Dissertations / Theses on the topic 'Edge IoT'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Edge IoT.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Stiefel, Maximilian. "IOT CONNECTIVITY WITH EDGE COMPUTING." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-372094.
Full textHuang, Zhenqiu. "Progression and Edge Intelligence Framework for IoT Systems." Thesis, University of California, Irvine, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10168486.
Full textThis thesis studies the issues of building and managing future Internet of Things (IoT) systems. IoT systems consist of distributed components with services for sensing, processing, and controlling through devices deployed in our living environment as part of the global cyber-physical ecosystem.
Systems with perpetually running IoT devices may use a lot of energy. One challenge is implementing good management policies for energy saving. In addition, a large scale of devices may be deployed in wide geographical areas through low bandwidth wireless communication networks. This brings the challenge of congfiuring a large number of duplicated applications with low latency in a scalable manner. Finally, intelligent IoT applications, such as occupancy prediction and activity recognition, depend on analyzing user and event patterns from historical data. In order to achieve real-time interaction between humans and things, reliable yet real-time analytic support should be included to leverage the interplay and complementary roles of edge and cloud computing.
In this dissertation, I address the above issues from the service oriented point of view. Service oriented architecture (SOA) provides the integration and management flexibility using the abstraction of services deployed on devices. We have designed the WuKong IoT middleware to facilitate connectivity, deployment, and run-time management of IoT applications.
For energy efficient mapping, this thesis presents an energy saving methodology for co- locating several services on the same physical device in order to reduce the computing and communication energy. In a multi-hop network, the service co-location problem is formulated as a quadratic programming problem. I propose a reduction method that reduces it to the integer programming problem. In a single hop network, the service co-location problem can be modeled as the Maximum Weighted Independent Set (MWIS) problem. I design algorithm to transform a service flow to a co-location graph. Then, known heuristic algorithms to find the maximum independent set, which is the basis for making service co-location decisions, are applied to the co-location graph.
For low latency scalable deployment, I propose a region-based hierarchical management structure. A congestion zone that covers multiple regions is identified. The problem of deploying a large number of copies of a flow-based program (FBP) in a congestion zone is modeled as a network traffic congestion problem. Then, the problem of mapping in a congestion zone is modeled as an Integer Quadratic Constrained Programming (IQCP) problem, which is proved to be a NP-hard problem. Given that, an approximation algorithm based on LP relaxation and an efficient service relocating heuristic algorithm are designed for reducing the computation complexity. For each congestion zone, the algorithm will perform global optimized mapping for multiple regions, and then request multiple deployment delegators for reprogramming individual devices.
Finally, with the growing adoption of IoT applications, dedicated and single-purpose devices are giving way to smart, adaptive devices with rich capabilities using a platform or API, collecting and analyzing data, and making their own decisions. To facilitate building intelligent applications in IoT, I have implemented the edge framework for supporting reliable streaming analytics on edge devices. In addition, a progression framework is built to achieve the self-management capability of applications in IoT. A progressive architecture and a programming paradigm for bridging the service oriented application with the power of big data on the cloud are designed in the framework. In this thesis, I present the detailed design of the progression framework, which incorporates the above features for building scalable management of IoT systems through a flexible middleware.
Marchioni, Alex <1989>. "Algorithms and Systems for IoT and Edge Computing." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10084/1/marchioni_alex_tesi.pdf.
Full textAntonini, Mattia. "From Edge Computing to Edge Intelligence: exploring novel design approaches to intelligent IoT applications." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/308630.
Full textAntonini, Mattia. "From Edge Computing to Edge Intelligence: exploring novel design approaches to intelligent IoT applications." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/308630.
Full textPiscaglia, Daniele. "Supporto e Infrastrutture DevOps per Microservizi IoT su Edge Gateway." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textBroumas, Ioannis. "Design of Cellular and GNSS Antenna for IoT Edge Device." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-39239.
Full textAshouri, Majid. "Towards Supporting IoT System Designers in Edge Computing Deployment Decisions." Licentiate thesis, Malmö universitet, Malmö högskola, Institutionen för datavetenskap och medieteknik (DVMT), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-37068.
Full textRajakaruna, A. (Archana). "Lightweight edge-based networking architecture for low-power IoT devices." Master's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201906072483.
Full textKOBEISSI, AHMAD. "VERSO IL CONCETTO DI SMART CITY: SOLUZIONI IOT EDGE-CLOUD." Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/996248.
Full textGhaffar, Talha. "Empirical Evaluation of Edge Computing for Smart Building Streaming IoT Applications." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/88438.
