Dissertations / Theses on the topic 'EDPs de la mécanique des fluides'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'EDPs de la mécanique des fluides.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ayoub, Rama. "Développement d’une méthode de discrétisation des EDPs basée sur le calcul extérieur discret." Thesis, La Rochelle, 2020. https://tel.archives-ouvertes.fr/tel-03327048.
Full textDEC (Discrete exterior calculus) is a geometric integrator based on exterior calculus, which has been successfully applied to different fields, namely to electromagnetism and isothermal fluid mechanics. Its combinatorial construction ensures that, as in the continuous case, the discrete exterior derivative operator d verifies the fundamental relation d²=0. As a consequence, vector analysis relations such as div curl = 0 and curl grad = 0 are naturally satisfied at machine precision during the simulation. A crucial operator in exterior calculus is the Hodge operator. One of the most popular choice of discrete Hodge operator in DEC is the diagonal Hodge. Its construction is based on a circumcentric dual mesh. In this thesis, the application of the DEC in fluid mechanics on anisothermal flows,in the context of a formulation with a stream function is first presented. Then, in the second part of the thesis, a new construction of the discrete Hodge operator is proposed. The new operator called the analytical Hodge operator is general and thus extends the choice of the dual mesh which can be based on any interior point (circumcenter, barycenter, incenter ...). Numerical tests revealing the good results of our construction are performed and convergence on different types of meshes (structured, unstructured, non-Delaunay) is presented.In the last part of the thesis, we introduce the equivalent expression of Neumann boundary conditions in the context of DEC in 2D meshes. The derivation of this expression can be performed on any type of mesh and independently of the choice of discretization of the Hodge operator. This allows us to solve Navier-Stokes equations in primary variables (velocity-pressure) using prediction-correction schemes in the context of DEC. In the last chapter, the previous developments are extended to the 3D case. In each contribution, different numerical tests evaluating robustness and convergence on different types of meshes are presented
Perrin, Charlotte. "Modèles hétérogènes en mécanique des fluides : phénomènes de congestion, écoulements granulaires et mouvement collectif." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM023/document.
Full textThis thesis is dedicated to the description and the mathematical analysis of heterogeneities and congestion phenomena in fluid mechanics models.A rigorous link between soft congestion models, based on the compressible Navier--Stokes equations which take into account short--range repulsive forces between elementary components; and hard congestion models which describe the transitions between free/compressible zones and congested/incompressible zones.We are interested then in the macroscopic modelling of mixtures composed solid particles immersed in a fluid.We provide a first mathematical answer to the question of the transition between the suspension regime dictated by hydrodynamical interactions and the granular regime dictated by the contacts between the solid particles.The method highlights the crucial role played by the memory effects in the granular regime.This approach enables also a new point of view concerning fluids with pressure-dependent viscosities.We finally deal with the microscopic and the macroscopic modelling of vehicular traffic.Original numerical schemes are proposed to robustly reproduce persistent traffic jams
Tendani, Adrien. "Effet régularisant, controlabilité et anisotropie en mécanique des fluides." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0214.
Full textIn this thesis, we are mainly interested in the dissipative properties of certain PDEs, particularly from fluid mechanics. The two major issues through which these properties are studied are: Cauchy’s theory (regularizing effect, well-posed character, weak solution and weakstrong uniqueness) and the control theory (exact controllability of trajectories and characterization of achievable states). In this work, several models are studied: the Navier-Stokes-Korteweg system, which describes a compressible fluid with capillarity effects which inducing dispersion; the sub- Riemannian Navier-Stokes system on stratified Lie groups, where the system exhibits anisotropy properties linked to the sub-Riemannian structure; and the semi-linear heat equation, for which the achievable states are studied. The tools used are varied: Fourier analysis (on Euclidean space and Lie groups), Carleman inequalities, anisotropic para-differential calculation, quantification of nilpotent Lie groups and complex analysis
Bocchi, Edoardo. "Compressible-incompressible transitions in fluid mechanics : waves-structures interaction and rotating fluids." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0279/document.
