Academic literature on the topic 'EEG-TMS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'EEG-TMS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "EEG-TMS"
Ilmoniemi, R. J. "TMS–EEG: Methodology." Clinical Neurophysiology 127, no. 3 (March 2016): e21. http://dx.doi.org/10.1016/j.clinph.2015.11.057.
Full textPeters, Judith C., Joel Reithler, Teresa Schuhmann, Tom de Graaf, Kâmil Uludağ, Rainer Goebel, and Alexander T. Sack. "On the feasibility of concurrent human TMS-EEG-fMRI measurements." Journal of Neurophysiology 109, no. 4 (February 15, 2013): 1214–27. http://dx.doi.org/10.1152/jn.00071.2012.
Full textVarone, Giuseppe, Zain Hussain, Zakariya Sheikh, Adam Howard, Wadii Boulila, Mufti Mahmud, Newton Howard, Francesco Carlo Morabito, and Amir Hussain. "Real-Time Artifacts Reduction during TMS-EEG Co-Registration: A Comprehensive Review on Technologies and Procedures." Sensors 21, no. 2 (January 18, 2021): 637. http://dx.doi.org/10.3390/s21020637.
Full textNardone, Raffaele, Luca Sebastianelli, Viviana Versace, Davide Ferrazzoli, Leopold Saltuari, and Eugen Trinka. "TMS–EEG Co-Registration in Patients with Mild Cognitive Impairment, Alzheimer’s Disease and Other Dementias: A Systematic Review." Brain Sciences 11, no. 3 (February 27, 2021): 303. http://dx.doi.org/10.3390/brainsci11030303.
Full textFong, P. Y., D. Spampinato, L. Rocchi, J. Ibáñez, K. Brown, A. Latorre, A. Di Santo, K. Bhatia, and J. Rothwell. "P63 Cerebellar TMS-EEG." Clinical Neurophysiology 131, no. 4 (April 2020): e47. http://dx.doi.org/10.1016/j.clinph.2019.12.174.
Full textNoda, Yoshihiro. "Potential Neurophysiological Mechanisms of 1Hz-TMS to the Right Prefrontal Cortex for Depression: An Exploratory TMS-EEG Study in Healthy Participants." Journal of Personalized Medicine 11, no. 2 (January 24, 2021): 68. http://dx.doi.org/10.3390/jpm11020068.
Full textVeniero, Domenica, Marta Bortoletto, and Carlo Miniussi. "TMS-EEG co-registration: On TMS-induced artifact." Clinical Neurophysiology 120, no. 7 (July 2009): 1392–99. http://dx.doi.org/10.1016/j.clinph.2009.04.023.
Full textPastiadis, Konstantinos, Ioannis Vlachos, Evangelia Chatzikyriakou, Yiftach Roth, Samuel Zibman, Abraham Zangen, Dimitris Kugiumtzis, and Vasilios K. Kimiskidis. "Auditory Fine-Tuned Suppressor of TMS-Clicks (TMS-Click AFTS): A Novel, Perceptually Driven/Tuned Approach for the Reduction in AEP Artifacts in TMS-EEG Studies." Applied Sciences 13, no. 2 (January 12, 2023): 1047. http://dx.doi.org/10.3390/app13021047.
Full textTakano, Mayuko, Masataka Wada, Reza Zomorrodi, Keita Taniguchi, Xuemei Li, Shiori Honda, Yui Tobari, et al. "Investigation of Spatiotemporal Profiles of Single-Pulse TMS-Evoked Potentials with Active Stimulation Compared with a Novel Sham Condition." Biosensors 12, no. 10 (October 1, 2022): 814. http://dx.doi.org/10.3390/bios12100814.
Full textTscherpel, Caroline, Sebastian Dern, Lukas Hensel, Ulf Ziemann, Gereon R. Fink, and Christian Grefkes. "Brain responsivity provides an individual readout for motor recovery after stroke." Brain 143, no. 6 (May 6, 2020): 1873–88. http://dx.doi.org/10.1093/brain/awaa127.
Full textDissertations / Theses on the topic "EEG-TMS"
Santos, Maria Inês Fonseca Silva. "Quantification of the TMS-EEG response in epilepsy." Master's thesis, Faculdade de Ciências e Tecnologia, 2012. http://hdl.handle.net/10362/8502.
Full textPurpose: The purpose of this thesis was to provide quantitative measures of the co-registration of transcranial magnetic stimulation (TMS) and electroencephalogram (EEG). The EEG is used to study changes in the neuronal activity evoked by the non-invasive technique TMS. These effects are determined mainly based on clinical judgment. Current uses in the diagnosis of epilepsy are based only on EEG, not taking into consideration the low sensitivity in the interictal period, in particular if routine recordings are used. Methods: Patient data was gathered, analyzed and compared to healthy controls. A total of ten patients and eighteen healthy subjects underwent sessions of 75 TMS pulses. The responses to the pulses were filtered and averaged. The use of topographical scalp plots of amplitude and power, and time-series analysis of power in search for late responses provide results which enable separation of epilepsy patients and healthy controls. By investigating the significance of the results it is also possible to determine, in a quantitative way how reliable the methods are for distinguishing between the two groups. Results: The definition of what is a response is critical in this project, and as such must consider: significant power change, be above a certain amplitude, and be localized. Still, this procedure results in a non distinguishable threshold to separate both groups. Conclusions: Analysis of the receiver operating characteristic (ROC) curves also led to the understanding the method established is not entirely reliable because it cannot in fact determine differences. Since all patients were under treatment with anti-epileptic drugs(AEDs), it becomes necessary to elaborate a pilot study with recently diagnosed subjects where hyperexcitability is still present.
Mazzoni, Giovanni. "implementazione ed analisi di strumentazioni combinate: eeg e tms." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23341/.
Full textRepper-Day, Christopher. "Mapping dynamic brain connectivity using EEG, TMS, and Transfer Entropy." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/mapping-dynamic-brain-connectivity-using-eeg-tms-and-transfer-entropy(27a55697-1b4f-40e0-8d07-0a53d3e67a24).html.
Full textRowe, P. "The temporal nature of affordance : an investigation using EEG and TMS." Thesis, City, University of London, 2018. http://openaccess.city.ac.uk/20554/.
Full textPawley, Adam David. "Novel TMS and EEG markers of diagnosis and treatment response in epilepsy." Thesis, King's College London (University of London), 2015. https://kclpure.kcl.ac.uk/portal/en/theses/novel-tms-and-eeg-markers-of-diagnosis-and-treatment-response-in-epilepsy(02e6922a-e038-41af-bac9-169770fb7d05).html.
Full textBocca, Francesca [Verfasser], and Paul [Akademischer Betreuer] Taylor. "Combined TMS-EEG : studies of visual attention / Francesca Bocca. Betreuer: Paul Taylor." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2015. http://d-nb.info/1076471935/34.
Full textKönig, Franca Sophie [Verfasser]. "TMS-EEG signatures of glutamatergic neurotransmission in human cortex / Franca Sophie König." Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1224232720/34.
Full textValiulis, Vladas. "Transkranijinės magnetinės stimuliacijos įtaka galvos smegenų bioelektriniam aktyvumui." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140925_135031-16126.
Full textTranscranial magnetic stimulation (TMS) is a modern non invasive method of drug resistant psychiatric disorder treatment. TMS physiology research is hindered by variable, often controversial results. In most studies main attention is being focused on immediate effects after single TMS procedure rather than the influence of a complete therapy course. It is considered that variability of results in TMS practice is caused by different stimulation parameters and imprecision of stimulated area placement in the brain. Although TMS therapy is often viewed as a milder alternative to electroconvulsive therapy (ECT), comparative physiological studies of these two methods are very rare. The aim of this study was to evaluate the effect of rTMS therapy course on bioelectrical brain activity and compare it to an ECT effect. Research included the effect of high and low frequency (10 Hz and 1 Hz) TMS on EEG band power spectrum and auditory evoked potential P300, using both standard and neuronavigated target positioning. TMS evoked EEG changes were also compared to the changes of ECT. Change dynamics after several months of TMS therapy were also measured. Results showed that after TMS therapy the most notable change in the brain occurs in the form of delta power increase. When using standard positioning 10 Hz TMS evokes more diverse and intense EEG band power spectrum changes than the 1 Hz TMS. Application of neuronavigation system decreases theta and alpha band power changes in 10 Hz TMS... [to full text]
Valiulis, Vladas. "The effect of transcranial magnetic stimulation on brain bioelectrical activity." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140925_135043-14839.
Full textTranskranijinė magnetinė stimuliacija (TMS) – tai modernus neinvazinis vaistams rezistentiškų psichiatrinių sutrikimų gydymo būdas. Fiziologiniai TMS tyrimai pasižymi įvairiais, dažnai prieštaringais rezultatais, daugeliu atvejų didžiausias dėmesys skiriamas betarpiškiems poveikiams po vienos TMS procedūros, bet ne po pilno terapinio kurso. Manoma, kad rezultatų įvairovę TMS praktikoje įtakoja skirtingi stimuliacijos parametrai ir netikslumai parenkant stimuliuojamą zoną smegenyse. Nors TMS terapija dažnai traktuojama kaip švelnesnė alternatyva elektros impulsų terapijai (EIT), palyginamųjų fiziologinių šių metodikų tyrimų labai trūksta. Darbo tikslas buvo įvertinti TMS terapijos kurso poveikį bioelektriniam galvos smegenų aktyvumui ir palyginti jį su EIT terapijos poveikiu. Buvo tirta aukšto ir žemo dažnių (10 Hz ir 1 Hz) TMS terapijos įtaka EEG dažnių galios spektrui bei sukeltiniam klausos potencialui P300, naudojant standartinį ir neuronavigacinį taikinio pozicionavimą. TMS sukelti EEG pokyčiai palyginti su EIT terapijos sukeltais EEG pokyčiais, išmatuota TMS terapijos sąlygotų pokyčių dinamika kelių mėnesių bėgyje. Rezultatai parodė, kad TMS terapijos pasekoje smegenyse ryškiausiai padidėja delta dažnio galia. Naudojant standartinį pozicionavimą 10 Hz TMS sukėlė įvairesnius ir intensyvesnius EEG galios spektro pokyčius nei 1 Hz TMS. Pritaikius neuronavigacinę sistemą 10 Hz TMS atveju sumažėjo teta ir alfa dažnių galios pokyčiai. Praėjus keliems mėnesiams nuo TMS... [toliau žr. visą tekstą]
Aschenbrenner, Berthold [Verfasser], and Berthold [Akademischer Betreuer] Langguth. "Neuroplastische Effekte bei Schizophrenie: Eine kombinierte TMS/EEG Studie / Berthold Aschenbrenner ; Betreuer: Berthold Langguth." Regensburg : Universitätsbibliothek Regensburg, 2018. http://d-nb.info/116695076X/34.
Full textBooks on the topic "EEG-TMS"
Ilmoniemi, Risto J., and Jari Karhu. TMS and electroencephalography: methods and current advances. Edited by Charles M. Epstein, Eric M. Wassermann, and Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0037.
Full textMassimini, Marcello, and Giulio Tononi. Assessing Consciousness in Other Humans: From Theory to Practice. Translated by Frances Anderson. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198728443.003.0007.
Full textBook chapters on the topic "EEG-TMS"
Kallioniemi, Elisa, Mervi Könönen, and Sara Määttä. "TMS-EEG." In Biomedical Engineering Challenges, 175–97. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119296034.ch9.
Full textFuertes, Juan José, Carlos M. Travieso, A. Álvarez, M. A. Ferrer, and J. B. Alonso. "Reducing Artifacts in TMS-Evoked EEG." In Lecture Notes in Computer Science, 302–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13769-3_37.
Full textGordon, Pedro C., and Ulf Ziemann. "TMS-Evoked EEG Response in Neuropsychiatric Disorders." In Transcranial Direct Current Stimulation in Neuropsychiatric Disorders, 95–106. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76136-3_6.
Full textMiniussi, Carlo, Marta Bortoletto, Gregor Thut, and Domenica Veniero. "Accessing Cortical Connectivity Using TMS: EEG Co-registration." In Cortical Connectivity, 93–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-662-45797-9_5.
Full textWu, Wei, Corey Keller, and Amit Etkin. "RETRACTED CHAPTER: Artifact Rejection for Concurrent TMS-EEG Data." In Dynamic Neuroscience, 141–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71976-4_6.
Full textKitajo, Keiichi, Yumi Nakagawa, Yutaka Uno, Ryohei Miyota, Masanori Shimono, Kentaro Yamanaka, and Yoko Yamaguchi. "A Manipulative Approach to Neural Dynamics by Combined TMS-EEG." In Advances in Cognitive Neurodynamics (III), 155–60. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-4792-0_21.
