Academic literature on the topic 'Effluent'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Effluent.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Effluent"
Adam, Abdeljalil, Nabil Saffaj, and Rachid Mamouni. "Classification of industrial wastewater discharged into effluent pits, an approach toward a sustainable recycling: case study of a water treatment facility in Morocco." E3S Web of Conferences 364 (2023): 02001. http://dx.doi.org/10.1051/e3sconf/202336402001.
Full textJibril Sani Mohammed, Yahaya Mustapha, Usman Abubakar, Eghobor Sunday, Bashir Mohammed Mayaki, Yahya Sadiq Abdulrahman, Mohammed Isa Auyo, and Aisha Wada Abubakar. "Evaluation of Cyto-Genotoxicity of Pharmaceutical Industrial Effluent in Kano Metropolis, Kano State, Nigeria, Using Allium Cepa L. Assay." UMYU Scientifica 2, no. 1 (March 30, 2023): 106–14. http://dx.doi.org/10.56919/usci.2123.013.
Full textNaidoo, V., M. du Preez, T. Rakgotho, B. Odhav, and C. A. Buckley. "Toxicity and biodegradability of high strength/toxic organic liquid industrial effluents and hazardous landfill leachates." Water Science and Technology 46, no. 9 (November 1, 2002): 163–69. http://dx.doi.org/10.2166/wst.2002.0230.
Full textRaj, Abhay, Sharad Kumar, Izharul Haq, and Mahadeo Kumar. "Detection of Tannery Effluents Induced DNA Damage in Mung Bean by Use of Random Amplified Polymorphic DNA Markers." ISRN Biotechnology 2014 (March 11, 2014): 1–8. http://dx.doi.org/10.1155/2014/727623.
Full textDewi, Ratna Stia, Rina Sri Kasiamdari, Erni Martani, and Yekti Asih Purwestri. "Decolorization and detoxification of batik dye effluent containing Indigosol Blue-04B using fungi isolated from contaminated dye effluent." Indonesian Journal of Biotechnology 23, no. 2 (December 24, 2018): 54. http://dx.doi.org/10.22146/ijbiotech.32332.
Full textRuas, D. B., A. H. Mounteer, A. C. Lopes, B. L. Gomes, F. D. Brandão, and L. M. Girondoli. "Combined chemical biological treatment of bleached eucalypt kraft pulp mill effluent." Water Science and Technology 55, no. 6 (March 1, 2007): 143–50. http://dx.doi.org/10.2166/wst.2007.222.
Full textFitamo, Temesgen, Olli Dahl, Emma Master, and Torsten Meyer. "Biochemical methane potential of kraft bleaching effluent and codigestion with other in-mill streams." February 2016 15, no. 2 (March 1, 2016): 80–88. http://dx.doi.org/10.32964/tj15.2.80.
Full textAgbekodo, K. M., P. M. Huck, S. A. Andrews, and S. Peldszus. "Characterization of Treated Effluent from a Chemithermomechanical Pulping Process Using Macroporous Resins." Water Quality Research Journal 32, no. 4 (November 1, 1997): 795–814. http://dx.doi.org/10.2166/wqrj.1997.043.
Full textKlein, Rodrigo Miguel, Éverton Hansen, and Patrice Monteiro de Aquim. "Water reuse in the post-tanning process: minimizing environmental impact of leather production." Water Science and Technology 85, no. 1 (December 13, 2021): 474–84. http://dx.doi.org/10.2166/wst.2021.620.
Full textAidar, Elizabeth, Teresa C. S. Sigaud-Kutner, Márcia C. Bicega, Katya P. Schinke, Sania M. F. Gianesella, and Elisabete S. Braga. "Evaluation of produced water toxicity from an oil maritime terminal through Skeletonema costatum toxicity tests." Revista Brasileira de Oceanografia 47, no. 2 (1999): 137–44. http://dx.doi.org/10.1590/s1413-77391999000200003.
Full textDissertations / Theses on the topic "Effluent"
Silva, Marcos Erick Rodrigues da. "Post-Treatment for effluents of anaerobic reactors treating domestic effluent by natural and unnatural coagulants." Universidade Federal do CearÃ, 2006. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=266.