Full textThis manuscript deals with compressible-incompressible transitions arising in partial differential equations of fluid mechanics. We investigate two problems: floating structures and rotating fluids. In the first problem, the introduction of a floating object into water waves enforces a constraint on the fluid and the governing equations turn out to have a compressible-incompressible structure. In the second problem, the motion of geophysical compressible fluids is affected by the Earth's rotation and the study of the high rotation limit shows that the velocity vector field tends to be horizontal and with an incompressibility constraint.Floating structures are a particular example of fluid-structure interaction, in which a partially immersed solid is floating at the fluid surface. This mathematical problem models the motion of wave energy converters in sea water. In particular, we focus on heaving buoys, usually implemented in the near-shore zone, where the shallow water asymptotic models describe accurately the motion of waves. We study the two-dimensional nonlinear shallow water equations in the axisymmetric configuration in the presence of a floating object with vertical side-walls moving only vertically. The assumptions on the solid permit to avoid the free boundary problem associated with the moving contact line between the air, the water and the solid. Hence, in the domain exterior to the solid the fluid equations can be written as an hyperbolic quasilinear initial boundary value problem. This couples with a nonlinear second order ODE derived from Newton's law for the free solid motion. Local in time well-posedness of the coupled system is shown provided some compatibility conditions are satisfied by the initial data in order to generate smooth solutions.Afterwards, we address a particular configuration of this fluid-structure interaction: the return to equilibrium. It consists in releasing a partially immersed solid body into a fluid initially at rest and letting it evolve towards its equilibrium position. A different hydrodynamical model is used. In the exterior domain the equations are linearized but the nonlinear effects are taken into account under the solid. The equation for the solid motion becomes a nonlinear second order integro-differential equation which rigorously justifies the Cummins equation, assumed by engineers to govern the motion of floating objects. Moreover, the equation derived improves the linear approach of Cummins by taking into account the nonlinear effects. The global existence and uniqueness of the solution is shown for small data using the conservation of the energy of the fluid-structure system.In the second part of the manuscript, highly rotating fluids are studied. This mathematical problem models the motion of geophysical flows at large scales affected by the Earth's rotation, such as massive oceanic and atmospheric currents. The motion is also influenced by the gravity, which causes a stratification of the density in compressible fluids. The rotation generates anisotropy in viscous flows and the vertical turbulent viscosity tends to zero in the high rotation limit. Our interest lies in this singular limit problem taking into account gravitational and compressible effects. We study the compressible anisotropic Navier-Stokes-Coriolis equations with gravitational force in the horizontal infinite slab with no-slip boundary condition. Both this condition and the Coriolis force cause the apparition of Ekman layers near the boundary. They are taken into account in the analysis by adding corrector terms which decay in the interior of the domain. In this work well-prepared initial data are considered. A stability result of global weak solutions is shown for power-type pressure laws. The limit dynamics is described by a two-dimensional viscous quasi-geostrophic equation with a damping term that accounts for the boundary layers
Kolumban, Jozsef. "Control issues for some fluid-solid models." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED012/document.
Full textThe analysis of the behavior of a solid or several solids inside a fluid is a long-standing problem, that one can see described in many classical textbooks of hydrodynamics. Its study from a mathematical viewpoint has attracted a growing attention, in particular in the last 15 years. This research project aims at focusing on several aspect of this mathematical analysis, in particular on control and asymptotic issues. A simple model of fluid-solid evolution is that of a single rigid body surrounded by a perfect incompressible fluid. The fluid is modeled by the Euler equations, while the solid evolves according to Newton’s law, and is influenced by the fluid’s pressure on the boundary. The goal of this PhD thesis would consist in various studies in this branch, and in particular would investigate questions of controllability of this system, as well as limit models for thin solids converging to a curve. We would also like to study the Navier-Stokes/solid control system in a similar manner to the previously discussed controllability problem for the Euler/solid system. Another direction for this PhD project is to obtain a limit when the solid concentrates into a curve. Is it possible to obtain a simplified model of a thin object evolving in a perfect fluid, in the same way as simplified models were obtained for objects that are small in all directions? This could open the way to future investigations on derivation of liquid crystal flows as the limit of the system describing the interaction between the fluid and a net of solid tubes when the diameter of the tubes is converging to zero
Noisette, Florent. "Interactions avec la frontière pour des équations d’évolutions non-linéaires, non-locales." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0356.
Full textThe main results of my PhD thesis are :• Uniqueness of bounded vorticity solution for the 2D euler equation with sources and sinks• Uniqueness of bounded momentum solution of the CH equation with in and out-flow• An algorythm for the simulation of growth of Micro algae• shape derivative of the Dirichlet to neumann operator on a generic bounded domain• regularity of the Dirichlet to Neumann operator on a generic H^s manifold
Azerad, Pascal. "Contributions à l'étude de quelques équations aux dérivées partielles, en mécanique des fluides et en génie côtier." Habilitation à diriger des recherches, Université Montpellier II - Sciences et Techniques du Languedoc, 2007. http://tel.archives-ouvertes.fr/tel-00221442.
Full textIls se classent en trois thèmes:
Analyse asymptotique des équations de Navier-Stokes,
Optimisation de forme d'ouvrages de lutte contre l'érosion du littoral,
Etude d'équations aux dérivées partielles comportant des termes non-locaux.
Dans le thème 1, je développe la justification mathématique de l'approximation hydrostatique pour les fluides géophysiques à faible quotient d'aspect, hypothèse couramment vérifiée en océanographie et en météorologie. C'est un problème de perturbation singulière. Je présente également l'étude théorique et numérique de l'écoulement cône-plan, utilisé en hématologie-hémostase pour le sang de patients. Il s'agit d'un problème de couche limite singulière.
Le thème 2 concerne le génie côtier. Les ouvrages utilisés tels que épis, brise-lames, enrochements sont de forme trop rudimentaire. Leur efficacité peut être améliorée significativement si leur forme est optimisée pour réduire l'énergie dissipée par la houle dans la zone proche-littorale. Nous optimisons aussi la forme de géotextiles immergés. Ce travail, réalisé dans le cadre de la thèse de Damien Isèbe, a reçu le soutien de l'ANR (projet COPTER) et s'effectue en partenariat avec le laboratoire Géosciences Montpellier et l'entreprise Bas-Rhône-Languedoc ingénierie (Nîmes).
Dans le thème 3, nous prouvons existence, unicité et régularité de solutions pour l'équation de la chaleur fractionnaire, perturbée par un bruit blanc. C'est une équation aux dérivées partielles stochastique.Nous prouvons enfin un résultat d'existence, unicité et dépendance continue pour une loi de conservation non linéaire, comportant un terme non local, qui modélise l'évolution d'un profil de dune immergée.
L'intérêt mathématique est que l'équation ne vérifie pas le principe du maximum mais possède néanmoins un effet régularisant.
Chatelin, Robin. "Méthodes numériques pour l'écoulement de Stokes 3D : fluides à viscosité variable en géométrie complexe mobile : application aux fluides biologiques." Phd thesis, Université Paul Sabatier - Toulouse III, 2013. http://tel.archives-ouvertes.fr/tel-00946993.
Full textPolizzi, Bastien. "Modélisation et simulations numériques pour des systèmes de la mécanique des fluides avec contraintes : application à la biologie et au trafic routier." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4069/document.
Full textThis thesis is devoted to the study of partial differential equation systems. In particular, we are interested in constrained systems coming from the fluid mechanics field which allow to describe, in time and space, physical quantities such as density or speed. In this context we build models for biology: modeling of the growth of micro-algae biofilms and modeling of the large intestine and its mucus layer. These models are then tested numerically using numerical schemes specifically developed for these models. This thesis is supplemented with a numerical study of Aw-Rascle model with constraint for road traffic
Benjelloun, Saad. "Quelques problèmes d'écoulement multi-fluide : analyse mathématique, modélisation numérique et simulation." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00764374.
Full textMasmoudi, Nader. "Problèmes asymptotiques en mécanique des fluides." Paris 9, 1999. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1999PA090028.
Full textCourty, Francois. "Optimisation Différentiable en Mécanique des Fluides Numérique." Phd thesis, Université Paris Sud - Paris XI, 2003. http://tel.archives-ouvertes.fr/tel-00004344.
Full textDesjardins, Benoît. "Equations de transport et mécanique des fluides." Paris 9, 1997. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1997PA090012.
Full textCourty, François. "Optimisation différentiable en mécanique des fluides numérique." Paris 11, 2003. https://tel.archives-ouvertes.fr/tel-00004344.
Full textOur contribution concerns the following three complementary domains : Automatic Differentiation, op- timal shape design for large systems, mesh adaption. In the chapter 1 of the part 1, we expose a method to compute gradients using Automatic Differentiation for a classical optimal shape design problem. We exply how to deduce an exact gradient based on an adjoint state without storing explicitly the Jacobian matrix. The reverse mode of the DA that we propose use much legs memory storage. In the chapter 2 of the part 2, we propose a SQP-like method to solve a class of optimization problems with equality constraints. We use a low cost iteration to solve the state and the adjoint. The new algorithm enables to solve simultaneously the optimality system. This one shot method combines efficiency and robustness. In the chapter 3 of the part 2, we study a new preconditioning strategy for optimal shape design. We build an additive multilevel preconditioning starting from the classical Bramble-Pasciak-Xu principle and from the agglomeration principle. We specify easily the gain of regularity of our preconditioning using only one real parameter. In the chapter 1 of the part 3, we study the problem of the best adapted mesh for a pure interpolation problem. We specify the mesh with a metric and we model the interpolation error. The optimality system solution gives a completely explicite expression of the optimal metric as a function of the function to adapt. In the chapter 2 of the part 3, we extend the method of the previous chapter to the problem of mesh adaption for P. D. E. Our method is based on a rigourous a priori analysis followed by a modelization. We obtain an optimal control formulation with an adjoint state
Hillairet, Matthieu. "Aspects interactifs de la mécanique des fluides." Lyon, École normale supérieure (sciences), 2005. http://www.theses.fr/2005ENSL0333.
Full textPaicu, Marius-Gheorghe. "Etude des fluides anisotropes incompressibles : Applications aux fluides tournants." Palaiseau, Ecole polytechnique, 2002. http://www.theses.fr/2002EPXXA002.
Full textKrell, Stella. "Schémas Volumes Finis en mécanique des fluides complexes." Phd thesis, Université de Provence - Aix-Marseille I, 2010. http://tel.archives-ouvertes.fr/tel-00524509.
Full textChapouly, Marianne. "Contrôlabilité d'équations issues de la mécanique des fluides." Phd thesis, Université Paris Sud - Paris XI, 2009. http://tel.archives-ouvertes.fr/tel-00407569.
Full textDe cette manière, on montre dans la première partie la contrôlabilité globale exacte pour tout temps d'équations de type Burgers non visqueuses puis on utilise ensuite ce résultat pour obtenir un résultat de contrôlabilité globale approchée pour l'équation de Burgers visqueuse. Cette propriété, combinée avec un résultat de contrôlabilité locale, entraîne ainsi la contrôlabilité globale aux trajectoires de l'équation de Burgers visqueuse, pour tout temps.
