Journal articles on the topic 'EFFECTIVE MODE AREA'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'EFFECTIVE MODE AREA.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Takenaga, K., Y. Sasaki, Ning Guan, S. Matsuo, M. Kasahara, K. Saitoh, and M. Koshiba. "Large Effective-Area Few-Mode Multicore Fiber." IEEE Photonics Technology Letters 24, no. 21 (November 2012): 1941–44. http://dx.doi.org/10.1109/lpt.2012.2219618.
Full textAdemgil, Huseyin, and Shyqyri Haxha. "Endlessly single mode photonic crystal fiber with improved effective mode area." Optics Communications 285, no. 6 (March 2012): 1514–18. http://dx.doi.org/10.1016/j.optcom.2011.10.067.
Full textMing-Jun Li, Xin Chen, Anping Liu, S. Gray, Ji Wang, D. T. Walton, and L. A. Zenteno. "Limit of Effective Area for Single-Mode Operation in Step-Index Large Mode Area Laser Fibers." Journal of Lightwave Technology 27, no. 15 (August 2009): 3010–16. http://dx.doi.org/10.1109/jlt.2009.2020682.
Full textSaitoh, Kunimasa, Shailendra Varshney, Kaori Sasaki, Lorenzo Rosa, Mrinmay Pal, Mukul Paul, Debashri Ghosh, Shyamal Bhadra, and Masanori Koshiba. "Limitation on Effective Area of Bent Large-Mode-Area Leakage Channel Fibers." Journal of Lightwave Technology 29, no. 17 (September 2011): 2609–15. http://dx.doi.org/10.1109/jlt.2011.2161603.
Full textSasaki, Yusuke, Katsuhiro Takenaga, Ning Guan, Shoichiro Matsuo, Kunimasa Saitoh, and Masanori Koshiba. "Large-effective-area uncoupled few-mode multi-core fiber." Optics Express 20, no. 26 (November 28, 2012): B77. http://dx.doi.org/10.1364/oe.20.000b77.
Full textAhmad, Raja, Man F. Yan, Jeffrey W. Nicholson, Kazi S. Abedin, Paul S. Westbrook, Clifford Headley, Patrick W. Wisk, Eric M. Monberg, and David J. DiGiovanni. "Polarization-maintaining, large-effective-area, higher-order-mode fiber." Optics Letters 42, no. 13 (June 29, 2017): 2591. http://dx.doi.org/10.1364/ol.42.002591.
Full textLiang Dong, H. A. Mckay, A. Marcinkevicius, Libin Fu, Jun Li, B. K. Thomas, and M. E. Fermann. "Extending Effective Area of Fundamental Mode in Optical Fibers." Journal of Lightwave Technology 27, no. 11 (June 2009): 1565–70. http://dx.doi.org/10.1109/jlt.2009.2020181.
Full textJain, Deepak, Yongmin Jung, Jaesun Kim, and Jayanta K. Sahu. "Robust single-mode all-solid multi-trench fiber with large effective mode area." Optics Letters 39, no. 17 (August 28, 2014): 5200. http://dx.doi.org/10.1364/ol.39.005200.
Full textKojima, Momoko. "Operational mode dependency on effective area for NMIJ pressure balance." Measurement: Sensors 18 (December 2021): 100189. http://dx.doi.org/10.1016/j.measen.2021.100189.
Full textRukhlenko, Ivan D., Malin Premaratne, and Govind P. Agrawal. "Effective mode area and its optimization in silicon-nanocrystal waveguides." Optics Letters 37, no. 12 (June 8, 2012): 2295. http://dx.doi.org/10.1364/ol.37.002295.
Full textRosa, Lorenzo, Federico Melli, and Luca Vincetti. "Analytical Formulas for Dispersion and Effective Area in Hollow-Core Tube Lattice Fibers." Fibers 9, no. 10 (September 23, 2021): 58. http://dx.doi.org/10.3390/fib9100058.
Full textZhao, Chen Fei, Qing Han, Cong Cong Chi, and Qing Jun Meng. "Effective Dot Area’s Calculating Based on YNSN Model." Applied Mechanics and Materials 262 (December 2012): 40–43. http://dx.doi.org/10.4028/www.scientific.net/amm.262.40.