Full textThe current investigation aimed to study post-treatments for effluents of anaerobic sludge blanket reactors by using both natural (Moringa oleifera, Lam) and unnatural coagulants. For that, many jar-tests were conducted either using sewage or effluent of a lab-scale UASB (upflow anaerobic sludge blanket) reactor. Many dosages of natural (Moringa oleifera) and unnatural (ferric chloride) coagulants were tested with sewage. Afterwards, the coagulants effect associated to a polymer (FO 4140) was assessed in the physical-chemical and microbiological parameters of the UASB reactor effluent. The results indicated that the natural coagulant moringa provided low turbidity removal in comparison with the unnatural coagulant ferric chloride, for both sewage and UASB effluent, questioning the real application of moringa in the physical-chemical treatment of sewage. Additionally, a negative effect of the moringa seeds was verified after the detection of a considerably increase of the Chemical Oxygen Demand (COD) and turbidity, while testing the UASB effluent. The results show that, in general, the moringa seeds were inefficient on the removal of physical-chemical and microbiological contaminants present in sewage and anaerobic effluents.
O presente trabalho teve como objetivo estudar pÃs-tratamentos de efluentes provenientes de reatores anaerÃbios de manta de lodo pelo uso de coagulantes naturais (Moringa oleifera, Lam) e nÃo naturais. Para tanto, foram realizados vÃrios ensaios de jar-test utilizando tanto esgoto sanitÃrio bruto quanto efluente de um reator UASB (upflow anaerobic sludge blanket) em escala de laboratÃrio. Foram testadas vÃrias dosagens dos coagulantes natural (Moringa oleifera) e nÃo-natural (cloreto fÃrrico) utilizando esgotos brutos domÃsticos. Em seguida foram estudados os efeitos dos coagulantes associados ao auxiliar de coagulaÃÃo (FO 4140), nos parÃmetros fÃsico-quÃmicos e microbiolÃgicos do efluente do reator UASB. A partir dos resultados, verificou-se que o coagulante natural moringa forneceu baixas remoÃÃes de turbidez na comparaÃÃo com o coagulante nÃo-natural cloreto fÃrrico, tanto para o esgoto bruto como para o efluente do reator UASB, questionando-se a real aplicaÃÃo da moringa no tratamento fÃsico-quÃmico de esgoto sanitÃrio. Adicionalmente, verificou-se um efeito negativo do uso das sementes de moringa, mediante a detecÃÃo de um aumento considerÃvel nas concentraÃÃes finais de DQO e turbidez, quando o efluente anaerÃbio era testado. Os resultados mostraram que, de uma forma geral, a semente de moringa se mostrou ineficiente na remoÃÃo de contaminantes fÃsico-quÃmicos e microbiolÃgicos presentes em esgotos sanitÃrios brutos e efluentes anaerÃbios.
Peterson, Mark. "Electrodisinfection of Municipal Wastewater Effluent." ScholarWorks@UNO, 2005. http://scholarworks.uno.edu/td/294.
Full textSantos, Bruno Alexandre Quistorp. "Continuous bioremediation of electroplating effluent." Thesis, Cape Peninsula University of Technology, 2013. http://hdl.handle.net/20.500.11838/865.
Full textThere are significant quantities of free cyanide (F-CN) and heavy metal contaminated effluent being discharged from electroplating operations globally. However, there is an overwhelming tendency in the industry to use physical and/or chemical treatment methods for cyanides (CNs) and heavy metals in effluent. Although these methods may be effective for certain CNs and heavy metals, they produce toxic by-products and also involve high operational and capital investment costs when compared to bioremediation methods. In this study, the design of a two-stage membrane bioreactor (MBR) system was conceptualised for the bioremediation of CNs and heavy metals in the effluent which was collected from an electroplating facility located in the Western Cape, South Africa. The design included a primary inactive bioremediation stage, to reduce the impact of contaminate concentration fluctuations, and a secondary active bioremediation stage, to remove the residual contaminants, in the effluent under alkaline pH conditions which typify most industrial effluent containing these contaminants. An analysis of the electroplating effluent revealed that the effluent contained an average of 149.11 (± 9.31) mg/L, 5.25 (± 0.64) mg/L, 8.12 (± 4.78) mg/L, 9.05 (± 5.26) mg/L and 45.19 (± 25.89) mg/L of total cyanide (T-CN), F-CN, weak acid dissociable cyanides (WAD-CNs), nickel (Ni), zinc (Zn) and copper (Cu), respectively. An Aspergillus sp., which displayed the characteristic black conidiophores of the Aspergillus section Nigri, was isolated from the electroplating facilities’ effluent discharge using a selective pectin agar (PA) and subcultured on 2% (v/v) antibiotic (10,000 