Journal articles on the topic 'EEG DENOISING'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'EEG DENOISING.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
An, Yang, Hak Keung Lam, and Sai Ho Ling. "Auto-Denoising for EEG Signals Using Generative Adversarial Network." Sensors 22, no. 5 (February 23, 2022): 1750. http://dx.doi.org/10.3390/s22051750.
Full textElsherbieny, Zeinab, Nagy Messiha, Adel S. El-Fisawy, Mohamed Rihan, and Fathi E. Abd El-Samie. "Efficient Denoising Schemes of EEG Signals." Menoufia Journal of Electronic Engineering Research 28, no. 1 (December 1, 2019): 209–13. http://dx.doi.org/10.21608/mjeer.2019.77020.
Full textGrobbelaar, Maximilian, Souvik Phadikar, Ebrahim Ghaderpour, Aaron F. Struck, Nidul Sinha, Rajdeep Ghosh, and Md Zaved Iqubal Ahmed. "A Survey on Denoising Techniques of Electroencephalogram Signals Using Wavelet Transform." Signals 3, no. 3 (August 17, 2022): 577–86. http://dx.doi.org/10.3390/signals3030035.
Full textZhao, Haoyan, and Bin Guo. "EEG Signal Denoising Based on Deep Residual Shrinkage Network." Journal of Physics: Conference Series 2395, no. 1 (December 1, 2022): 012076. http://dx.doi.org/10.1088/1742-6596/2395/1/012076.
Full textPERDHANA, HASBIAN FAUZY, and HASBALLAH ZAKARIA. "Pembersihan Artefak EOG dari Sinyal EEG menggunakan Denoising Autoencoder." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 10, no. 3 (July 19, 2022): 639. http://dx.doi.org/10.26760/elkomika.v10i3.639.
Full textYan, Wenqiang, Chenghang Du, Yongcheng Wu, Xiaowei Zheng, and Guanghua Xu. "SSVEP-EEG Denoising via Image Filtering Methods." IEEE Transactions on Neural Systems and Rehabilitation Engineering 29 (2021): 1634–43. http://dx.doi.org/10.1109/tnsre.2021.3104825.
Full textUTHAYAKUMAR, R., and D. EASWARAMOORTHY. "MULTIFRACTAL-WAVELET BASED DENOISING IN THE CLASSIFICATION OF HEALTHY AND EPILEPTIC EEG SIGNALS." Fluctuation and Noise Letters 11, no. 04 (December 2012): 1250034. http://dx.doi.org/10.1142/s0219477512500344.
Full textZhang, Zhen, Xiaoyan Yu, Xianwei Rong, and Makoto Iwata. "A Novel Multimodule Neural Network for EEG Denoising." IEEE Access 10 (2022): 49528–41. http://dx.doi.org/10.1109/access.2022.3173261.
Full textTurnip, Arjon, and Jasman Pardede. "Artefacts Removal of EEG Signals with Wavelet Denoising." MATEC Web of Conferences 135 (2017): 00058. http://dx.doi.org/10.1051/matecconf/201713500058.
Full textLi, Junhua, Zbigniew Struzik, Liqing Zhang, and Andrzej Cichocki. "Feature learning from incomplete EEG with denoising autoencoder." Neurocomputing 165 (October 2015): 23–31. http://dx.doi.org/10.1016/j.neucom.2014.08.092.
Full textJAYALAXMI, ANEM, and KUMAR G. SATEESH. "DENOISING OF EEG SIGNAL USING FrFT BASED BARLETT WINDOW." i-manager's Journal on Digital Signal Processing 5, no. 1 (2017): 18. http://dx.doi.org/10.26634/jdp.5.1.13528.
Full textGeetha, G., and S. N. Geethalakshmi. "EEG Denoising using SURE thresholding based on Wavelet Transforms." International Journal of Computer Applications 24, no. 6 (June 30, 2011): 29–33. http://dx.doi.org/10.5120/2948-3935.
Full textChu, Ruibo, Jian Wang, Qian Zhang, and Huanhuan Chen. "An adaptive noise removal method for EEG signals." Journal of Physics: Conference Series 2414, no. 1 (December 1, 2022): 012007. http://dx.doi.org/10.1088/1742-6596/2414/1/012007.