Full textSaitoh, Kunimasa, Tadashi Murao, Lorenzo Rosa, and Masanori Koshiba. "Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications." Optical Fiber Technology 16, no. 6 (December 2010): 409–18. http://dx.doi.org/10.1016/j.yofte.2010.08.007.
Full textSaini, Than Singh, Ajeet Kumar, and Ravindra Kumar Sinha. "Asymmetric large-mode-area photonic crystal fiber structure with effective single-mode operation: design and analysis." Applied Optics 55, no. 9 (March 16, 2016): 2306. http://dx.doi.org/10.1364/ao.55.002306.
Full textVukovic, N., N. Healy, and A. C. Peacock. "Guiding properties of large mode area silicon microstructured fibers: a route to effective single mode operation." Journal of the Optical Society of America B 28, no. 6 (May 24, 2011): 1529. http://dx.doi.org/10.1364/josab.28.001529.
Full textKoshiba, M., and K. Saitoh. "Structural dependence of effective area and mode field diameter for holey fibers." Optics Express 11, no. 15 (July 28, 2003): 1746. http://dx.doi.org/10.1364/oe.11.001746.
Full textLi, Qi, Fengping Yan, Wanjing Peng, Ting Feng, Suchun Feng, Siyu Tan, Peng Liu, and Wenhua Ren. "DFB laser based on single mode large effective area heavy concentration EDF." Optics Express 20, no. 21 (October 1, 2012): 23684. http://dx.doi.org/10.1364/oe.20.023684.
Full textNicholson, J. W., J. M. Fini, A. M. DeSantolo, X. Liu, K. Feder, P. S. Westbrook, V. R. Supradeepa, et al. "Scaling the effective area of higher-order-mode erbium-doped fiber amplifiers." Optics Express 20, no. 22 (October 12, 2012): 24575. http://dx.doi.org/10.1364/oe.20.024575.
Full textUrquhart, W. P., and P. J. Laybourn. "Effective core area for stimulated Raman scattering in single-mode optical fibres." IEE Proceedings J Optoelectronics 132, no. 4 (1985): 201. http://dx.doi.org/10.1049/ip-j.1985.0044.
Full textLiang, Yongze, Guorui Wang, Jiwei Zhang, Han Zhang, Enwang Liang, Fang Wang, Xuenan Zhang, Xin Yan, and Tonglei Cheng. "An all-optical fiber mode converters based on 5-LP mode fiber of weakly coupling and large effective mode area." Optical Fiber Technology 71 (July 2022): 102889. http://dx.doi.org/10.1016/j.yofte.2022.102889.
Full textMakouei, S., and F. Makouei. "Strain Effect Study on Mode Field Diameter and Effective Area of WII Type Single Mode Optical Fiber." Advanced Electromagnetics 5, no. 1 (May 2, 2016): 53. http://dx.doi.org/10.7716/aem.v5i1.362.
Full textZhang, Huan, Jian Zhao, Zhiqun Yang, Guanju Peng, and Zixiang Di. "Low-DMGD, Large-Effective-Area and Low-Bending-Loss 12-LP-Mode Fiber for Mode-Division-Multiplexing." IEEE Photonics Journal 11, no. 4 (August 2019): 1–8. http://dx.doi.org/10.1109/jphot.2019.2924834.
Full textHasan, Md Imran, Nail Akhmediev, and Wonkeun Chang. "Empirical Formulae for Dispersion and Effective Mode Area in Hollow-Core Antiresonant Fibers." Journal of Lightwave Technology 36, no. 18 (September 15, 2018): 4060–65. http://dx.doi.org/10.1109/jlt.2018.2854722.
Full textAbdelaziz, Ilyes, Huseyin Ademgil, Fathi AbdelMalek, Shyqyri Haxha, Terry Gorman, and Habib Bouchriha. "Design of a large effective mode area photonic crystal fiber with modified rings." Optics Communications 283, no. 24 (December 2010): 5218–23. http://dx.doi.org/10.1016/j.optcom.2010.08.005.
Full textLiang, Jian, Maojin Yun, Weijin Kong, Xin Sun, Wenfei Zhang, and Sixing Xi. "Highly birefringent photonic crystal fibers with flattened dispersion and low effective mode area." Optik 122, no. 23 (December 2011): 2151–54. http://dx.doi.org/10.1016/j.ijleo.2011.02.003.
Full textDutt, Avik, Sudipta Mahapatra, and Shailendra K. Varshney. "Capillary optical fibers: design and applications for attaining a large effective mode area." Journal of the Optical Society of America B 28, no. 6 (May 18, 2011): 1431. http://dx.doi.org/10.1364/josab.28.001431.
Full textMoenster, Mathias, Günter Steinmeyer, Rumen Iliew, Falk Lederer, and Klaus Petermann. "Analytical relation between effective mode field area and waveguide dispersion in microstructure fibers." Optics Letters 31, no. 22 (October 26, 2006): 3249. http://dx.doi.org/10.1364/ol.31.003249.
Full textGuo, Kai, Søren M. M. Friis, Jesper B. Christensen, Erik N. Christensen, Xiaodong Shi, Yunhong Ding, Haiyan Ou, and Karsten Rottwitt. "Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides." Optics Letters 42, no. 18 (September 15, 2017): 3670. http://dx.doi.org/10.1364/ol.42.003670.
Full textLiu, Cong, Wen Ying Liu, Wei Zheng, and Chen Liang. "Impact Analysis of Effective Inertia Competition on Power System Inter-Area Damping Characteristics." Advanced Materials Research 732-733 (August 2013): 870–76. http://dx.doi.org/10.4028/www.scientific.net/amr.732-733.870.
Full textKong, Fanting, Guancheng Gu, Thomas W. Hawkins, Joshua Parsons, Maxwell Jones, Christopher Dunn, Monica T. Kalichevsky-Dong, et al. "Polarizing ytterbium-doped all-solid photonic bandgap fiber with ~1150µm^2 effective mode area." Optics Express 23, no. 4 (February 11, 2015): 4307. http://dx.doi.org/10.1364/oe.23.004307.
Full textIslam, Md Asiful, and M. Shah Alam. "Bend-insensitive single-mode photonic crystal fiber with ultralarge effective area for dual applications." Optical Engineering 52, no. 5 (May 9, 2013): 050501. http://dx.doi.org/10.1117/1.oe.52.5.050501.
Full textRostami, Ali, and Hadi Soofi. "Correspondence Between Effective Mode Area and Dispersion Variations in Defected Core Photonic Crystal Fibers." Journal of Lightwave Technology 29, no. 2 (January 2011): 234–41. http://dx.doi.org/10.1109/jlt.2010.2100808.
Full textDemir, Halime, and Sedat Ozsoy. "Comparative study of large-solid-core photonic crystal fibers: Dispersion and effective mode area." Optik 123, no. 8 (April 2012): 739–43. http://dx.doi.org/10.1016/j.ijleo.2011.05.031.
Full textZhang, J. "INSAR COLLABORATIVE MONITORING MODE AND MULTI-MODE COMPUTING SERVICES FOR GEOHAZARDS IDENTIFICATION IN OPEN-PIT MINING AREA." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B1-2021 (June 28, 2021): 241–47. http://dx.doi.org/10.5194/isprs-archives-xliii-b1-2021-241-2021.
Full textWang, Yan, Ying Han, Zeng-Hui Li, Lin Gong, Lu-Yao Wang, and Shu-Guang Li. "A low-crosstalk and high-density multi-core few-mode fiber based on heterogeneous core and trench-assisted air-holes isolation." Acta Physica Sinica 71, no. 2 (2022): 024205. http://dx.doi.org/10.7498/aps.71.20210974.
Full textNAIR, D. R. C., B. CHAKRAVARTY, and P. NIYOGI. "IMPLICIT NONLINEAR NORMAL MODE INITIALIZATION FOR A BAROTROPIC PRIMITIVE EQUATION LIMITED AREA MODEL." MAUSAM 44, no. 1 (December 31, 2021): 1–8. http://dx.doi.org/10.54302/mausam.v44i1.3732.
Full textCi, Yingjuan, Fang Ren, Xiao Lei, Yidan Li, Deyang Zhou, and Jianping Wang. "A Weakly-Coupled Double Bow-Tie Multi-Ring Elliptical Core Multi-Mode Fiber for Mode Division Multiplexing across C+L+U Band." Applied Sciences 13, no. 10 (May 9, 2023): 5855. http://dx.doi.org/10.3390/app13105855.
Full textLi, Di, Qiang Xu, Du Qi Yuan, and Xu Chao Duan. "A New Design of Photonic Crystal Fiber with Fattened Dispersion and Low Effective Mode Area." Advanced Materials Research 535-537 (June 2012): 1304–7. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.1304.
Full textTan, Y. L., H. L. Wang, and Y. R. Wang. "Calculation of effective mode field area of photonic crystal fiber with digital image processing algorithm." Computer Optics 42, no. 5 (2018): 816–21. http://dx.doi.org/10.18287/2412-6179-2018-42-5-816-821.
Full textKabir, Sumaiya, and S. M. Abdur Razzak. "An enhanced effective mode area fluorine doped octagonal photonic crystal fiber with extremely low loss." Photonics and Nanostructures - Fundamentals and Applications 30 (July 2018): 1–6. http://dx.doi.org/10.1016/j.photonics.2018.02.002.
Full textTian, Xiangqing, and Xiaoping Zhang. "Dispersion-flattened designs of the large effective-area single-mode fibers with ring index profiles." Optics Communications 230, no. 1-3 (January 2004): 105–13. http://dx.doi.org/10.1016/j.optcom.2003.11.037.
Full textWong, William S., Xiang Peng, Joseph M. McLaughlin, and Liang Dong. "Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers." Optics Letters 30, no. 21 (November 1, 2005): 2855. http://dx.doi.org/10.1364/ol.30.002855.
Full textRamachandran, S., J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan. "Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers." Laser & Photonics Review 2, no. 6 (December 11, 2008): 429–48. http://dx.doi.org/10.1002/lpor.200810016.
Full textHayashi, Tetsuya, Yoshiaki Tamura, Takuji Nagashima, Kazuhiro Yonezawa, Toshiki Taru, Koji Igarashi, Daiki Soma, Yuta Wakayama, and Takehiro Tsuritani. "Effective area measurement of few-mode fiber using far field scan technique with Hankel transform generalized for circularly-asymmetric mode." Optics Express 26, no. 9 (April 16, 2018): 11137. http://dx.doi.org/10.1364/oe.26.011137.
Full textRen, Yan, Zhipeng Qin, Guoqiang Xie, Zhen Qiao, Jingui Ma, Peng Yuan, Liejia Qian, Shikai Wang, Chunlei Yu, and Lili Hu. "Black Phosphorus Q-Switched Large-Mode-Area Tm-Doped Fiber Laser." International Journal of Optics 2018 (2018): 1–6. http://dx.doi.org/10.1155/2018/8060415.
Full textSchnieder, Maren. "Effective Speed: Can Cost Effective Transportation Be Sustainable (Reducing Emissions and External Costs)?" Environments 10, no. 7 (June 27, 2023): 111. http://dx.doi.org/10.3390/environments10070111.
Full textAhmed, Kawsar, Bikash Kumar Paul, Sawrab Chowdhury, Shuvo Sen, Md Ibadul Islam, Md Shadidul Islam, Md Rabiul Hasan, and Sayed Asaduzzaman. "Design of a single-mode photonic crystal fibre with ultra-low material loss and large effective mode area in THz regime." IET Optoelectronics 11, no. 6 (December 1, 2017): 265–71. http://dx.doi.org/10.1049/iet-opt.2017.0028.
Full textCheng Tonglei, 程同蕾, 柴路 Chai Lu, 栗岩锋 Li Yanfeng, 宋振明 Song Zhenming, 李曙光 Li Shuguang, 胡明列 Hu Minglie, and 王清月 Wang Qingyue. "Novel Cluster-Solid-Core Photonic Crystal Fiber with High Nonlinearity and Large Effective Mode-Field Area." Chinese Journal of Lasers 36, no. 3 (2009): 658–62. http://dx.doi.org/10.3788/cjl20093603.0658.
Full textBenhaddad, M., F. Kerrour, O. Benabbes, and A. Saouli. "A new photonic crystal fibre with low nonlinearity, low confinement loss and improved effective mode area." Ukrainian Journal of Physical Optics 20, no. 2 (2019): 47–53. http://dx.doi.org/10.3116/16091833/20/2/47/2019.
Full textShahraam Afshar, V., T. M. Monro, and C. Martijn de Sterke. "Understanding the contribution of mode area and slow light to the effective Kerr nonlinearity of waveguides." Optics Express 21, no. 15 (July 26, 2013): 18558. http://dx.doi.org/10.1364/oe.21.018558.
Full text