Full textKitajo, Keiichi, Ryohei Miyota, Masanori Shimono, Kentaro Yamanaka, and Yoko Yamaguchi. "State-Dependent Cortical Synchronization Networks Revealed by TMS-EEG Recordings." In Advances in Cognitive Neurodynamics (II), 145–48. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9695-1_23.
Full textWu, Wei, Corey Keller, and Amit Etkin. "Retraction Note to: Artifact Rejection for Concurrent TMS-EEG Data." In Dynamic Neuroscience, E1. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71976-4_13.
Full textIlmoniemi, R. J., and H. J. Aronen. "Cortical Excitability and Connectivity Reflected in fMRI, MEG, EEG, and TMS." In Functional MRI, 453–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-58716-0_37.
Full textKitajo, Keiichi, and Yuka O. Okazaki. "TMS-EEG for Probing Distinct Modes of Neural Dynamics in the Human Brain." In Advances in Cognitive Neurodynamics (V), 211–16. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0207-6_30.
Full textConference papers on the topic "EEG-TMS"
Ilmoniemi, Risto J., Julio C. Hernandez-Pavon, Niko N. Makela, Johanna Metsomaa, Tuomas P. Mutanen, Matti Stenroos, and Jukka Sarvas. "Dealing with artifacts in TMS-evoked EEG." In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015. http://dx.doi.org/10.1109/embc.2015.7318342.
Full textBai, Yang, Yong Wang, Zikang Niu, and Xiaoli Li. "Synchrosqueezing algorithm application in TMS-EEG analysis." In 2017 Chinese Automation Congress (CAC). IEEE, 2017. http://dx.doi.org/10.1109/cac.2017.8242911.
Full textPetrichella, Sara, Luca Vollero, Florinda Ferreri, Vincenzo Di Lazzaro, and Giulio Iannello. "TRS-TMS: An EEGLAB plugin for the reconstruction of onsets in EEG-TMS datasets." In 2013 IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE, 2013. http://dx.doi.org/10.1109/bibe.2013.6701673.
Full textHernandez-Pavon, Julio C., Jukka Sarvas, and Risto J. Ilmoniemi. "TMS–EEG: From basic research to clinical applications." In XIII MEXICAN SYMPOSIUM ON MEDICAL PHYSICS. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4901355.
Full textCline, Christopher C., Molly V. Lucas, Yinming Sun, Matthew Menezes, and Amit Etkin. "Advanced Artifact Removal for Automated TMS-EEG Data Processing." In 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2021. http://dx.doi.org/10.1109/ner49283.2021.9441147.
Full textFaller, J., Y. Lin, J. Doose, G. T. Saber, J. R. McIntosh, J. B. Teves, R. I. Goldman, M. S. George, P. Sajda, and T. R. Brown. "An EEG-fMRI-TMS instrument to investigate BOLD response to EEG guided stimulation." In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2019. http://dx.doi.org/10.1109/ner.2019.8716889.
Full textLi, Ning, Jie Yang, and Mohamad Sawan. "Compact Closed-loop EEG/fNIRS Recording and TMS Neuromodulation System." In 2022 20th IEEE Interregional NEWCAS Conference (NEWCAS). IEEE, 2022. http://dx.doi.org/10.1109/newcas52662.2022.9842210.
Full textTautan, Alexandra-Maria, Elias Casula, Ilaria Borghi, Michele Maiella, Sonia Bonni, Marilena Minei, Martina Assogna, Bogdan Ionescu, Giacomo Koch, and Emiliano Santarnecchi. "Preliminary study on the impact of EEG density on TMS-EEG classification in Alzheimer's disease." In 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2022. http://dx.doi.org/10.1109/embc48229.2022.9870920.
Full textDemir, Andac, Mathew Yarossi, Damon Hyde, Mouhsin Shafi, Dana Brooks, and Deniz Erdogmus. "Removing TMS Artifacts from EEG Recordings Using a Deep Gated Recurrent Unit." In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2019. http://dx.doi.org/10.1109/ner.2019.8717084.
Full textMorbidi, Fabio, Andrea Garulli, Domenico Prattichizzo, Cristiano Rizzo, and Simone Rossi. "A Kalman filter approach to remove TMS-induced artifacts from EEG recordings." In European Control Conference 2007 (ECC). IEEE, 2007. http://dx.doi.org/10.23919/ecc.2007.7068851.
Full text