Academic literature on the topic 'EEG/MEG data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'EEG/MEG data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "EEG/MEG data"
Litvak, Vladimir, Jérémie Mattout, Stefan Kiebel, Christophe Phillips, Richard Henson, James Kilner, Gareth Barnes, et al. "EEG and MEG Data Analysis in SPM8." Computational Intelligence and Neuroscience 2011 (2011): 1–32. http://dx.doi.org/10.1155/2011/852961.
Full textGramfort, Alexandre, Martin Luessi, Eric Larson, Denis A. Engemann, Daniel Strohmeier, Christian Brodbeck, Lauri Parkkonen, and Matti S. Hämäläinen. "MNE software for processing MEG and EEG data." NeuroImage 86 (February 2014): 446–60. http://dx.doi.org/10.1016/j.neuroimage.2013.10.027.
Full textHong, J., and S. C. Jun. "Single-trial Analysis for MEG/EEG spatiotemporal data." NeuroImage 47 (July 2009): S145. http://dx.doi.org/10.1016/s1053-8119(09)71470-3.
Full textMaris, Eric, and Robert Oostenveld. "Nonparametric statistical testing of EEG- and MEG-data." Journal of Neuroscience Methods 164, no. 1 (August 2007): 177–90. http://dx.doi.org/10.1016/j.jneumeth.2007.03.024.
Full textGjini, Klevest, Susan M. Bowyer, Frank Wang, and Nash N. Boutros. "Deficit Versus Nondeficit Schizophrenia: An MEG-EEG Investigation of Resting State and Source Coherence—Preliminary Data." Clinical EEG and Neuroscience 51, no. 1 (August 4, 2019): 34–44. http://dx.doi.org/10.1177/1550059419867561.
Full textZhang, Junpeng, Sarang S. Dalal, Srikantan S. Nagarajan, and Dezhong Yao. "COHERENT MEG/EEG SOURCE LOCALIZATION IN TRANSFORMED DATA SPACE." Biomedical Engineering: Applications, Basis and Communications 22, no. 05 (October 2010): 351–65. http://dx.doi.org/10.4015/s1016237210002110.
Full textJas, Mainak, Denis A. Engemann, Yousra Bekhti, Federico Raimondo, and Alexandre Gramfort. "Autoreject: Automated artifact rejection for MEG and EEG data." NeuroImage 159 (October 2017): 417–29. http://dx.doi.org/10.1016/j.neuroimage.2017.06.030.
Full textTrujillo-Barreto, N. J., E. Martínez-Montes, P. A. Valdés-Sosa, and L. Melie-García. "Bayesian model for EEG/MEG and fMRI data fusion." NeuroImage 13, no. 6 (June 2001): 270. http://dx.doi.org/10.1016/s1053-8119(01)91613-1.
Full textRoś, Beata P., Fetsje Bijma, Mathisca C. M. de Gunst, and Jan C. de Munck. "A three domain covariance framework for EEG/MEG data." NeuroImage 119 (October 2015): 305–15. http://dx.doi.org/10.1016/j.neuroimage.2015.06.020.
Full textKozinska, D., F. Carducci, and K. Nowinski. "Automatic alignment of EEG/MEG and MRI data sets." Clinical Neurophysiology 112, no. 8 (August 2001): 1553–61. http://dx.doi.org/10.1016/s1388-2457(01)00556-9.
Full textDissertations / Theses on the topic "EEG/MEG data"
Zaremba, Wojciech. "Modeling the variability of EEG/MEG data through statistical machine learning." Habilitation à diriger des recherches, Ecole Polytechnique X, 2012. http://tel.archives-ouvertes.fr/tel-00803958.
Full textMolins, Jiménez Antonio. "Multimodal integration of EEG and MEG data using minimum ℓ₂-norm estimates." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40528.
Full textIncludes bibliographical references (leaves 69-74).
The aim of this thesis was to study the effects of multimodal integration of electroencephalography (EEG) and magnetoencephalography (MEG) data on the minimum ℓ₂-norm estimates of cortical current densities. We investigated analytically the effect of including EEG recordings in MEG studies versus the addition of new MEG channels. To further confirm these results, clinical datasets comprising concurrent MEG/EEG acquisitions were analyzed. Minimum ℓ₂-norm estimates were computed using MEG alone, EEG alone, and the combination of the two modalities. Localization accuracy of responses to median-nerve stimulation was evaluated to study the utility of combining MEG and EEG.
by Antonio Molins Jiménez.
S.M.