units/L penicillin and 10 mg streptomycin/mL) potato dextrose agar (PDA). The isolate was tolerant to F-CN up to 430 mg F-CN/L on F-CN PDA plates which were incubated at 37 ˚C for 5 days. However, a significant decline in microbial growth was observed after 200 mg F-CN/L, thus indicating that the isolate was suitable for the bioremediation of the electroplating effluent. The identification of the isolate as Aspergillus awamori (A. awamori) was definitively determined using a multi-gene phylogenetic analysis, utilising ITS (internal transcribed spacer), -tubulin and calmodulin gene regions. Although an anomaly in the morphology of the conidia of the isolate was observed during the morphological analysis, indicating a possible morphological mutation in the isolate. A comparative study between “sweet orange” (Citrus sinensis (C. sinensis)) pomace, “apple” (Malus domestica (M. domestica)) pomace, “sweetcorn” (Zea mays (Z. mays)) cob and “potato” (Solanum tuberosum (S. tuberosum)) peel, i.e. waste materials considered to be agricultural residues, was conducted in order to assess their potential and as a sole carbon source supplement for A. awamori biomass development for the bioremediation of CNs and heavy metals. The suitability of these agricultural residues for these activities were as follows: C. sinensis pomace ˃ M. domestica pomace ˃ Z. mays cob ˃ S. tuberosum peel. For purpose of the sensitivity analysis, a temperature range of 20 to 50 ˚C and an alkaline pH range of 7 to 12 showed that: (1) optimal conditions for the uptake of Ni, Zn and Cu occurred at pH 12 and a temperature of 37.91 and 39.78 ˚C using active and inactive A. awamori biomass and unhydrolysed and hydrolysed C. sinensis pomace, respectively; (2) F-CN conversion increased linearly with an increase in pH and temperature using unhydrolysed and hydrolysed C. sinensis pomace; and (3) optimal conditions for the F-CN conversion and the respective by-products and sugar metabolism using active A. awamori biomass occurred at 37.02 ˚C and pH 8.75 and at conditions inversely proportional to F-CN conversion, respectively. The heavy metal affinity was Ni > Zn > Cu for all the biomaterials used and with the heavy metal uptake capacity being inactive A. awamori biomass > active A. awamori biomass > hydrolysed C. sinensis pomace > unhydrolysed C. sinensis pomace, respectively. Hydrolysed C. sinensis pomace had a 3.86 fold higher conversion of F-CN compared to the unhydrolysed C. sinensis pomace. The use of C. sinensis pomace extract as a nutrient media, derived from the acid hydrolysis of C. sinensis pomace, showed potential as a rich carbon-based supplement and also that low concentrations, < 0.1% (v/v), were required for the bioremediation of CNs and heavy metals. The two-stage MBR system was operated at 40 ˚C since this temperature was conducive to the bioremediation of CN and heavy metals. The primary bioremediation stage contained hydrolysed C. sinensis pomace while the secondary bioremediation stage contained active A. awamori biomass, supplemented by the C. sinensis pomace extract. After the primary and secondary bioremediation stages, 76.37%, 95.37%, 93.26% and 94.76% (primary bioremediation stage) and 99.55%, 99.91%, 99.92% and 99.92% (secondary bioremediation stage) average bioremediation efficiencies for T-CN, Ni, Zn and Cu were achieved. Furthermore, the secondary bioremediation stage metabolised the CN conversion by-products with an efficiency of 99.81% and 99.75% for formate (CHOO-) and ammonium (NH4+), respectively. After the first, second and third acid regeneration cycles of the hydrolysed C. sinensis pomace, 99.13%, 99.12% and 99.04% (first regeneration cycle), 98.94%, 98.92% and 98.41% (second regeneration cycle) and 98.46%, 98.44% and 97.91% (third regeneration cycle) recovery efficiencies for Ni, Zn and Cu were achieved. However, the design only managed to treat the effluent for safe discharge and the use of a post-treatment stage, such as reverse osmosis, is recommended to remove the remainder of the trace contaminants and colour from the effluent to ensure that the effluent met the potable water standards for reuse. There was a relatively insignificant standard deviation (≤ 3.22%) detected in all the parameters measured in the continuous operation and this indicates the reproducibility of the bioremediation efficiency in this continuous system.
Uhlman, Kristine, Susanna Eden, Channah Rock, Erin Westfall, and Terry Sprouse. "Effluent Dependent Streams of Arizona." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2012. http://hdl.handle.net/10150/225865.
Full textLong, Xiaoping. "Minimum effluent process for pulp mill." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/11825.
