genuer, Robin. "Forêts aléatoires : aspects théoriques, sélection de variables et applications." Phd thesis, Université Paris Sud - Paris XI, 2010. http://tel.archives-ouvertes.fr/tel-00550989.
Full textPoterie, Audrey. "Arbres de décision et forêts aléatoires pour variables groupées." Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0011/document.
Full textIn many problems in supervised learning, inputs have a known and/or obvious group structure. In this context, elaborating a prediction rule that takes into account the group structure can be more relevant than using an approach based only on the individual variables for both prediction accuracy and interpretation. The goal of this thesis is to develop some tree-based methods adapted to grouped variables. Here, we propose two new tree-based approaches which use the group structure to build decision trees. The first approach allows to build binary decision trees for classification problems. A split of a node is defined according to the choice of both a splitting group and a linear combination of the inputs belonging to the splitting group. The second method, which can be used for prediction problems in both regression and classification, builds a non-binary tree in which each split is a binary tree. These two approaches build a maximal tree which is next pruned. To this end, we propose two pruning strategies, one of which is a generalization of the minimal cost-complexity pruning algorithm. Since decisions trees are known to be unstable, we introduce a method of random forests that deals with groups of inputs. In addition to the prediction purpose, these new methods can be also use to perform group variable selection thanks to the introduction of some measures of group importance, This thesis work is supplemented by an independent part in which we consider the unsupervised framework. We introduce a new clustering algorithm. Under some classical regularity and sparsity assumptions, we obtain the rate of convergence of the clustering risk for the proposed alqorithm
Ciss, Saïp. "Forêts uniformément aléatoires et détection des irrégularités aux cotisations sociales." Thesis, Paris 10, 2014. http://www.theses.fr/2014PA100063/document.
Full textWe present in this thesis an application of machine learning to irregularities in the case of social contributions. These are, in France, all contributions due by employees and companies to the "Sécurité sociale", the french system of social welfare (alternative incomes in case of unemployement, Medicare, pensions, ...). Social contributions are paid by companies to the URSSAF network which in charge to recover them. Our main goal was to build a model that would be able to detect irregularities with a little false positive rate. We, first, begin the thesis by presenting the URSSAF and how irregularities can appear, how can we handle them and what are the data we can use. Then, we talk about a new machine learning algorithm we have developped for, "random uniform forests" (and its R package "randomUniformForest") which are a variant of Breiman "random Forests" (tm), since they share the same principles but in in a different way. We present theorical background of the model and provide several examples. Then, we use it to show, when irregularities are fraud, how financial situation of firms can affect their propensity for fraud. In the last chapter, we provide a full evaluation for declarations of social contributions of all firms in Ile-de-France for year 2013, by using the model to predict if declarations present irregularities or not
Mourtada, Jaouad. "Contributions à l'apprentissage statistique : estimation de densité, agrégation d'experts et forêts aléatoires." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX014.
Full textStatistical machine learning is a general framework to study predictive problems, where one aims to predict unobserved quantities using examples.The first part of this thesis is devoted to Random forests, a family of methods which are widely used in practice, but whose theoretical analysis has proved challenging. Our main contribution is the precise analysis of a simplified variant called Mondrian forests, for which we establish minimax nonparametric rates of convergence and an advantage of forests over trees. We also study an online variant of Mondrian forests.The second part is about prediction with expert advice, where one aims to sequentially combine different sources of predictions (experts) so as to perform almost as well as the best one in retrospect. We analyze the standard exponential weights algorithm on favorable stochastic instances, showing in particular that it exhibits some adaptivity to the hardness of the problem. We also study a variant of the problem with a growing expert class.The third part deals with regression and density estimation problems. Our first main contribution is a detailed minimax analysis of linear least squares prediction, as a function of the distribution of covariates; our upper bounds rely on a control of the lower tail of empirical covariance matrices. Our second main contribution is a general procedure for density estimation under entropy risk, which achieves optimal excess risk rates that do not degrade under model misspecification. When applied to logistic regression, this procedure has a simple form and achieves fast rates of convergence, bypassing some intrinsic limitations of plug-in estimators
Bernard, Simon. "Forêts aléatoires : de l’analyse des mécanismes de fonctionnement à la construction dynamique." Phd thesis, Rouen, 2009. http://www.theses.fr/2009ROUES011.
Full textThis research work is related to machine learning and more particularlydealswiththeparametrizationofRandomForests,whichareclassifierensemble methods that use decision trees as base classifiers. We focus on two important parameters of the forest induction : the number of features randomly selected at each node and the number of trees. We first show that the number of random features has to be chosen regarding to the feature space properties, and we propose hence a new algorithm called Forest-RK that exploits those properties. We then show that a static induction process implies that some of the trees of the forest make the ensemble generalisation error decrease, by deteriorating the strength/correlation compromise. We finaly propose an original random forest dynamic induction algorithm that favorably compares to static induction processes
Bernard, Simon. "Forêts Aléatoires: De l'Analyse des Mécanismes de Fonctionnement à la Construction Dynamique." Phd thesis, Université de Rouen, 2009. http://tel.archives-ouvertes.fr/tel-00598441.
Full textBooks on the topic "Élagage de forêts aléatoires"
Poggi, Jean-Michel, and Robin Genuer. Les forêts aléatoires avec R. PU RENNES, 2019.
Find full text