Full textPhadikar, Souvik, Nidul Sinha, Rajdeep Ghosh, and Ebrahim Ghaderpour. "Automatic Muscle Artifacts Identification and Removal from Single-Channel EEG Using Wavelet Transform with Meta-Heuristically Optimized Non-Local Means Filter." Sensors 22, no. 8 (April 12, 2022): 2948. http://dx.doi.org/10.3390/s22082948.
Full textSohaib, Muhammad, Ayesha Ghaffar, Jungpil Shin, Md Junayed Hasan, and Muhammad Taseer Suleman. "Automated Analysis of Sleep Study Parameters Using Signal Processing and Artificial Intelligence." International Journal of Environmental Research and Public Health 19, no. 20 (October 14, 2022): 13256. http://dx.doi.org/10.3390/ijerph192013256.
Full textNagar, Subham, Ahlad Kumar, and M. N. S. Swamy. "Orthogonal features-based EEG signal denoising using fractionally compressed autoencoder." Signal Processing 188 (November 2021): 108225. http://dx.doi.org/10.1016/j.sigpro.2021.108225.
Full textN., PADMAJA, BHARATHI M., and SUJATHA E. "A GUI based EEG Signal Denoising using Hilbert Huang Transform." i-manager’s Journal on Electronics Engineering 7, no. 1 (2016): 25. http://dx.doi.org/10.26634/jele.7.1.8281.
Full textAlbera, L., A. Kachenoura, P. Comon, A. Karfoul, F. Wendling, L. Senhadji, and I. Merlet. "ICA-Based EEG denoising: a comparative analysis of fifteen methods." Bulletin of the Polish Academy of Sciences: Technical Sciences 60, no. 3 (December 1, 2012): 407–18. http://dx.doi.org/10.2478/v10175-012-0052-3.
Full textŠtastný, Jakub, and Pavel Sovka. "High-Resolution Movement EEG Classification." Computational Intelligence and Neuroscience 2007 (2007): 1–12. http://dx.doi.org/10.1155/2007/54925.
Full textLiang, Shuang, and Lu Li. "Reconstruction of EEG Signal Based on Compressed Sensing and Wavelet Transform." Applied Mechanics and Materials 734 (February 2015): 617–20. http://dx.doi.org/10.4028/www.scientific.net/amm.734.617.
Full textLu, Junru, and Na Ni. "Application of Wavelet Transform in The Construction of Short-term Memory EEG Information Transmission Model." International Journal of Education and Humanities 7, no. 3 (March 23, 2023): 149–52. http://dx.doi.org/10.54097/ijeh.v7i3.6356.
Full textLi, Min, Wuhong Wang, Zhen Liu, Mingjun Qiu, and Dayi Qu. "Driver Behavior and Intention Recognition Based on Wavelet Denoising and Bayesian Theory." Sustainability 14, no. 11 (June 6, 2022): 6901. http://dx.doi.org/10.3390/su14116901.
Full textPratiwi, Nor Kumalasari Caecar, Rita Magdalena, Yunendah Nur Fuadah, Sofia Saidah, Syamsul Rizal, and Muhamad Rokhmat Isnaini. "Denoising Sinyal EEG dengan Algoritma Recursive Least Square dan Least Mean Square." TELKA - Telekomunikasi, Elektronika, Komputasi dan Kontrol 5, no. 2 (November 27, 2019): 122–29. http://dx.doi.org/10.15575/telka.v5n2.122-129.
Full textKumar, B. Krishna. "Estimation of Number of Levels of Scaling the Principal Components in Denoising EEG Signals." Biomedical and Pharmacology Journal 14, no. 1 (March 30, 2021): 425–33. http://dx.doi.org/10.13005/bpj/2142.
Full textZhang, Haoming, Mingqi Zhao, Chen Wei, Dante Mantini, Zherui Li, and Quanying Liu. "EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising." Journal of Neural Engineering 18, no. 5 (October 1, 2021): 056057. http://dx.doi.org/10.1088/1741-2552/ac2bf8.
Full textHofmanis, Janis, Olivier Caspary, Valerie Louis-Dorr, Radu Ranta, and Louis Maillard. "Denoising Depth EEG Signals During DBS Using Filtering and Subspace Decomposition." IEEE Transactions on Biomedical Engineering 60, no. 10 (October 2013): 2686–95. http://dx.doi.org/10.1109/tbme.2013.2262212.