Full textSantoyo-Gutierrez, Socrates. "Absorption heat pump assisted effluent purification." Thesis, University of Salford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245055.
Full textMcClure, P. J. "The biodegradation of pharmaceutical effluent constituents." Thesis, Bucks New University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233071.
Full textHariyadi, Hari Rom. "Microbiological treatment of prochloraz process effluent." Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366913.
Full textWrigley, Timothy John. "Water quality improvement of piggery effluent." Thesis, Wrigley, Timothy John (1999) Water quality improvement of piggery effluent. PhD thesis, Murdoch University, 1999. https://researchrepository.murdoch.edu.au/id/eprint/52406/.
Full textChan, Kwok Ho. "Potential Reuse of wastewater effluent in Macau." Thesis, University of Macau, 2009. http://umaclib3.umac.mo/record=b1944060.
Full textBooks on the topic "Effluent"
Ogden, Graham. Zero effluent papermaking. Manchester: UMIST, 1997.
Find full textKing County (Wash.). Dept. of Metropolitan Services., ed. Effluent transfer system. Seattle, Wash: King County Dept. of Metropolitan Services, Water Pollution Control Dept., Technical Publications Section, 1994.
Find full textCussion, Sylvia. N-nitrosodimethylamine in industrial effluents and sewage influent and effluent: Report. [Toronto]: Quality Management Unit, Ontario Ministry of the Environment, 1991.
Find full textMunicipal Industrial Strategy for Abatement Program (Ontario), ed. Draft effluent monitoring and effluent limits regulation, electric power generation sector. [Toronto, Ont.]: Queen's Printer for Ontario, 1994.
Find full textChowdhury, M. D. H. Effluent-free yarn dyeing. Manchester: UMIST, 1992.
Find full textPost, L. E. Effluent mixing zone studies. Toronto: Water Resources Branch, 1985.
Find full textBaumgartner, D. J. Dilution models for effluent discharges. 2nd ed. [Washington, D.C.]: Standards and Applied Science Division, Office of Science and Technology, U.S. Environmental Protection Agency, 1993.
Find full textPerry, Maria. The handbook of brewery effluent. [South Africa]: Brewery Effluent Services, 1997.
Find full textBaumgartner, D. J. Dilution models for effluent discharges. 3rd ed. Newport, OR: U.S. Environmental Protection Agency, Pacific Ecosystems Branch, 1994.
Find full textFeigin, Amos, Israela Ravina, and Joseph Shalhevet. Irrigation with Treated Sewage Effluent. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-74480-8.
Full textBook chapters on the topic "Effluent"
Kaushik, Garima. "Bioremediation of Industrial Effluents: Distillery Effluent." In Applied Environmental Biotechnology: Present Scenario and Future Trends, 19–32. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2123-4_2.
Full textRawat, Shweta, and Sanjay Kumar. "The Feasibility Study of Green Microalgae Assisted Coal Mine Effluent Desalination." In Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022), 255–67. Dordrecht: Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-020-6_25.
Full textWhitman, W. E. "Effluent Treatment." In Handbook of Food Factory Design, 443–62. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7450-0_18.
Full textGooch, Jan W. "Effluent Limitations." In Encyclopedic Dictionary of Polymers, 254. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_4215.
Full textDash, Sanjaya K., Pitam Chandra, and Abhijit Kar. "Effluent Treatment." In Food Engineering, 507–12. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003285076-39.
Full textKusui, Takashi, Yasuyuki Itatsu, and Jun Jin. "Whole Effluent Toxicity Assessment of Industrial Effluents." In Methods in Pharmacology and Toxicology, 331–47. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7425-2_17.
Full textMajozi, Thokozani. "Zero Effluent Methodologies." In Batch Chemical Process Integration, 173–96. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2588-3_8.
Full textGolwalkar, Kiran. "Effluent Treatment Plants." In Process Equipment Procurement in the Chemical and Related Industries, 199–209. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12078-2_14.
Full textHöhn, Wolfgang. "Textile Industry Effluent." In Sustainable Textile and Fashion Value Chains, 123–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-22018-1_8.
Full textAggarangsi, Pruk, Sirichai Koonaphapdeelert, Saoharit Nitayavardhana, and James Moran. "Processing Biogas Effluent." In Biogas Technology in Southeast Asia, 115–33. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8887-5_6.
Full textConference papers on the topic "Effluent"
Arhin-Andoh, C. "Assessing Existing Effluent Analysis Requirements to Improve Effluent Quality Reporting." In SPE African Health, Safety, Security, Environment, and Social Responsibility Conference and Exhibition. Society of Petroleum Engineers, 2016. http://dx.doi.org/10.2118/183594-ms.