Dans la deuxième partie, on procède d'une manière similaire pour obtenir la contrôlabilité globale exacte d'une équation de Korteweg-de Vries non linéaire, pour tout temps.
Enfin, dans la dernière partie on s'intéresse à un système de Navier-Stokes 2-D avec conditions aux bords de type Navier. On obtient, en utilisant cette fois des résultats sur l'équation d'Euler des fluides incompressibles, la contrôlabilité globale à zéro, pour tout temps.
Marx, Chhay. "Intégrateurs géométriques: Application à la Mécanique des Fluides." Phd thesis, Université de La Rochelle, 2008. http://tel.archives-ouvertes.fr/tel-00403649.
Full textAl, Taki Bilal. "Sur quelques modèles hétérogènes en mécanique des fluides." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM057/document.
Full textThis thesis is devoted to the mathematical analysis of heterogeneous models raised by fluid mechanics. In particular, it is devoted to the theoretical study of partial differential equations used to describe the three main models that we present below.Initially, we are interested to study the motion of a compressible newtonienfluids in a basin with degenerate topography. The mathematical model studied derives from incompressible Navier-Stokes equations. We are interested to prove that the Cauchy problem associated is well posed. Well-posedness means that there exists a solution, that it is unique. In the meantime, we prove that the solution of the viscous model converges to the one of the inviscid limit model when the viscosity coe cient tends to zero.The second part in my thesis is devoted to study a model that arises from dispersive Navier-Stokes equations (that includes dispersive corrections to the classical compressible Navier-Stokes equations). Our model is derived from the last model assuming that the Mach number is very low. The obtained system is a Ghost eect system, which is so named because it can be derived from Kinetic theory. The main goal of this part is to extend a result concerning the local existence of strong solution to a global-in time existence of weak solutions. The main ingredient in this work is a new functional inequality of Log-Sobolev type.The last part of my thesis is a part of a research theme intends to analyze the understanding of phenomena encountered in geophysics which involves granular media. The mathematical model is of Bingham incompressible type with viscosity and placticity depending on the pressure. We provide a global existence of weak solutions of the Cauchy problem associated
Bunoiu, Renata Béatrice. "Sur quelques problèmes mathématiques en mécanique des fluides." Metz, 1997. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1997/Bunoiu.Renata_Beatrice.SMZ9711.pdf.
Full textThis work represents a mathematical study, theoretical and numerical, of some problems related to fluid mechanics. The thesis has three chapters. Chapter I, "nonlinear flow throught a thin slab", is devoted to the study of an incompressible fluid flow. We work in a 3D domain with the height much more smaller than the other two dimensions. We are interested in the Navier-Stokes flow : two cases are treated, provided the presence or not of volume forces and boundary conditions. In chapter II we treat some problems related to the homogenization theory and small parameters technic. The homogenization method is a mathematical method used for the study of the non-homogeneous media with periodic structure. In chapter II, "three-scale convergence for the Stokes problem", we study the classical stationnary Stokes problem. We work in a 3D domain which contains solid obstacles two-periodically distributed, with [epsilon]-periodicity (respectively [epsilon] 2), where [epsilon] is a small parameter. For passing to the limit we use the 3-scale convergence method. The homogenized problem is a three-pressures system. Chapter III, "calculation of the charge in a hydraulic system" is a theoretical and numerical study of a pratical problem : calculation of the charge in a hydraulic system. The equations presented here are find in other domains, such as thermical problems. So this study can be applied to a large class of physical problems
Chhay, Marx. "Intégrateurs géométriques : application à la mécanique des fluides." La Rochelle, 2008. http://www.theses.fr/2008LAROS261.
Full textA recent approach to study the equations from Fluid Mechanics consists in considering the symmetry group of equations. Succes of theoretical development, specially in turbulence, has justified the relevance of this approach. On the numerical side, the integrating methods based on arguments related to the geometrical structure of equations are called geometric integrators. In the first part of this thesis, a class of such integrators is introduced: symplectic integrators for hamiltonian systems, which are probably the most well known geometric integrators. In the second part, variational integrators are outlined, constructed in order to reproduce conservation laws of lagrangian systems. However most of Fluid Mechanics equations cannot be derived from a Lagrangian. In the last part of this thesis, a method of construction of numerical schemes that preserves equations symmetry is exposed. This method is based on a modern formulation of moving frames. A contribution to the development of this method is proposed; this allows to obtain an invariant numerical scheme that owns an order of accuracy. Examples from Fluid Mechanics model equations are detailled
Paumond, Lionel. "Sur quelques modèles asymptotiques en mécanique des fluides." Paris 11, 2002. http://www.theses.fr/2002PA112217.
Full textKrell, Katrin Stella. "Schémas volumes finis en mécanique des fluides complexes." Aix-Marseille 1, 2010. https://tel.archives-ouvertes.fr/tel-00524509.