Full textMaster of Science
Among the various emerging applications of Internet of Things (IoT) are Smart buildings, that allow us to monitor and manipulate various operating parameters of a building by instrumenting it with sensor and actuator devices (Things). These devices operate continuously and generate unbounded streams of data that needs to be processed at low latency. This data, until recently, has been processed by the IoT applications deployed in the Cloud at the cost of high network latency of accessing Cloud’s resources. However, the increasing availability of IoT devices, ubiquitous connectivity, and exponential growth in the volume of IoT data has given rise to a new computing paradigm, referred to as “Edge computing”. Edge computing argues that IoT data should be analyzed near its source (at the network’s Edge) in order to eliminate high latency of accessing Cloud for data processing. In order to develop efficient Edge computing systems, an in-depth understanding of the trade-offs involved in Edge and Cloud computing paradigms is required. In this work, we seek to understand these trade-offs and the potential benefits of Edge computing. We examine end to-end latency and throughput performance characteristics of Smart building streaming IoT applications by deploying them at the resource-constrained Edge and compare it against the performance that can be achieved by Cloud deployment. We also present a real-time streaming application to detect and localize the footstep impacts generated by a building’s occupant while walking. We characterize this application’s performance for Edge and Cloud computing and utilize a hybrid scheme that (1) offers maximum of around 60% and 65% reduced latency compared to Edge and Cloud respectively for similar throughput performance and (2) enables processing of higher ingestion rates by eliminating network bottleneck.
Eriksson, Fredrik, and Sebastian Grunditz. "Containerizing WebAssembly : Considering WebAssembly Containers on IoT Devices as Edge Solution." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177581.
Full textLiu, Sige. "Bandit Learning Enabled Task Offloading and Resource Allocation in Mobile Edge Computing." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29719.
Full textLaroui, Mohammed. "Distributed edge computing for enhanced IoT devices and new generation network efficiency." Electronic Thesis or Diss., Université Paris Cité, 2022. http://www.theses.fr/2022UNIP7078.
Full textTraditional cloud infrastructure will face a series of challenges due to the centralization of computing, storage, and networking in a small number of data centers, and the long-distance between connected devices and remote data centers. To meet this challenge, edge computing seems to be a promising possibility that provides resources closer to IoT devices. In the cloud computing model, compute resources and services are often centralized in large data centers that end-users access from the network. This model has an important economic value and more efficient resource-sharing capabilities. New forms of end-user experience such as the Internet of Things require computing resources near to the end-user devices at the network edge. To meet this need, edge computing relies on a model in which computing resources are distributed to the edge of a network as needed, while decentralizing the data processing from the cloud to the edge as possible. Thus, it is possible to quickly have actionable information based on data that varies over time. In this thesis, we propose novel optimization models to optimize the resource utilization at the network edge for two edge computing research directions, service offloading and vehicular edge computing. We study different use cases in each research direction. For the optimal solutions, First, for service offloading we propose optimal algorithms for services placement at the network edge (Tasks, Virtual Network Functions (VNF), Service Function Chain (SFC)) by taking into account the computing resources constraints. Moreover, for vehicular edge computing, we propose exact models related to maximizing the coverage of vehicles by both Taxis and Unmanned Aerial Vehicle (UAV) for online video streaming applications. In addition, we propose optimal edge-autopilot VNFs offloading at the network edge for autonomous driving. The evaluation results show the efficiency of the proposed algorithms in small-scale networks in terms of time, cost, and resource utilization. To deal with dense networks with a high number of devices and scalability issues, we propose large-scale algorithms that support a huge amount of devices, data, and users requests. Heuristic algorithms are proposed for SFC orchestration, maximum coverage of mobile edge servers (vehicles). Moreover, The artificial intelligence algorithms (machine learning, deep learning, and deep reinforcement learning) are used for 5G VNF slices placement, edge-autopilot VNF placement, and autonomous UAV navigation. The numerical results give good results compared with exact algorithms with high efficiency in terms of time
Samikwa, Eric. "Flood Prediction System Using IoT and Artificial Neural Networks with Edge Computing." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280299.
Full textÖversvämningar drabbar miljontals människor över hela världen genom att orsaka dödsfall och förstöra egendom. Sakernas Internet (IoT) har använts i områden som översvämnings förutsägelse, översvämnings övervakning, översvämning upptäckt, etc. Även om IoT-teknologier inte kan stoppa förekomsten av översvämningar, så är de mycket användbara när det kommer till transport av katastrofberedskap och motverkande handlingsdata. Utveckling har skett när det kommer till att förutspå översvämningar med hjälp av artificiella neuronnät (ANN). Trots de olika framstegen inom system för att förutspå översvämningar genom ANN, så har det varit mindre fokus på användningen av edge computing vilket skulle kunna förbättra effektivitet och tillförlitlighet. I detta examensarbete föreslås ett system för kortsiktig översvämningsförutsägelse genom IoT och ANN, där gissningsberäkningen utförs över en låg effekt edge enhet. Systemet övervakar sensordata från regn och vattennivå i realtid och förutspår översvämningsvattennivåer i förtid genom att använda långt korttidsminne. Systemet kan köras på batteri eftersom det använder låg effekt IoT-enheter och kommunikationsteknik. Resultaten från en utvärdering av en prototyp av systemet indikerar en bra prestanda när det kommer till noggrannhet att förutspå översvämningar och responstid. Användningen av ANN med edge computing kommer att förbättra effektiviteten av tidiga varningssystem för översvämningar i realtid genom att ta gissningsberäkningen närmare till där datan samlas.
Garofalo, Angelo <1993>. "Flexible Computing Systems For AI Acceleration At The Extreme Edge Of The IoT." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10288/1/PhD_Thesis_Angelo_Garofalo_ETIT_34.pdf.
Full textBassi, Lorenzo. "Orchestration of a MEC-based multi-protocol IoT environment." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24114/.
Full textRaffa, Viviana. "Edge/cloud virtualization techniques and resources allocation algorithms for IoT-based smart energy applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22864/.
Full textAGUIARI, DAVIDE. "Exploring Computing Continuum in IoT Systems: Sensing, Communicating and Processing at the Network Edge." Doctoral thesis, Università degli Studi di Cagliari, 2021. http://hdl.handle.net/11584/311478.
Full textAguiari, Davide. "Exploring Computing Continuum in IoT Systems : sensing, communicating and processing at the Network Edge." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS131.
Full textAs Internet of Things (IoT), originally comprising of only a few simple sensing devices, reaches 34 billion units by the end of 2020, they cannot be defined as merely monitoring sensors anymore. IoT capabilities have been improved in recent years as relatively large internal computation and storage capacity are becoming a commodity. In the early days of IoT, processing and storage were typically performed in cloud. New IoT architectures are able to perform complex tasks directly on-device, thus enabling the concept of an extended computational continuum. Real-time critical scenarios e.g. autonomous vehicles sensing, area surveying or disaster rescue and recovery require all the actors involved to be coordinated and collaborate without human interaction to a common goal, sharing data and resources, even in intermittent networks covered areas. This poses new problems in distributed systems, resource management, device orchestration,as well as data processing. This work proposes a new orchestration and communication framework, namely CContinuum, designed to manage resources in heterogeneous IoT architectures across multiple application scenarios. This work focuses on two key sustainability macroscenarios: (a) environmental sensing and awareness, and (b) electric mobility support. In the first case a mechanism to measure air quality over a long period of time for different applications at global scale (3 continents 4 countries) is introduced. The system has been developed in-house from the sensor design to the mist-computing operations performed by the nodes. In the second scenario, a technique to transmit large amounts of fine-time granularity battery data from a moving vehicle to a control center is proposed jointly with the ability of allocating tasks on demand within the computing continuum
Xia, Chunqiu. "Energy Demand Response Management in Smart Home Environments." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/20182.
Full textShirin, Abkenar Forough. "Towards Hyper-efficient IoT Networks Using Fog Paradigm." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/28951.
Full textOzeer, Umar Ibn Zaid. "Autonomic resilience of distributed IoT applications in the Fog." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM054.
Full textRecent computing trends have been advocating for more distributed paradigms, namelyFog computing, which extends the capacities of the Cloud at the edge of the network, thatis close to end devices and end users in the physical world. The Fog is a key enabler of theInternet of Things (IoT) applications as it resolves some of the needs that the Cloud failsto provide such as low network latencies, privacy, QoS, and geographical requirements. Forthis reason, the Fog has become increasingly popular and finds application in many fieldssuch as smart homes and cities, agriculture, healthcare, transportation, etc.The Fog, however, is unstable because it is constituted of billions of heterogeneous devicesin a dynamic ecosystem. IoT devices may regularly fail because of bulk production andcheap design. Moreover, the Fog-IoT ecosystem is cyber-physical and thus devices aresubjected to external physical world conditions which increase the occurrence of failures.When failures occur in such an ecosystem, the resulting inconsistencies in the applicationaffect the physical world by inducing hazardous and costly situations.In this Thesis, we propose an end-to-end autonomic failure management approach for IoTapplications deployed in the Fog. The approach manages IoT applications and is composedof four functional steps: (i) state saving, (ii) monitoring, (iii) failure notification,and (iv) recovery. Each step is a collection of similar roles and is implemented, taking intoaccount the specificities of the ecosystem (e.g., heterogeneity, resource limitations). Statesaving aims at saving data concerning the state of the managed application. These includeruntime parameters and the data in the volatile memory, as well as messages exchangedand functions executed by the application. Monitoring aims at observing and reportinginformation on the lifecycle of the application. When a failure is detected, failure notificationsare propagated to the part of the application which is affected by that failure.The propagation of failure notifications aims at limiting the impact of the failure and providinga partial service. In order to recover from a failure, the application is reconfigured and thedata saved during the state saving step are used to restore a cyber-physical consistent stateof the application. Cyber-physical consistency aims at maintaining a consistent behaviourof the application with respect to the physical world, as well as avoiding dangerous andcostly circumstances.The approach was validated using model checking techniques to verify important correctnessproperties. It was then implemented as a framework called F3ARIoT. This frameworkwas evaluated on a smart home application. The results showed the feasibility of deployingF3ARIoT on real Fog-IoT applications as well as its good performances in regards to enduser experience
Samie, Farzad [Verfasser], and J. [Akademischer Betreuer] Henkel. "Resource Management for Edge Computing in Internet of Things (IoT) / Farzad Samie ; Betreuer: J. Henkel." Karlsruhe : KIT-Bibliothek, 2018. http://d-nb.info/1154856690/34.
Full textMestoukirdi, Mohamad. "Reliable and Communication-Efficient Federated Learning for Future Intelligent Edge Networks." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS432.
Full textIn the realm of future 6G wireless networks, integrating the intelligent edge through the advent of AI signifies a momentous leap forward, promising revolutionary advancements in wireless communication. This integration fosters a harmonious synergy, capitalizing on the collective potential of these transformative technologies. Central to this integration is the role of federated learning, a decentralized learning paradigm that upholds data privacy while harnessing the collective intelligence of interconnected devices. By embracing federated learning, 6G networks can unlock a myriad of benefits for both wireless networks and edge devices. On one hand, wireless networks gain the ability to exploit data-driven solutions, surpassing the limitations of traditional model-driven approaches. Particularly, leveraging real-time data insights will empower 6G networks to adapt, optimize performance, and enhance network efficiency dynamically. On the other hand, edge devices benefit from personalized experiences and tailored solutions, catered to their specific requirements. Specifically, edge devices will experience improved performance and reduced latency through localized decision-making, real-time processing, and reduced reliance on centralized infrastructure. In the first part of the thesis, we tackle the predicament of statistical heterogeneity in federated learning stemming from divergent data distributions among devices datasets. Rather than training a conventional one-model-fits-all, which often performs poorly with non-IID data, we propose user-centric set of rules that produce personalized models tailored to each user objectives. To mitigate the prohibitive communication overhead associated with training distinct personalized model for each user, users are partitioned into clusters based on their objectives similarity. This enables collective training of cohort-specific personalized models. As a result, the total number of personalized models trained is reduced. This reduction lessens the consumption of wireless resources required to transmit model updates across bandwidth-limited wireless channels. In the second part, our focus shifts towards integrating IoT remote devices into the intelligent edge by leveraging unmanned aerial vehicles as a federated learning orchestrator. While previous studies have extensively explored the potential of UAVs as flying base stations or relays in wireless networks, their utilization in facilitating model training is still a relatively new area of research. In this context, we leverage the UAV mobility to bypass the unfavorable channel conditions in rural areas and establish learning grounds to remote IoT devices. However, UAV deployments poses challenges in terms of scheduling and trajectory design. To this end, a joint optimization of UAV trajectory, device scheduling, and the learning performance is formulated and solved using convex optimization techniques and graph theory. In the third and final part of this thesis, we take a critical look at thecommunication overhead imposed by federated learning on wireless networks. While compression techniques such as quantization and sparsification of model updates are widely used, they often achieve communication efficiency at the cost of reduced model performance. We employ over-parameterized random networks to approximate target networks through parameter pruning rather than direct optimization to overcome this limitation. This approach has been demonstrated to require transmitting no more than a single bit of information per model parameter. We show that SoTA methods fail to capitalize on the full attainable advantages in terms of communication efficiency using this approach. Accordingly, we propose a regularized loss function which considers the entropy of transmitted updates, resulting in notable improvements to communication and memory efficiency during federated training on edge devices without sacrificing accuracy
Perala, Sai Saketh Nandan. "Efficient Resource Management for Video Applications in the Era of Internet-of-Things (IoT)." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/theses/2311.
Full textTania, Zannatun Nayem. "Machine Learning with Reconfigurable Privacy on Resource-Limited Edge Computing Devices." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292105.
Full textDistribuerad databehandling möjliggör effektiv datalagring, bearbetning och hämtning men det medför säkerhets- och sekretessproblem. Sensorer är hörnstenen i de IoT-baserade rörledningarna, eftersom de ständigt samlar in data tills de kan analyseras på de centrala molnresurserna. Dessa sensornoder begränsas dock ofta av begränsade resurser. Helst är det önskvärt att göra alla insamlade datafunktioner privata, men på grund av resursbegränsningar kanske det inte alltid är möjligt. Att göra alla funktioner privata kan orsaka överutnyttjande av resurser, vilket i sin tur skulle påverka prestanda för hela systemet. I denna avhandling designar och implementerar vi ett system som kan hitta den optimala uppsättningen datafunktioner för att göra privata, med tanke på begränsningar av enhetsresurserna och systemets önskade prestanda eller noggrannhet. Med hjälp av generaliseringsteknikerna för data-anonymisering skapar vi användardefinierade injicerbara sekretess-kodningsfunktioner för att göra varje funktion i datasetet privat. Oavsett resurstillgänglighet definieras vissa datafunktioner av användaren som viktiga funktioner för att göra privat. Alla andra datafunktioner som kan utgöra ett integritetshot kallas de icke-väsentliga funktionerna. Vi föreslår Dynamic Iterative Greedy Search (DIGS), en girig sökalgoritm som tar resursförbrukningen för varje icke-väsentlig funktion som inmatning och ger den mest optimala uppsättningen icke-väsentliga funktioner som kan vara privata med tanke på tillgängliga resurser. Den mest optimala uppsättningen innehåller de funktioner som förbrukar minst resurser. Vi utvärderar vårt system på en Fitbit-dataset som innehåller 17 datafunktioner, varav 4 är viktiga privata funktioner för en viss klassificeringsapplikation. Våra resultat visar att vi kan erbjuda ytterligare 9 privata funktioner förutom de 4 viktiga funktionerna i Fitbit-datasetet som innehåller 1663 poster. Dessutom kan vi spara 26; 21% minne jämfört med att göra alla funktioner privata. Vi testar också vår metod på en större dataset som genereras med Generative Adversarial Network (GAN). Den valda kantenheten, Raspberry Pi, kan dock inte tillgodose storleken på den stora datasetet på grund av otillräckliga resurser. Våra utvärderingar med 1=8th av GAN-datasetet resulterar i 3 extra privata funktioner med upp till 62; 74% minnesbesparingar jämfört med alla privata datafunktioner. Att upprätthålla integritet kräver inte bara ytterligare resurser utan har också konsekvenser för de designade applikationernas prestanda. Vi upptäcker dock att integritetskodning har en positiv inverkan på noggrannheten i klassificeringsmodellen för vår valda klassificeringsapplikation.
Sigwele, Tshiamo, Yim Fun Hu, M. Ali, Jiachen Hou, M. Susanto, and H. Fitriawan. "An intelligent edge computing based semantic gateway for healthcare systems interoperability and collaboration." IEEE, 2018. http://hdl.handle.net/10454/17552.
Full textThe use of Information and Communications Technology (ICTs) in healthcare has the potential of minimizing medical errors, reducing healthcare cost and improving collaboration between healthcare systems which can dramatically improve the healthcare service quality. However interoperability within different healthcare systems (clinics/hospitals/pharmacies) remains an issue of further research due to a lack of collaboration and exchange of healthcare information. To solve this problem, cross healthcare system collaboration is required. This paper proposes a conceptual semantic based healthcare collaboration framework based on Internet of Things (IoT) infrastructure that is able to offer a secure cross system information and knowledge exchange between different healthcare systems seamlessly that is readable by both machines and humans. In the proposed framework, an intelligent semantic gateway is introduced where a web application with restful Application Programming Interface (API) is used to expose the healthcare information of each system for collaboration. A case study that exposed the patient's data between two different healthcare systems was practically demonstrated where a pharmacist can access the patient's electronic prescription from the clinic.
British Council Institutional Links grant under the BEIS-managed Newton Fund.
Monducci, Francesca. "Infrastruttura Edge-based per Sistemi Predittivi in Ambito Industriale." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24054/.
Full textVargas, Vargas Fernando. "Cloudlet for the Internet-of- Things." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191433.