Papadopoulo, Théodore. "Contributions and perspectives to computer vision, image processing and EEG/MEG data analysis." Habilitation à diriger des recherches, Université Nice Sophia Antipolis, 2011. http://tel.archives-ouvertes.fr/tel-00847782.
Full textZavala, Fernandez Heriberto. "Evaluation and comparsion of the independent components of simultaneously measured MEG and EEG data /." Berlin : Univ.-Verl. der TU, 2009. http://www.ub.tu-berlin.de/index.php?id=2260#c9917.
Full textAblin, Pierre. "Exploration of multivariate EEG /MEG signals using non-stationary models." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLT051.
Full textIndependent Component Analysis (ICA) models a set of signals as linear combinations of independent sources. This analysis method plays a key role in electroencephalography (EEG) and magnetoencephalography (MEG) signal processing. Applied on such signals, it allows to isolate interesting brain sources, locate them, and separate them from artifacts. ICA belongs to the toolbox of many neuroscientists, and is a part of the processing pipeline of many research articles. Yet, the most widely used algorithms date back to the 90's. They are often quite slow, and stick to the standard ICA model, without more advanced features.The goal of this thesis is to develop practical ICA algorithms to help neuroscientists. We follow two axes. The first one is that of speed. We consider the optimization problems solved by two of the most widely used ICA algorithms by practitioners: Infomax and FastICA. We develop a novel technique based on preconditioning the L-BFGS algorithm with Hessian approximation. The resulting algorithm, Picard, is tailored for real data applications, where the independence assumption is never entirely true. On M/EEG data, it converges faster than the `historical' implementations.Another possibility to accelerate ICA is to use incremental methods, which process a few samples at a time instead of the whole dataset. Such methods have gained huge interest in the last years due to their ability to scale well to very large datasets. We propose an incremental algorithm for ICA, with important descent guarantees. As a consequence, the proposed algorithm is simple to use and does not have a critical and hard to tune parameter like a learning rate.In a second axis, we propose to incorporate noise in the ICA model. Such a model is notoriously hard to fit under the standard non-Gaussian hypothesis of ICA, and would render estimation extremely long. Instead, we rely on a spectral diversity assumption, which leads to a practical algorithm, SMICA. The noise model opens the door to new possibilities, like finer estimation of the sources, and use of ICA as a statistically sound dimension reduction technique. Thorough experiments on M/EEG datasets demonstrate the usefulness of this approach.All algorithms developed in this thesis are open-sourced and available online. The Picard algorithm is included in the largest M/EEG processing Python library, MNE and Matlab library, EEGlab
Abbasi, Omid [Verfasser], Georg [Gutachter] Schmitz, and Markus [Gutachter] Butz. "Retrieving neurophysiological information from strongly distorted EEG and MEG data / Omid Abbasi ; Gutachter: Georg Schmitz, Markus Butz." Bochum : Ruhr-Universität Bochum, 2017. http://d-nb.info/1140223119/34.
Full textDubarry, Anne-Sophie. "Linking neurophysiological data to cognitive functions : methodological developments and applications." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM5017.
Full textA major issue in Cognitive Psychology is to describe human cognitive functions. From the Neuroscientific perceptive, measurements of brain activity are collected and processed in order to grasp, at their best resolution, the relevant spatio-temporal features of the signal that can be linked with cognitive operations. The work of this thesis consisted in designing and implementing strategies in order to overcome spatial and temporal limitations of signal processing procedures used to address cognitive issues. In a first study we demonstrated that the distinction between picture naming classical temporal organizations serial-parallel, should be addressed at the level of single trials and not on the averaged signals. We designed and conducted the analysis of SEEG signals from 5 patients to show that the temporal organization of picture naming involves a parallel processing architecture to a limited degree only. In a second study, we combined SEEG, EEG and MEG into a simultaneous trimodal recording session. A patient was presented with a visual stimulation paradigm while the three types of signals were simultaneously recorded. Averaged activities at the sensor level were shown to be consistent across the three techniques. More importantly a fine-grained coupling between the amplitudes of the three recording techniques is detected at the level of single evoked responses. This thesis proposes various relevant methodological and conceptual developments. It opens up several perspectives in which neurophysiological signals shall better inform Cognitive Neuroscientific theories
Ewald, Arne Verfasser], Klaus-Robert [Akademischer Betreuer] [Müller, Andreas [Akademischer Betreuer] Daffertshofer, and Guido [Akademischer Betreuer] Nolte. "Novel multivariate data analysis techniques to determine functionally connected networks within the brain from EEG or MEG data / Arne Ewald. Gutachter: Klaus-Robert Müller ; Andreas Daffertshofer ; Guido Nolte." Berlin : Technische Universität Berlin, 2014. http://d-nb.info/1067387773/34.