Full textMartinez-Murcia, Francisco J., Andres Ortiz, Juan Manuel Gorriz, Javier Ramirez, Pedro Javier Lopez-Abarejo, Miguel Lopez-Zamora, and Juan Luis Luque. "EEG Connectivity Analysis Using Denoising Autoencoders for the Detection of Dyslexia." International Journal of Neural Systems 30, no. 07 (May 28, 2020): 2050037. http://dx.doi.org/10.1142/s0129065720500379.
Full textSardouie, Sepideh Hajipour, Laurent Albera, Mohammad Bagher Shamsollahi, and Isabelle Merlet. "An Efficient Jacobi-Like Deflationary ICA Algorithm: Application to EEG Denoising." IEEE Signal Processing Letters 22, no. 8 (August 2015): 1198–202. http://dx.doi.org/10.1109/lsp.2014.2385868.
Full textXu, Peng, and Dezhong Yao. "A novel method based on realistic head model for EEG denoising." Computer Methods and Programs in Biomedicine 83, no. 2 (August 2006): 104–10. http://dx.doi.org/10.1016/j.cmpb.2006.06.002.
Full textBalamareeswaran, M., and D. Ebenezer. "Denoising of EEG signals using Discrete Wavelet Transform based Scalar Quantization." Biomedical and Pharmacology Journal 8, no. 1 (June 30, 2015): 399–406. http://dx.doi.org/10.13005/bpj/627.
Full textAl-Qazzaz, Noor Kamal, Alaa A. Aldoori, and A. Buniya. "EEG Neuro-markers to Enhance BCI-based Stroke Patients Rehabilitation." International Journal on Engineering, Science and Technology 5, no. 1 (June 15, 2023): 42–53. http://dx.doi.org/10.46328/ijonest.139.
Full textKumar, R. Suresh, and P. Manimegalai. "Implementation of Neural Network with ALE for the Removal of Artifacts in EEG Signals." Current Signal Transduction Therapy 15, no. 1 (July 31, 2020): 77–83. http://dx.doi.org/10.2174/1574362414666190613142424.
Full textSaavedra, Carolina, Rodrigo Salas, and Laurent Bougrain. "Wavelet-Based Semblance Methods to Enhance the Single-Trial Detection of Event-Related Potentials for a BCI Spelling System." Computational Intelligence and Neuroscience 2019 (August 26, 2019): 1–10. http://dx.doi.org/10.1155/2019/8432953.
Full textDing, Bin, Fuxiao Tian, and Li Zhao. "Digital Evaluation Algorithm for Upper Limb Motor Function Rehabilitation Based on Micro Sensor." Journal of Medical Imaging and Health Informatics 11, no. 2 (February 1, 2021): 391–401. http://dx.doi.org/10.1166/jmihi.2021.3278.
Full textSedik, Ahmed, Mohamed Marey, and Hala Mostafa. "WFT-Fati-Dec: Enhanced Fatigue Detection AI System Based on Wavelet Denoising and Fourier Transform." Applied Sciences 13, no. 5 (February 21, 2023): 2785. http://dx.doi.org/10.3390/app13052785.
Full textRanjan, Rakesh, Bikash Chandra Sahana, and Ashish Kumar Bhandari. "Motion Artifacts Suppression From EEG Signals Using an Adaptive Signal Denoising Method." IEEE Transactions on Instrumentation and Measurement 71 (2022): 1–10. http://dx.doi.org/10.1109/tim.2022.3142037.
Full textAn Peng. "Research on The EEG Signal Denoising Method Based on Improved Wavelet Transform." International Journal of Digital Content Technology and its Applications 7, no. 4 (February 28, 2013): 154–63. http://dx.doi.org/10.4156/jdcta.vol7.issue4.20.
Full textZhang, Shuoyue, Jürgen Hennig, and Pierre LeVan. "Direct modelling of gradient artifacts for EEG-fMRI denoising and motion tracking." Journal of Neural Engineering 16, no. 5 (August 6, 2019): 056010. http://dx.doi.org/10.1088/1741-2552/ab2b21.