Full textMed en befolkning som ökar i urbana områden, står många av världens städer inför utmaningar som ökande avgaser och trafikstockning. I ett försök att tackla sådana utmaningar, formulerar regeringar och stadsfullmäktige nya och innovativa strategier. Integrationen av ICT med dessa strategier bildar konceptet smart cities. Internet of Things (IoT) är en drivande faktor för smart city initiativ, vilket gör det nödvändigt för en IT infrastruktur som kan ta till vara på de många fördelar som IoT bidrar med. Cloudlet är en ny infrastrukturell modell som erbjuder datormolnskompetens i mobilnätverkets edge. Denna miljö karakteriseras av låg latens och hög bandbredd, utgörande ett nytt ekosystem där nätverksoperatörer kan hålla deras nätverks-edge öppet för utomstående, vilket tillåter att flexibelt och snabbt utveckla innovativa applikationer och tjänster för mobila subskribenter. I denna avhandling presenterar vi en cloudlet-arkitektur som framhäver edge computing, för att förse en plattform för IoT utrustning där många smart city applikationer kan utvecklas. Vi förser er först med en överblick av existerande utmaningar och krav i IoT systemutveckling. Sedan analyserar vi existerande cloudlet lösningar. Slutligen presenteras vår cloudlet arkitektur för IoT, inklusive design och en prototyplösning. För vår cloudlet-prototyp har vi fokuserat på en modell av mikroskala för att räkna ut CO2 emissioner per enskild resa med fordon, och implementerat en funktion som tillåter oss att läsa CO2 data från CO2 sensorer. Platsdata är inhämtad med hjälp av en Android smartphone och behandlas i cloudlet. Det hela sammanfattas med en prestandaevaluering.
Vadivelu, Somasundaram. "Sensor data computation in a heavy vehicle environment : An Edge computation approach." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235486.
Full textI ett tungt fordonsscenario är internetanslutningen inte tillförlitlig, främst eftersom lastbilen ofta reser på avlägsna platser nätverket kanske inte är tillgängligt. Data som genereras av sensorer kan inte skickas till internet när anslutningen är dålig och det är därför bra att ackumulera och göra en viss grundläggande beräkning av data i det tunga fordonet och skicka det till molnet när det finns en bra nätverksanslutning. Processen att göra beräkning nära den plats där data genereras kallas Edge computing. Scania har sin egen Edge Computing-lösning, som den använder för att göra beräkningar som förbehandling av sensordata, lagring av data etc. Jämförelsen skulle vara vad gäller data efficiency, CPU load och memory consumption. I slutsatsen visar det sig att Greengrass-lösningen fungerar bättre än den nuvarande Scania-lösningen när det gäller CPU-belastning och minnesfotavtryck, medan det i data-effektivitet trots att Scania-lösningen är effektivare jämfört med Greengrass-lösningen visades att när lastbilen går vidare i Villkor för att öka datastorleken kan Greengrass-lösningen vara konkurrenskraftig för Scania-lösningen. För att realisera Edge computing används en mjukvara som heter Amazon Web Service (AWS) Greengrass.Ett annat ämne som utforskas i denna avhandling är digital twin. Digital twin är den virtuella formen av någon fysisk enhet, den kan bildas genom att erhålla realtidssensorvärden som är anslutna till den fysiska enheten. Med hjälp av sensorns värden kan ett system med ungefärligt tillstånd av enheten inramas och som sedan kan fungera som digital twin. Digital twin kan betraktas som ett viktigt användningsfall vid kantkalkylering. Den digital twin realiseras med hjälp av AWS Device Shadow.
Longo, Eugenio. "AI e IoT: contesto e stato dell’arte." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Find full textSirigu, Giovanni. "Progettazione di Gateway Edge per Smart Factory." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17589/.
Full textRahman, Hasibur. "Distributed Intelligence-Assisted Autonomic Context-Information Management : A context-based approach to handling vast amounts of heterogeneous IoT data." Doctoral thesis, Stockholms universitet, Institutionen för data- och systemvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-149513.
Full textAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 7: Submitted.
Passeri, Luca. "Pervasive Jarvis: Evoluzione di un Sistema IoT per le Smart Home." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textHarmassi, Mariem. "Thing-to-thing context-awareness at the edge." Thesis, La Rochelle, 2019. http://www.theses.fr/2019LAROS037.
Full textInternet of Things IoT (IoT) today comprises a plethora of different sensors and diverse connected objects, constantly collecting and sharing heterogeneous sensory data from their environment. This enables the emergence of new applications exploiting the collected data towards facilitating citizens lifestyle. These IoT applications are made context-aware thanks to data collected about user's context, to adapt their behavior autonomously without human intervention. In this Thesis, we propose a novel paradigm that concern Machine to Machine (M2M)/Thing To Thing (T2T) interactions to be aware of each other context named \T2T context-awareness at the edge", it brings conventional context-awareness from the application front end to the application back-end. More precisely, we propose to empower IoT devices with intelligence, allowing them to understand their environment and adapt their behaviors based on, and even act upon, the information captured by the neighboringdevices around, thus creating a collective intelligence. The first challenge we face in order to make IoT devices context-aware is (i) How can we extract such information without deploying any dedicated resources for this task? To do so we propose in our first work a context reasoner [1] based a cooperation among IoT devices located in the same surrounding. Such cooperation aims at mutually exchange data about each other context. To enable IoT devices to see, hear, and smell the physical world for themselves, we need firstly to make them connected to share their observations. For a mobile and energy- constrained device, the second challenge we face is (ii) How to discover as much neighbors as possible in its vicinity while preserving its energy resource? We propose Welcome [2] a Low latency and Energy efficient neighbor discovery scheme that is based on a single-delegate election method. Finally, a Publish-Subscribe that take into account the context at the edge of IoT devices, can greatly reduce the overhead and save the energy by avoiding unnecessary transmission of data that doesn't match application requirements. However, if not thought about properly building such T2T context-awareness could imply an overload of subscriptions to meet context-estimation needs. So our third contribution is (iii) How to make IoT devices context-aware while saving energy. To answer this, We propose an Energy efficient and context-aware Publish-Subscribe [3] that strike a balance between energy-consumption due to context estimation and energy-saving due to context-based filtering near to data sources
Le, Xuan Sang. "Co-conception Logiciel/FPGA pour Edge-computing : promotion de la conception orientée objet." Thesis, Brest, 2017. http://www.theses.fr/2017BRES0041/document.