Full textEwald, Arne [Verfasser], Klaus-Robert [Akademischer Betreuer] Müller, Andreas [Akademischer Betreuer] Daffertshofer, and Guido [Akademischer Betreuer] Nolte. "Novel multivariate data analysis techniques to determine functionally connected networks within the brain from EEG or MEG data / Arne Ewald. Gutachter: Klaus-Robert Müller ; Andreas Daffertshofer ; Guido Nolte." Berlin : Technische Universität Berlin, 2014. http://d-nb.info/1067387773/34.
Full textCarrara, Igor. "Méthodes avancées de traitement des BCI-EEG pour améliorer la performance et la reproductibilité de la classification." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4033.
Full textElectroencephalography (EEG) non-invasively measures the brain's electrical activity through electromagnetic fields generated by synchronized neuronal activity. This allows for the collection of multivariate time series data, capturing a trace of the brain electrical activity at the level of the scalp. At any given time instant, the measurements recorded by these sensors are linear combinations of the electrical activities from a set of underlying sources located in the cerebral cortex. These sources interact with one another according to a complex biophysical model, which remains poorly understood. In certain applications, such as surgical planning, it is crucial to accurately reconstruct these cortical electrical sources, a task known as solving the inverse problem of source reconstruction. While intellectually satisfying and potentially more precise, this approach requires the development and application of a subject-specific model, which is both expensive and technically demanding to achieve.However, it is often possible to directly use the EEG measurements at the level of the sensors and extract information about the brain activity. This significantly reduces the data analysis complexity compared to source-level approaches. These measurements can be used for a variety of applications, including monitoring cognitive states, diagnosing neurological conditions, and developing brain-computer interfaces (BCI). Actually, even though we do not have a complete understanding of brain signals, it is possible to generate direct communication between the brain and an external device using the BCI technology. This work is centered on EEG-based BCIs, which have several applications in various medical fields, like rehabilitation and communication for disabled individuals or in non-medical areas, including gaming and virtual reality.Despite its vast potential, BCI technology has not yet seen widespread use outside of laboratories. The primary objective of this PhD research is to try to address some of the current limitations of the BCI-EEG technology. Autoregressive models, even though they are not completely justified by biology, offer a versatile framework to effectively analyze EEG measurements. By leveraging these models, it is possible to create algorithms that combine nonlinear systems theory with the Riemannian-based approach to classify brain activity. The first contribution of this thesis is in this direction, with the creation of the Augmented Covariance Method (ACM). Building upon this foundation, the Block-Toeplitz Augmented Covariance Method (BT-ACM) represents a notable evolution, enhancing computational efficiency while maintaining its efficacy and versatility. Finally, the Phase-SPDNet work enables the integration of such methodologies into a Deep Learning approach that is particularly effective with a limited number of electrodes.Additionally, we proposed the creation of a pseudo online framework to better characterize the efficacy of BCI methods and the largest EEG-based BCI reproducibility study using the Mother of all BCI Benchmarks (MOABB) framework. This research seeks to promote greater reproducibility and trustworthiness in BCI studies.In conclusion, we address two critical challenges in the field of EEG-based brain-computer interfaces (BCIs): enhancing performance through advanced algorithmic development at the sensor level and improving reproducibility within the BCI community
Books on the topic "EEG/MEG data"
Giebels, Ludy. Jacob Israël de Haan in het Palestijnse labyrint, 1919-1924. Nieuwe Prinsengracht 89 1018 VR Amsterdam Nederland: Amsterdam University Press, 2024. http://dx.doi.org/10.5117/9789048563838.
Full textHari, MD, PhD, Riitta, and Aina Puce, PhD. MEG-EEG Primer. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190497774.001.0001.
Full textHamalainen, Matti, Risto Ilmoniemi, and Lauri Parkkonen. Fundamentals of MEG and EEG: Biophysics, Instrumentation, and Data Analysis. Elsevier Science & Technology Books, 2020.
Find full textButkov, Nic. Polysomnography. Edited by Sudhansu Chokroverty, Luigi Ferini-Strambi, and Christopher Kennard. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199682003.003.0007.
Full textKam, Julia W. Y., and Todd C. Handy. Electroencephalogram Recording in Humans. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199939800.003.0006.
Full textSutter, Raoul, Peter W. Kaplan, and Donald L. Schomer. Historical Aspects of Electroencephalography. Edited by Donald L. Schomer and Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0001.
Full textThomas, James, and Tanya Monaghan. Clinical data interpretation. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199593972.003.0019.
Full textVanhatalo, Sampsa, and J. Matias Palva. Infraslow EEG Activity. Edited by Donald L. Schomer and Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0032.
Full textOsman, Gamaleldin M., James J. Riviello, and Lawrence J. Hirsch. EEG in the Intensive Care Unit. Edited by Donald L. Schomer and Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0022.
Full textVespa, Paul M. Electroencephalogram monitoring in the critically ill. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0221.
Full textBook chapters on the topic "EEG/MEG data"
Iversen, John R., and Scott Makeig. "MEG/EEG Data Analysis Using EEGLAB." In Magnetoencephalography, 1–16. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-62657-4_8-1.
Full textIversen, John R., and Scott Makeig. "MEG/EEG Data Analysis Using EEGLAB." In Magnetoencephalography, 199–212. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-33045-2_8.
Full textIversen, John R., and Scott Makeig. "MEG/EEG Data Analysis Using EEGLAB." In Magnetoencephalography, 391–406. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00087-5_8.
Full textSorrentino, Alberto, and Michele Piana. "Inverse Modeling for MEG/EEG Data." In Mathematical and Theoretical Neuroscience, 239–53. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68297-6_15.
Full textSellers, Kristin K., Joline M. Fan, Leighton B. N. Hinkley, and Heidi E. Kirsch. "Preprocessing Electrophysiological Data: EEG, iEEG, and MEG Data." In Statistical Methods in Epilepsy, 25–50. Boca Raton: Chapman and Hall/CRC, 2024. http://dx.doi.org/10.1201/9781003254515-2.
Full textPflieger, M. E., G. V. Simpson, S. P. Ahlfors, and R. J. Ilmoniemi. "Superadditive Information from Simultaneous MEG/EEG Data." In Biomag 96, 1154–57. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1260-7_282.
Full textPitolli, Francesca. "Neuroelectric Current Localization from Combined EEG/MEG Data." In Curves and Surfaces, 562–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27413-8_37.
Full textLouis, Alfred K., Uwe Schmitt, Felix Darvas, Helmut Büchner, and Manfred Fuchs. "Spatio-Temporal Current Density Reconstruction from EEG-/MEG-Data." In Mathematics — Key Technology for the Future, 472–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55753-8_38.
Full textEsch, Lorenz, Christoph Dinh, Eric Larson, Denis Engemann, Mainak Jas, Sheraz Khan, Alexandre Gramfort, and Matti S. Hämäläinen. "MNE: Software for Acquiring, Processing,and Visualizing MEG/EEG Data." In Magnetoencephalography, 1–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-62657-4_59-1.
Full textEsch, Lorenz, Christoph Dinh, Eric Larson, Denis Engemann, Mainak Jas, Sheraz Khan, Alexandre Gramfort, and M. S. Hämäläinen. "MNE: Software for Acquiring, Processing, and Visualizing MEG/EEG Data." In Magnetoencephalography, 355–71. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00087-5_59.
Full textConference papers on the topic "EEG/MEG data"
Vlasenko, Daniil, Alexey Zaikin, and Denis Zakharov. "Ensemble methods for representation of fMRI, EEG/MEG data in graph form for classification of brain states." In 2024 8th Scientific School Dynamics of Complex Networks and their Applications (DCNA), 258–61. IEEE, 2024. http://dx.doi.org/10.1109/dcna63495.2024.10718443.
Full textCai, Chang, Mithun Diwakar, Kensuke Sekihara, and Srikantan S. Nagarajan. "Robust Bayesian algorithm for distributed source reconstructions MEG/EEG data." In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2019. http://dx.doi.org/10.1109/ner.2019.8716990.
Full textGramfort, Alexandre, and Maureen Clerc. "Low Dimensional Representations of MEG/EEG Data Using Laplacian Eigenmaps." In 2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging. IEEE, 2007. http://dx.doi.org/10.1109/nfsi-icfbi.2007.4387717.
Full textNOLTE, G. "DETECTING AND LOCALIZING TRUE BRAIN INTERACTIONS FROM EEG/MEG DATA." In Proceedings of the Seventh International Workshop. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773197_0036.
Full textArdila Franco, Camilo Ernesto, Jose David Lopez Hincapie, and Jairo Jose Espinosa. "Neural activity reconstruction with MEG/EEG data considering noise regularization." In 2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA). IEEE, 2012. http://dx.doi.org/10.1109/stsiva.2012.6340551.