Full textThis manuscript deals with the development and numerical analysis of finite volume schemes of type discrete duality (DDFV) for the discretization of the Darcy equations in porous heterogeneous anisotropic media and the Stokes equations with variable viscosity. A common feature of these problems, which motivates the use of DDFV schemes, is that their finite volume resolution requires to approximate all the components of the gradient of the solution. The DDFV method consists in discretizing the solution of equations simultaneously on the centers of the control volumes and on the vertices of the mesh. These two sets of unknowns allow to reconstitute a two-dimensional discrete gradient on a large class of 2D meshes, without assuming the “orthogonality” condition required for classical finite volume methods. We first study the discretization of anisotropic elliptic problems with mixed Dirichlet/Fourier boundary conditions. The scheme we propose allows to build the corresponding discrete non-overlapping Schwarz algorithm associated to a decomposition of the domain with Fourier interface conditions, which converges to the solution of the DDFV scheme on the initial domain. Numerical experiments illustrate the theoretical results of error estimates and of the DDFV Schwarz algorithm convergence. We then propose to discretize Stokes equations with a variable viscosity. The corresponding DDFV schemes are generally illposed. To overcome this difficulty, we stabilize the mass conservation equation with different pressure terms. First, we assume that the viscosity is smooth enough. The analysis of the scheme, which gives optimal error estimates, relies on a Korn inequality and on a uniform discrete inf-sup condition using the stabilization term. Secondly, we consider the case where the viscosity is discontinuous. The discontinuities must be taken into account in the scheme to overcome the consistency defect of the numerical fluxes. We need to build new operators with artificial unknowns. The theoretical study becomes more tricky. In all cases, the existence and uniqueness of the discrete solution are proved, as well as optimal error estimates. A first study of the extension of the DDFV schemes to Navier-Stokes equations is presented. A generalization in 3D of the results is given in the case of the Stokes problem with smooth variable viscosity. Numerical experiments illustrate the different error estimates
Fettah, Amal. "Analyse de modèles en mécanique des fluides compressibles." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4755.
Full textThis thesis is concerned with the study of problems relating in the theory of compressible flows . We prove the existence of the considered problems in a first part by passing to the limit on the numerical schemes proposed for the discretisation of these problems. In the second part, the existence result is obtained by passing to the limit on the approximate solutions given by a corresponding regularized problem.The main result is to prove the existence of a solution of the stationnary compressible Stokes problem with a general equation of state.We first prove this result by passing to the limit on the numerical scheme as the mesh size tends to zero. The fact to consider a general E.O.S induces some additional difficulties in particular to get estimates on the discrete solution (which comes also from the presence of the gravity in the momentum equation) and in the passage to the limit on the E.O.S.We also prove the existence result by passing to the limit on a regularized problem. We first treat the convection-diffusion problem (which appears in the regularized problem), we give an existence and uniqueness result, and we then prove estimates on the approwimate solutions and pass to the limit on the regularized problem
Marbach, Frédéric. "Contrôle en mécanique des fluides et couches limites." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066442/document.
Full textThis thesis is devoted to the study of the controllability of non linear partial differential equations in fluid mechanics. We are mostly interested in Burgers equation and Navier-Stokes equation. Our main goal is to prove small-time global results, even in the presence of boundary layers. We prove that it is possible to obtain such results by introducing a new method named: ``well prepared dissipation''. This method proceeds in two phases: first, a quick phase using the inviscid behavior of the system, then a longer phase during which the boundary layer dissipates all by itself. Both for Burgers and for Navier-Stokes with Navier slip-with-friction boundary conditions, we prove that this dissipation is sufficient if it has been well prepared. Moreover, we study a question of local null controllability for the Burgers equation with a single scalar control. We prove by enhancing a second order kernel approach that the system is not small time locally null controllable
Pujol, Thomas. "Etude mécanique des gels d'actine branchés." Paris 7, 2012. http://www.theses.fr/2012PA077231.
Full textActin filaments play a fundamental role in cell mechanics: assembled into networks by a large number of partners, they ensure cell integrity, deformability, and migration. During my PhD we focus on the mechanics of the dense branched network found at the leading edge of a crawling cell. We develop a new technique based on the dipolar attraction between magnetic colloids to measure mechanical properties of branched actin gels assembled around the colloids by the Arp2/3 machinery. This technique allows us to probe a large number of gels and, through the study of different networks, to access fundamental relationships between their microscopic structure and their mechanical properties. We show that the architecture does regulate the elasticity of the network: increasing both capping and branching concentrations strongly stiffens the networks. These effects occur at protein concentrations that can be regulated by the cell. In addition, the dependence of the elastic modulus on the filaments' flexibility and on increasing internal stress has been studied (Pujol. PNAS. 2012). Our overall results point toward an elastic regime dominated by enthalpic rather than entropie déformations. This result strongly differs from the elasticity of diluted cross-linked actin networks and can be explained by the dense dendritic structure of lameilipodium-like networks
Olivier, Julien. "Fluides vitreux, sutures craniofaciales, diffusion réactive : quelques contributions à l'étude de ces systèmes multi-échelles ou singuliers." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00625455.
Full textNavaro, Pierre. "Aéroacoustique numérique d'un écoulement tourbillonnaire." Le Havre, 2002. http://www.theses.fr/2002LEHA0013.
Full textA discrete vortex method for unsteady, compressible, two-dimensional and inviscid flow is developped. The method is based on the incompressible vortex-in-cell method. The second part concerns the use of a modified ray theory called "gaussian beam approch" to compute the noise emission in a wind park. The results of the numerical experiments and the validity of the method are discussed. The present limitations of the method are shown and several ways of improving them are indicated
Hwang, Yongyun. "Large-scale streaks in wall-bounded turbulent flows: amplification, instability, self-sustaining process and control." Palaiseau, Ecole polytechnique, 2010. http://pastel.archives-ouvertes.fr/docs/00/56/49/01/PDF/Thesis_final.pdf.
Full textBoyer, Franck. "Modélisation, Analyse et Approximation numérique en mécanique des fluides." Habilitation à diriger des recherches, Université de Provence - Aix-Marseille I, 2006. http://tel.archives-ouvertes.fr/tel-00104532.
Full textUne première partie du travail concerne l'étude de modèles dits à interface diffuse pour les écoulements incompressibles multiphasiques. Après une étude assez précise du cadre diphasique, on propose la généralisation au cadre triphasique, ce qui nécessite d'introduire la notion importante de consistance des modèles. Des résultats numériques confirment la pertinence des modèles proposés. Ensuite, on s'intéresse au modèle plus classique de Navier-Stokes non-homogène incompressible pour lequel on établit le caractère bien posé du problème pour des conditions aux limites ouvertes non-linéaires en sortie d'un écoulement. Une brique essentielle de ce travail est l'étude détaillée du problème de traces pour l'équation de transport associée à un champ de vitesse peu régulier. Ce travail, dont l'intérêt dépasse le cadre applicatif décrit ci-dessus, fait l'objet d'un chapitre à part entière.
Dans une seconde partie, on s'intéresse à l'approximation numérique par des méthodes de volumes finis des solutions de problèmes elliptiques non-linéaires monotones (du type p-laplacien). Un premier chapitre décrit un certain nombre de résultats obtenus dans le contexte de maillages cartésiens. Un second chapitre est consacré à l'étude d'un cadre géométrique plus général par le biais de méthodes dites en dualité discrète. Une attention particulière est portée au cas où les coefficients du problème présentent des discontinuités spatiales, ce qui mène à des problèmes de transmission non-linéaire entre deux milieux.
Le mémoire s'achève par la description de quelques travaux connexes, d'une part sur une classe de schémas VF pour les équations elliptiques linéaires adaptés à des maillages non orthogonaux, et d'autre sur l'étude numérique de problèmes elliptiques couplés 2D/1D issus de la description asymptotique d'écoulements dans des milieux poreux fracturés.
Charve, Frédéric. "Etude de phénomènes dispersifs en mécanique des fluides géophysiques." Phd thesis, Ecole Polytechnique X, 2004. http://tel.archives-ouvertes.fr/tel-00008754.
Full textDans le deuxieme chapitre, nous obtenons formellement l'asymptotique pour la suite des solutions du systeme primitif lorsque le petit parametre epsilon tend vers zero. Ceci permet en outre de definir le tourbillon potentiel, primordial dans toute cette etude. Nous etudions ensuite la convergence dans le cadre des solutions de Leray.
Le troisieme chapitre est consacre a l'etude de la meme
convergence mais dans le cadre des solutions de Fujita-Kato.
Le dernier chapitre donne des renseignements beaucoup plus precis
concernant les vitesses de convergence, et nous prouvons aussi un
theoreme de convergence dans le cadre des poches de tourbillon.
Boisgerault, Sébastien. "Optimisation de forme : systèmes nonlinéaires et mécanique des fluides." Paris, ENMP, 2000. http://www.theses.fr/2000ENMP0972.
Full textBusuioc, Adriana Valentina. "Sur quelques problèmes en mécanique des fluides non newtoniens." Paris 6, 2000. http://www.theses.fr/2000PA066084.
Full textMeyrignac, Olivier. "Etude de l'hémodynamique des fluides portaux et systémiques grâce à la mécanique des fluides numérique." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30344.