Full textCloud computing is often the most referenced computational model for Internet of Things. This model adopts a centralized architecture where all sensor data is stored and processed in a sole location. Despite of many advantages, this architecture suffers from a low scalability while the available data on the network is continuously increasing. It is worth noting that, currently, more than 50% internet connections are between things. This can lead to the reliability problem in realtime and latency-sensitive applications. Edge-computing which is based on a decentralized architecture, is known as a solution for this emerging problem by: (1) reinforcing the equipment at the edge (things) of the network and (2) pushing the data processing to the edge.Edge-centric computing requires sensors nodes with more software capability and processing power while, like any embedded systems, being constrained by energy consumption. Hybrid hardware systems consisting of FPGA and processor offer a good trade-off for this requirement. FPGAs are known to enable parallel and fast computation within a low energy budget. The coupled processor provides a flexible software environment for edge-centric nodes.Applications design for such hybrid network/software/hardware (SW/HW) system always remains a challenged task. It covers a large domain of system level design from high level software to low-level hardware (FPGA). This result in a complex system design flow and involves the use of tools from different engineering domains. A common solution is to propose a heterogeneous design environment which combining/integrating these tools together. However the heterogeneous nature of this approach can pose the reliability problem when it comes to data exchanges between tools.Our motivation is to propose a homogeneous design methodology and environment for such system. We study the application of a modern design methodology, in particular object-oriented design (OOD), to the field of embedded systems. Our choice of OOD is motivated by the proven productivity of this methodology for the development of software systems. In the context of this thesis, we aim at using OOD to develop a homogeneous design environment for edge-centric systems. Our approach addresses three design concerns: (1) hardware design where object-oriented principles and design patterns are used to improve the reusability, adaptability, and extensibility of the hardware system. (2) hardware / software co-design, for which we propose to use OOD to abstract the SW/HW integration and the communication that encourages the system modularity and flexibility. (3) middleware design for Edge Computing. We rely on a centralized development environment for distributed applications, while the middleware facilitates the integration of the peripheral nodes in the network, and allows automatic remote reconfiguration. Ultimately, our solution offers software flexibility for the implementation of complex distributed algorithms, complemented by the full exploitation of FPGAs performance. These are placed in the nodes, as close as possible to the acquisition of the data by the sensors† in order to deploy a first effective intensive treatment
Miccoli, Roberta. "Implementation of a complete sensor data collection and edge-cloud communication workflow within the WeLight project." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22563/.
Full textHvizdák, Lukáš. "Systém sběru dat v průmyslu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413269.
Full textCantamaglia, Carlo. "Progettazione e sviluppo di un sistema di aggregazione dati per applicazioni WoT in uno scenario di monitoraggio strutturale." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22866/.
Full textLi, Hengsha. "Real-time Cloudlet PaaS for GreenIoT : Design of a scalable server PaaS and a GreenIoT application." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239004.
Full textCloudlet är en ny teknik som har fått stort intresse inom nätverksforskning. Tekniken kan beskrivas som en PaaS-plattform (Platform as a Service) som tillåter mobila klienter att exekvera sin kod i molnet. Cloudlet kan ses som ett lager i kanten av kommunikationsnätet.I denna rapport presenteras en cloudlet-baserad arkitektur som inkluderar cloudlet-kod som en del av själva tillämpning på klient-sidan. Vi ger först en översikt av relaterat arbete inom området och beskriver existerande utmaningar som behöver adresseras. Därefter presenterar vi en övergripande design för en cloudlet-baserad implementering. Slutligen presenterar vi cloudlet-arkitekturen, inklusive en prototypimplementation av både klient-tillämpning och cloudlet-server. I vår prototyp av en datavisualiseringstillämpning för CO2, fokuserar vi på hur man formaterar funktionerna på klientsidan, hur man schemalägger cloudlet-PaaS på serversidan, samt hur servern kan göras skalbar. Rapporten avslutas med en prestandautvärdering.Cloudlet-tekniken bedöms i stor utsträckning att användas i IoT-projekt, såsom datavisualisering av luftkvalitet och vattenkvalitet, fläktstyrning och trafikstyrning eller andra användningsområden. Jämfört med den traditionella centraliserade molnarkitekturen har cloudlet hög respons, flexibilitet och skalbarhet.