Full textHuang, Gan, and Zhiguo Zhang. "Improving sensitivity of cluster-based permutation test for EEG/MEG data." In 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2017. http://dx.doi.org/10.1109/ner.2017.8008279.
Full textLopez, Jose David, Angela Sucerquia, and Gareth Barnes. "Simultaneous estimation of brain structure and function with MEG/EEG data." In 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT). IEEE, 2017. http://dx.doi.org/10.1109/icieect.2017.7916582.
Full textBelaoucha, Brahim, and Theodore Papadopoulo. "Large brain effective network from EEG/MEG data and dMR information." In 2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI). IEEE, 2017. http://dx.doi.org/10.1109/prni.2017.7981511.
Full textGutiérrez, David, Gerardo Herrera Corral, and Luis Manuel Montaño Zentina. "Using EEG∕MEG Data of Cognitive Processes in Brain-Computer Interfaces." In MEDICAL PHYSICS: Tenth Mexican Symposium on Medical Physics. AIP, 2008. http://dx.doi.org/10.1063/1.2979300.
Full textJia, Wenyan, Robert J. Sclabassi, Lin-Sen Pon, Mark L. Scheuer, and Mingui Sun. "Spike Separation from EEG/MEG Data Using Morphological Filter and Wavelet Transform." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.259695.
Full textReports on the topic "EEG/MEG data"
Mosher, J. C., M. Huang, R. M. Leahy, and M. E. Spencer. Modeling versus accuracy in EEG and MEG data. Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/554813.
Full textVan der Maas, Peter, Jesse Wagenaar, Ilse Ubels, and Anne Helbig. Circulair water in de wijk : verkennend onderzoek naar de potenties en belemmering van decentrale systemen voor behandeling en hergebruik van afvalwater en regenwater in woonwijken. Hogeschool van Hall Larenstein, June 2024. http://dx.doi.org/10.31715/2024.6.
Full textAgrawal, Asha Weinstein, Evelyn Blumenberg, Anastasia Loukaitou-Sideris, and Brittney Lu. Understanding Workforce Diversity in the Transit Industry: Establishing a Baseline of Diversity Demographics. Mineta Transportation Institute, February 2024. http://dx.doi.org/10.31979/mti.2024.2213.
Full textGuérin, Laurence, Patrick Sins, Lida Klaver, and Juliette Walma van der Molen. Onderzoeksrapport Samen werken aan Bèta Burgerschap. Saxion, 2021. http://dx.doi.org/10.14261/ff0c6282-93e2-41a7-b60ab9bceb2a4328.
Full textBlankestijn, Wouter, Walter Verspui, Jan Fliervoet, and Loes Witteveen. Motivaties rondom Tuinvergroening onderzoek Tuinverhalen : resultaten enquête onder deelnemers van het project Pientere Tuinen. Lectoraat Communicatie, Participatie & Sociaal-Ecologisch Leren (CoPSEL), January 2024. http://dx.doi.org/10.31715/2024.3.
Full textStrietman, W. J., M. J. van den Heuvel-Greve, A. M. van den Brink, G. A. de Groot, M. Skirtun, E. L. Bravo Rebolledo, and K. J. Koffeman. Resultaten bronanalyse zwerfafval Griend : Resultaten van een gedetailleerde bronanalyse van zwerfafval dat op het Waddeneiland Griend verzameld is en samen met lokale stakeholders tijdens een Litter-ID-sessie in oktober 2019 onderzocht is. Wageningen: Wageningen Economic Research, 2020. http://dx.doi.org/10.18174/528599.
Full textNelson, Gena. A Systematic Review of the Quality of Reporting in Mathematics Meta-Analyses for Students with or at Risk of Disabilities Coding Protocol. Boise State University, July 2021. http://dx.doi.org/10.18122/sped138.boisestate.
Full textNelson, Gena. A Systematic Review of the Quality of Reporting in Mathematics Meta-Analyses for Students with or at Risk of Disabilities Coding Protocol. Boise State University, Albertsons Library, July 2021. http://dx.doi.org/10.18122/sped.138.boisestate.
Full textRupke, Andrew, and Taylor Boden. Lithium Brine Analytical Database of Utah: Second Edition. Utah Geological Survey, November 2023. http://dx.doi.org/10.34191/ofr-758.
Full textSloan, Steven, Shelby Peterie, Richard Miller, Julian Ivanov, J. Schwenk, and Jason McKenna. Detecting clandestine tunnels by using near-surface seismic techniques. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40419.
Full text