Full textThe thesis work is in three parts. The first part of the work concerns the comparison of the CFD simulation data from the Yales2bio solver to the measurement results of the 4D MRI sequences. Our CFD model exploited morphological data from 3D MRI for geometric modeling and velocimetry data of 2D phase contrast MRI (PC-MRI) sequences to define boundary conditions for modeling. We compared spatial distributions and local values ??of velocities obtained with these two methods of measurement. In addition, we evaluated the influence of geometric modeling resolution on velocity simulation. We noticed a qualitative and quantitative agreement with a high level of correlation between MRI and CFD data. The second part deals with portal hypertension. During this work, we have been able to develop an optimized protocol for azygous flow measurements as part of a preparatory work for a clinical study. In addition, we have developed a model based on the CFD of portal hypertension in silico, accounting for the increase of pressures during the increase of intrahepatic resistance. Finally, in the third part, CFD was used to find new prognostic factors for the evolution of small abdominal aortic aneurysms (AAA). For this work, we used data from a multicenter and prospective study. We included 78 AAA patients from September 2012 to June 2014. Patients had two separate CT examinations at one-year intervals to evaluate aneurysm growth. Fifty patients in these patients were eligible for CFD-based analysis. Based on a threshold of 10 ml of total volume growth, we classified the 50 patients into two so-called slow growth and fast growing groups. The initial morphological and functional parameters of the aneurysms were analyzed, including: maximum diameter, maximum section area, thrombus and lumen volumes, maximum wall pressure, and wall shear forces (WSS) . There was a significant difference between the two groups regarding aneurysmal lumen volume (P = 0.0051) and mean WSS variation (P = 0.0240) in contrast to maximal diameter (P = 0.71). ). We found a significant correlation of growth of aneurysm volume with volume of light and reduction of mean WSS (R = 0.47, P = 0.0015 and R = -0, respectively). 42, P = 0.0062) and total growth of aneurysm volume. Combining these parameters, we developed a prediction model for rapid AAA growth that had better area under the ROC curve than the single maximum diameter measure (0.78 vs. 0.52, P = 0.0031 ). Depending on the threshold used, our model gives either excellent sensitivity (95.0% [95% CI 75.1, 99.9]) or specificity (90.0% [95% CI 73.5, 97.9] ). We were able to demonstrate that the combined light volume and WSS analysis provides better information than the maximum diameter for assessing the risk of rapid AAA volume growth
Cuzieux, Fabrice. "Modélisation des interactions aérodynamiques pour un convertible de type ERICA." Aix-Marseille 2, 2007. http://theses.univ-amu.fr.lama.univ-amu.fr/2007AIX22074.pdf.
Full textAmong solutions studied to decrease airport congestion due to the air traffic increase, the use of civil tiltrotors is an interesting solution. A tiltrotor has the distinctive feature of being able to mix Vertical or Short Take-Off and Landing capabilities with cruise flight at speeds comparable to turboprop aeroplanes. This tiltrotor configuration has two rotors at the tip of the wing, and as a result, strong rotors wake/wing interaction occur in low speed conditions producing a wing download force that affect the aircraft performance. In order to reduce this download the ERICA concept has been proposed by AGUSTA. The wing parts located below the rotors can be tilted and adjusted to the rotor downwash direction in order to decrease the wing download. A second interaction exists when close to the ground, as a ground fountain effect, due to the rotor’s wakes, affects the wing, fuselage and tail loads. These two interaction phenomena have been studied for the ERICA concept within the Eurocopter HOST code. A non-linear lifting line model has based developed for the HOST. Calculation under high angle conditions, such as for a tilt-rotor wing in interaction with the rotor wake, can then be performed. The modelling used to evaluate the interaction between the rotor wake and the wing is based on a quasi-steady representation of the wakes with cylinders. This model allows computing the percentage of wing chord intercepted by the rotor wake for each section of the lifting line. This percentage is used to balance the influence of the rotor-induced velocity. For the ground effect on the wing, an approach based on mass continuity equation has been used first proposed by H. Haverdings, and also a second approach based on impinging jets modelling. All of these modelling concepts are now in use in a development version of the HOST. Thus, it helps for the evaluation of flight performances of the ERICA tiltrotor concept, such as the prediction of the efficiency of different tilt-wing angle strategies that can be used in order to minimise the total power requirement
Lanos, Christophe. "Méthode d'identification non viscosimetrique de comportements de fluides." Rennes, INSA, 1993. http://www.theses.fr/1993ISAR0003.
Full textHuard, Martin. "Formulation Hamiltonienne généralisée des équations de la mécanique des fluides." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq25610.pdf.
Full textFaure, Thierry. "Méthodes expérimentales instationnaires et leurs applications en mécanique des fluides." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2009. http://tel.archives-ouvertes.fr/tel-00911074.
Full textCarlotti, Pierre. "Éléments de mécanique des fluides pour la modélisation des incendies." Habilitation à diriger des recherches, Ecole Centrale de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00978098.
Full textConca, Carlos. "Homogénéisation de quelques problèmes aux limites en mécanique des fluides." Paris 6, 1987. http://www.theses.fr/1987PA066315.
Full textZara, Henri. "Système d'acquisition vidéo rapide : application à la mécanique des fluides." Saint-Etienne, 1997. http://www.theses.fr/1997STET4012.
Full textAbidi, Hammadi. "Etude mathématique de quelques problèmes de mécanique des fluides incompressibles." Paris 6, 2004. http://www.theses.fr/2004PA066346.
Full textDanchin, Raphaël. "Analyse numérique et harmonique d'un problème de mécanique des fluides." Palaiseau, Ecole polytechnique, 1997. http://www.theses.fr/1996EPXX0033.
Full textHaspot, Boris. "Étude d'équations liées à la mécanique des fluides compressibles capillaires." Paris 12, 2007. http://www.theses.fr/2007PA120051.
Full textMezri, Leila. "Rôle des fluides pendant l'exhumation continentale : modélisation hydro-thermo-mécanique." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066175.