Jouni, Zalfa. "Analog spike-based neuromorphic computing for low-power smart IoT applications." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST114.
Full textAs the Internet of Things (IoT) expands with more connected devices and complex communications, the demand for precise, energy-efficient localization technologies has intensified. Traditional machine learning and artificial intelligence (AI) techniques provide high accuracy in radio-frequency (RF) localization but often at the cost of greater complexity and power usage. To address these challenges, this thesis explores the potential of neuromorphic computing, inspired by brain functionality, to enable energy-efficient AI-based RF localization. It introduces an end-to-end analog spike-based neuromorphic system (RF NeuroAS), with a simplified version fully implemented in BiCMOS 55 nm technology. RF NeuroAS is designed to identify source positions within a 360-degree range on a two-dimensional plane, maintaining high resolution (10 or 1 degree) even in noisy conditions. The core of this system, an analog-based spiking neural network (A-SNN), was trained and tested on a simulated dataset (SimLocRF) from MATLAB and an experimental dataset (MeasLocRF) from anechoic chamber measurements, both developed in this thesis.The learning algorithms for A-SNN were developed through two approaches: software-based deep learning (DL) and bio-plausible spike-timing-dependent plasticity (STDP). RF NeuroAS achieves a localization accuracy of 97.1% with SimLocRF and 90.7% with MeasLoc at a 10-degree resolution, maintaining high performance with low power consumption in the nanowatt range. The simplified RF NeuroAS consumes just over 1.1 nW and operates within a 30 dB dynamic range. A-SNN learning, via DL and STDP, demonstrated performance on XOR and MNIST problems. DL depends on the non-linearity of post-layout transfer functions of A-SNN's neurons and synapses, while STDP depends on the random noise in analog neuron circuits. These findings highlight advancements in energy-efficient IoT through neuromorphic computing, promising low-power smart edge IoT breakthroughs inspired by brain mechanisms
Feraudo, Angelo. "Distributed Federated Learning in Manufacturer Usage Description (MUD) Deployment Environments." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textMaltoni, Pietro. "Progetto di un acceleratore hardware per layer di convoluzioni depthwise in applicazioni di Deep Neural Network." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24205/.
Full textGandolfi, Riccardo. "Design of a memory-to-memory tensor reshuffle unit for ultra-low-power deep learning accelerators." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23706/.
Full textRahafrouz, Amir. "Distributed Orchestration Framework for Fog Computing." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77118.
Full textSinigaglia, Mattia. "Progettazione ed implementazione di un Sistema On Chip per applicazioni audio." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23790/.
Full textBusacca, Fabio Antonino. "AI for Resource Allocation and Resource Allocation for AI: a two-fold paradigm at the network edge." Doctoral thesis, Università degli Studi di Palermo, 2022. https://hdl.handle.net/10447/573371.
Full textKheffache, Mansour. "Energy-Efficient Detection of Atrial Fibrillation in the Context of Resource-Restrained Devices." Thesis, Luleå tekniska universitet, Datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76394.
Full textDjemai, Ibrahim. "Joint offloading-scheduling policies for future generation wireless networks." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAS007.
Full textThe challenges posed by the increasing number of connected devices, high energy consumption, and environmental impact in today's and future wireless networks are gaining more attention. New technologies like Mobile Edge Computing (MEC) have emerged to bring cloud services closer to the devices and address their computation limitations. Enabling these devices and the network nodes with Energy Harvesting (EH) capabilities is also promising to allow for consuming energy from sustainable and environmentally friendly sources. In addition, Non-Orthogonal Multiple Access (NOMA) is a pivotal technique to achieve enhanced mobile broadband. Aided by the advancement of Artificial Intelligence, especially Reinforcement Learning (RL) models, the thesis work revolves around devising policies that jointly optimize scheduling and computational offloading for devices with EH capabilities, NOMA-enabled communications, and MEC access. Moreover, when the number of devices increases and so does the system complexity, NOMA clustering is performed and Federated Learning is used to produce RL policies in a distributed way. The thesis results validate the performance of the proposed RL-based policies, as well as the interest of using NOMA technique