Full textSaleh, Majd, Ahmad Karfoul, Amar Kachenoura, Isabelle Merlet, and Laurent Albera. "Efficient Stepsize Selection Strategy for Givens Parametrized ICA Applied to EEG Denoising." IEEE Signal Processing Letters 24, no. 6 (June 2017): 882–86. http://dx.doi.org/10.1109/lsp.2017.2696359.
Full textAlyasseri, Zaid Abdi Alkareem, Ahamad Tajudin Khader, Mohammed Azmi Al-Betar, Ammar Kamal Abasi, and Sharif Naser Makhadmeh. "EEG Signals Denoising Using Optimal Wavelet Transform Hybridized With Efficient Metaheuristic Methods." IEEE Access 8 (2020): 10584–605. http://dx.doi.org/10.1109/access.2019.2962658.
Full textNavarro, X., F. Porée, A. Beuchée, and G. Carrault. "Denoising preterm EEG by signal decomposition and adaptive filtering: A comparative study." Medical Engineering & Physics 37, no. 3 (March 2015): 315–20. http://dx.doi.org/10.1016/j.medengphy.2015.01.006.
Full textRakibul Mowla, Md, Siew-Cheok Ng, Muhammad S. A. Zilany, and Raveendran Paramesran. "Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising." Biomedical Signal Processing and Control 22 (September 2015): 111–18. http://dx.doi.org/10.1016/j.bspc.2015.06.009.
Full textUpadhyay, R., P. K. Padhy, and P. K. Kankar. "EEG artifact removal and noise suppression by Discrete Orthonormal S-Transform denoising." Computers & Electrical Engineering 53 (July 2016): 125–42. http://dx.doi.org/10.1016/j.compeleceng.2016.05.015.
Full textAl-Qazzaz, Noor Kamal, Alaa A. Aldoori, Sawal Hamid Bin Mohd Ali, Siti Anom Ahmad, Ahmed Kazem Mohammed, and Mustafa Ibrahim Mohyee. "EEG Signal Complexity Measurements to Enhance BCI-Based Stroke Patients’ Rehabilitation." Sensors 23, no. 8 (April 11, 2023): 3889. http://dx.doi.org/10.3390/s23083889.
Full textSweeney-Reed, Catherine M., Slawomir J. Nasuto, Marcus F. Vieira, and Adriano O. Andrade. "Empirical Mode Decomposition and its Extensions Applied to EEG Analysis: A Review." Advances in Data Science and Adaptive Analysis 10, no. 02 (April 2018): 1840001. http://dx.doi.org/10.1142/s2424922x18400016.
Full textJukic, Samed, Muzafer Saracevic, Abdulhamit Subasi, and Jasmin Kevric. "Comparison of Ensemble Machine Learning Methods for Automated Classification of Focal and Non-Focal Epileptic EEG Signals." Mathematics 8, no. 9 (September 2, 2020): 1481. http://dx.doi.org/10.3390/math8091481.
Full textChaddad, Ahmad, Yihang Wu, Reem Kateb, and Ahmed Bouridane. "Electroencephalography Signal Processing: A Comprehensive Review and Analysis of Methods and Techniques." Sensors 23, no. 14 (July 16, 2023): 6434. http://dx.doi.org/10.3390/s23146434.
Full textDalal, Virupaxi, and Satish Bhairannawar. "Efficient de-noising technique for electroencephalogram signal processing." IAES International Journal of Artificial Intelligence (IJ-AI) 11, no. 2 (June 1, 2022): 603. http://dx.doi.org/10.11591/ijai.v11.i2.pp603-612.
Full textLi, Zhiwei, Jun Li, Yousheng Xia, Pingfa Feng, and Feng Feng. "Variation Trends of Fractal Dimension in Epileptic EEG Signals." Algorithms 14, no. 11 (October 29, 2021): 316. http://dx.doi.org/10.3390/a14110316.
Full textYang, Biao, Jinmeng Cao, Tiantong Zhou, Li Dong, Ling Zou, and Jianbo Xiang. "Exploration of Neural Activity under Cognitive Reappraisal Using Simultaneous EEG-fMRI Data and Kernel Canonical Correlation Analysis." Computational and Mathematical Methods in Medicine 2018 (July 2, 2018): 1–11. http://dx.doi.org/10.1155/2018/3018356.
Full text