Full textHamid, Shahul, and W. N. Yeo. "Effluent Water Quality Improvement." In SPE Health, Safety and Environment in Oil and Gas Exploration and Production Conference. Society of Petroleum Engineers, 1994. http://dx.doi.org/10.2118/27316-ms.
Full textWei, Liqiang, Feng Xie, Jian Zheng, Ling Liu, and Chuangguo Hu. "Improvement of the Total Beta Monitoring Channel of the Radioactive Gaseous Effluent in HTR-10." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66652.
Full textXie, Feng, Wenqian Li, Zhihui Li, Jianzhu Cao, Hong Li, Jiejuan Tong, and Haitao Wang. "Design of the Process and Effluent Radiation Monitoring System of HTR-PM." In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-61008.
Full textMarcus N. Allhands. "Large Scale WWTP Effluent Reuse." In 2005 Tampa, FL July 17-20, 2005. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2005. http://dx.doi.org/10.13031/2013.18898.
Full textKacenjar, Steve T., Davina F. Gill, John A. Lelii, Jack Foreman, and Cynthia B. Batroney. "Spectral effluent detection sensitivity study." In Aerospace/Defense Sensing and Controls, edited by Sylvia S. Shen and Michael R. Descour. SPIE, 1998. http://dx.doi.org/10.1117/12.312599.
Full textPeir, Jinn-Jer, Chun-Kuan Shih, Bau-Shei Pei, Yuh-Ming Ferng, and Wen-Sheng Hsu. "Power Uprate Impact Evaluations on Waste Heat of Nuclear Power Plants in Taiwan." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75885.
Full textGowtham, M., S. Kamalakannan, and L. Karthick. "Effluent treatment analysis using solar distiller." In 2011 International Conference on Green Technology and Environmental Conservation (GTEC 2011). IEEE, 2011. http://dx.doi.org/10.1109/gtec.2011.6167682.
Full textJuan Enciso, Naomi Assadian, George Di Giovanni, and Jaime Iglesias. "Using filtered wastewater effluent with SDI." In 2003, Las Vegas, NV July 27-30, 2003. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2003. http://dx.doi.org/10.13031/2013.13995.
Full textCzerwinski, Richard N., Kristine E. Farrar, Michael K. Griffin, and John P. Kerekes. "Spectral quality requirements for effluent quantification." In Defense and Security, edited by Sylvia S. Shen and Paul E. Lewis. SPIE, 2004. http://dx.doi.org/10.1117/12.544011.
Full textReports on the topic "Effluent"
Graber, Ellen R., Linda S. Lee, and M. Borisover. An Inquiry into the Phenomenon of Enhanced Transport of Pesticides Caused by Effluents. United States Department of Agriculture, July 1995. http://dx.doi.org/10.32747/1995.7570559.bard.
Full textSimiele, G. A. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10189591.
Full textGleckler, B. P. Facility effluent monitoring. Office of Scientific and Technical Information (OSTI), June 1995. http://dx.doi.org/10.2172/433022.
Full textChou, C. J. ,. Westinghouse Hanford. Effluent variability study for the 200 area treated effluent disposal facility. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/663162.
Full textMajor, C. A. INEEL Liquid Effluent Inventory. Office of Scientific and Technical Information (OSTI), June 1997. http://dx.doi.org/10.2172/5731.
Full textBROWN, M. J. 200 Area Treated Effluent Disposal Facility (TEDF) Effluent Sampling and Analysis Plan. Office of Scientific and Technical Information (OSTI), May 2000. http://dx.doi.org/10.2172/803701.
Full textBolling, Stacey D. Effluent Treatment Facility Catalyst Testing. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1482798.
Full textSommer, D. J., D. L. Flyckt, V. G. Johnson, A. G. Law, and J. C. Sonnichsen. Liquid effluent study project plan. Office of Scientific and Technical Information (OSTI), June 1989. http://dx.doi.org/10.2172/6110566.
Full textTaylor, R. W. Effluent Treatment Facility emissions monitoring. Office of Scientific and Technical Information (OSTI), February 1989. http://dx.doi.org/10.2172/6131931.
Full textChou, Charissa J., and Vernon G. Johnson. Statistical Evaluation of Effluent Monitoring Data for the 200 Area Treated Effluent Disposal Facility. Office of Scientific and Technical Information (OSTI), March 2000. http://dx.doi.org/10.2172/782071.
Full text