Full textStrain localization is essential to the existence of plate tectonic on Earth. Yet, it is the result of non-linear interaction across several temporal and spatial scales and to date no unique rheological model exists that captures the effect of all these interactions at crustal scale. The work presented here is an attempt to fill part of the gap between out- crop scale and crustal scale models, between petrological scale and crustal scale. The central question is how to measure the effects of fluids and fluid-rock interactions on the dynamics and the kinematics of continental metamorphic core complexes by the mean of crustal scale numerical models. To answer this question, we have tried to esta- blish an empirical model of fluid flow and fluid-rock interaction, which could be valid at the scale of the crust. At that specific scale, it is important to capture the effects of free fluids both on the density of rocks, because it determines the body forces that are driving the exhumation of the crust, and on the strength of rocks and particularly on shear zones which constitute the ’hand-break’, the surface tractions, which resist this exhumation. This empirical model is based on a first order observation related to the behaviour of metamorphic rocks along the retrograde P − T path of their exhumation. High-grade metamorphic rocks (amphibolite/granulite) are indeed exhumed to the sur- face with very little retromorphose except those located within the shear bands where deformation localises. This works first consisted in parameterising this observation in a manner that could be implemented into a 2D thermo-mechanical code as an hydro- thermo-mechanical coupling which could account for free-water/rock-water exchange. In second part, a simplified scheme is introduced to account for hydrothermal cooling of the crust in the late stage of exhumation. The results show that this parameterization al- lows to better account for field observation in a range of parameters that are compatible with laboratory experiments. Limiting the retromorphose of rocks by the availability of free water is shown to produce significantly different metamorphic domes kinematics as compared to prior studies. We indeed demonstrate that it is not necessary to introduce heterogeneity in crustal composition to form asymmetric structures but that the effect of water is modulated by the chemistry of the protolith rocks which influences strain localization
Mezri, Leila. "Rôle des fluides pendant l'exhumation continentale : modélisation hydro-thermo-mécanique." Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066175.
Full textStrain localization is essential to the existence of plate tectonic on Earth. Yet, it is the result of non-linear interaction across several temporal and spatial scales and to date no unique rheological model exists that captures the effect of all these interactions at crustal scale. The work presented here is an attempt to fill part of the gap between out- crop scale and crustal scale models, between petrological scale and crustal scale. The central question is how to measure the effects of fluids and fluid-rock interactions on the dynamics and the kinematics of continental metamorphic core complexes by the mean of crustal scale numerical models. To answer this question, we have tried to esta- blish an empirical model of fluid flow and fluid-rock interaction, which could be valid at the scale of the crust. At that specific scale, it is important to capture the effects of free fluids both on the density of rocks, because it determines the body forces that are driving the exhumation of the crust, and on the strength of rocks and particularly on shear zones which constitute the ’hand-break’, the surface tractions, which resist this exhumation. This empirical model is based on a first order observation related to the behaviour of metamorphic rocks along the retrograde P − T path of their exhumation. High-grade metamorphic rocks (amphibolite/granulite) are indeed exhumed to the sur- face with very little retromorphose except those located within the shear bands where deformation localises. This works first consisted in parameterising this observation in a manner that could be implemented into a 2D thermo-mechanical code as an hydro- thermo-mechanical coupling which could account for free-water/rock-water exchange. In second part, a simplified scheme is introduced to account for hydrothermal cooling of the crust in the late stage of exhumation. The results show that this parameterization al- lows to better account for field observation in a range of parameters that are compatible with laboratory experiments. Limiting the retromorphose of rocks by the availability of free water is shown to produce significantly different metamorphic domes kinematics as compared to prior studies. We indeed demonstrate that it is not necessary to introduce heterogeneity in crustal composition to form asymmetric structures but that the effect of water is modulated by the chemistry of the protolith rocks which influences strain localization
Abaidi, Mohamed. "Instabilités morphologiques de micro-capsules en suspension libre dans un écoulement complexe." Amiens, 2013. http://www.theses.fr/2013AMIE0120.
Full textPuel, Marjolaine. "Etudes variationnelle et asymptotique de problèmes de la mécanique des fluides et des plasmas." Paris 6, 2001. http://www.theses.fr/2001PA066360.
Full textSingh, Jitendra. "Couplage de la méthode intégrale aux frontières en formulation non-primitive et d'une méthode multipolaire pour la simulation d'écoulement incompressibles." Grenoble INPG, 2009. http://www.theses.fr/2009INPG0148.
Full textThe present work addresses the development of the Soundary Element Method (SEM) to model various types of flow in microfluidics devices. Two tasks were carried out; coupling SEM with multipole methods to decrease computational requirements; and a new direction of employing non-primitive variables (N-PV) in SEM formulations. Axisymmetric flow models were considered since, while allowing the realistic modelling of droplets encountered in our applications, they are less computationally demanding than three-dimensional models. The Multipole Method SEM was developed for axisymmetric potential problems and the computation time was reduced by one third. This method was adapted to the simulation of free surface flow problem of drop impact. A new boundary integral formulation for Stokes flows in axisymmetric and three-dimensional problems is developed in the second part. This formulation constitutes an actual advancement in N-PV SEM based on the Helmholtz decomposition and was validated on standard axisymmetric problems