Academic literature on the topic 'Eigentensor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Eigentensor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Eigentensor"

1

Nikabadze, M. U. "Construction of eigentensor columns in the linear micropolar theory of elasticity." Moscow University Mechanics Bulletin 69, no. 1 (2014): 1–9. http://dx.doi.org/10.3103/s0027133014010014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nikabadze, M. U. "On the eigenvalue and eigentensor problem for a tensor of even rank." Mechanics of Solids 43, no. 4 (2008): 586–99. http://dx.doi.org/10.3103/s0025654408040079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

MARTÍNEZ-MORALES, JOSÉ L. "THE MASTER EQUATIONS IN THE EUCLIDEAN SCHWARZSCHILD–TANGHERLINI METRIC OF A SMALL STATIC PERTURBATION." International Journal of Modern Physics A 22, no. 06 (2007): 1239–64. http://dx.doi.org/10.1142/s0217751x07036208.

Full text
Abstract:
The master equations in the Euclidean Schwarzschild–Tangherlini space–time of a small static perturbation are studied. For each harmonic mode on the sphere there are two solutions that behave differently at infinity. One solution goes like the power 2-l-n of the radial variable, the other solution goes like the power l. These solutions occur in power series. The second main statement of the paper is that any eigentensor of the Lichnerowicz operator in a Euclidean Schwarzschild space–time with an eigenvalue different from zero is essentially singular at infinity. Possible applications of the stability of instantons are discussed. We present the analysis of a small static perturbation of the Euclidean Schwarzschild–Tangherlini metric tensor. The higher order perturbations will appear later. We determine independently the static perturbations of the Schwarzschild quantum black hole in dimension 1+n≥4, where the system of equations is reduced to master equations — ordinary differential equations. The solutions are hypergeometric functions which in some cases can be reduced to polynomials. In the same Schwarzschild background, we analyze static perturbations of the scalar mode and show that there does not exist any static perturbation that is regular everywhere outside the event horizon and is well-behaved at the spatial infinity. This confirms the uniqueness of the spherically symmetric static empty quantum black hole, within the perturbation framework. Our strategy for treating the stability problem is also applicable to other symmetric quantum black holes with a nonzero cosmological constant.
APA, Harvard, Vancouver, ISO, and other styles
4

Douglas, Stephen R. "Letter: Eigentensors of the Bel Tensor." General Relativity and Gravitation 31, no. 10 (1999): 1605–7. http://dx.doi.org/10.1023/a:1026738622165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

MEHRABADI, MORTEZA M., and STEPHEN C. COWIN. "EIGENTENSORS OF LINEAR ANISOTROPIC ELASTIC MATERIALS." Quarterly Journal of Mechanics and Applied Mathematics 43, no. 1 (1990): 15–41. http://dx.doi.org/10.1093/qjmam/43.1.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

MEHRABADI, MORTEZA M., and STEPHEN C. COWIN. "EIGENTENSORS OF LINEAR ANISOTROPIC ELASTIC MATERIALS." Quarterly Journal of Mechanics and Applied Mathematics 44, no. 2 (1991): 331. http://dx.doi.org/10.1093/qjmam/44.2.331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Theocaris, Pericles S., and Dimitrios P. Sokolis. "Spectral decomposition of the linear elastic tensor for monoclinic symmetry." Acta Crystallographica Section A Foundations of Crystallography 55, no. 4 (1999): 635–47. http://dx.doi.org/10.1107/s0108767398016766.

Full text
Abstract:
The compliance fourth-rank tensor related to crystalline or other anisotropic media belonging to the monoclinic crystal system is spectrally decomposed for the first time, and its characteristic values and idempotent fourth-rank tensors are established. Further, it is proven that the idempotent tensors resolve the stress and strain second-rank tensors into eigentensors, thus giving rise to a decomposition of the total elastic strain-energy density into non-interacting strain-energy parts. Several examples of representative inorganic crystals of the monoclinic system illustrate the results of the theoretical analysis. It is also proven that the essential parameters required for a coordinate-invariant characterization of the elastic properties of a crystal exhibiting monoclinic symmetry are both the six characteristic values of the compliance tensor and seven dimensionless parameters. These material constants, referred to as the eigenangles, are shown to be accountable for the orientation of the stress and strain eigentensors, when represented in a stress coordinate system. Finally, the restrictions dictated by the classical thermodynamical argument on the elements of the compliance tensor, which are necessary and sufficient for the elastic strain-energy density to be positive definite, are investigated for the monoclinic symmetry.
APA, Harvard, Vancouver, ISO, and other styles
8

Martínez-Morales, J. L. "Eigentensors of the Lichnerowicz operator in Euclidean Schwarzschild metrics." Annalen der Physik 15, no. 9 (2006): 653–62. http://dx.doi.org/10.1002/andp.200510184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

François, Marc L. M. "A damage model based on Kelvin eigentensors and Curie principle." Mechanics of Materials 44 (January 2012): 23–34. http://dx.doi.org/10.1016/j.mechmat.2011.07.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Martínez‐Morales, J. L. "Eigentensors of the Lichnerowicz operator in Euclidean Schwarzschild metrics *." Annalen der Physik 518, no. 9 (2006): 653–62. http://dx.doi.org/10.1002/andp.20065180903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography