Academic literature on the topic 'Edge devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Edge devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Edge devices"
van Dijke, Koen, Gert Veldhuis, Karin Schroën, and Remko Boom. "Parallelized edge-based droplet generation (EDGE) devices." Lab on a Chip 9, no. 19 (2009): 2824. http://dx.doi.org/10.1039/b906098g.
Full textMahmod, Md Jubayer al, and Ujjwal Guin. "A Robust, Low-Cost and Secure Authentication Scheme for IoT Applications." Cryptography 4, no. 1 (March 8, 2020): 8. http://dx.doi.org/10.3390/cryptography4010008.
Full textLee, Dongkyu, Hyeongyun Moon, Sejong Oh, and Daejin Park. "mIoT: Metamorphic IoT Platform for On-Demand Hardware Replacement in Large-Scaled IoT Applications." Sensors 20, no. 12 (June 12, 2020): 3337. http://dx.doi.org/10.3390/s20123337.
Full textLinke, Markus, and Juan García-Manrique. "Contribution to Reduce the Influence of the Free Sliding Edge on Compression-After-Impact Testing of Thin-Walled Undamaged Composites Plates." Materials 11, no. 9 (September 13, 2018): 1708. http://dx.doi.org/10.3390/ma11091708.
Full textDouglas, Antonyo, Richard Holloway, Jonathan Lohr, Elijah Morgan, and Khaled Harfoush. "Blockchains for constrained edge devices." Blockchain: Research and Applications 1, no. 1-2 (December 2020): 100004. http://dx.doi.org/10.1016/j.bcra.2020.100004.
Full textTYAGI, PAWAN. "MOLECULAR SPIN DEVICES: CURRENT UNDERSTANDING AND NEW TERRITORIES." Nano 04, no. 06 (December 2009): 325–38. http://dx.doi.org/10.1142/s1793292009001903.
Full textShafiq, Muhammad, Zhihong Tian, Ali Kashif Bashir, Korhan Cengiz, and Adnan Tahir. "SoftSystem: Smart Edge Computing Device Selection Method for IoT Based on Soft Set Technique." Wireless Communications and Mobile Computing 2020 (October 9, 2020): 1–10. http://dx.doi.org/10.1155/2020/8864301.
Full textSanta, José, Pedro J. Fernández, Ramon Sanchez-Iborra, Jordi Ortiz, and Antonio F. Skarmeta. "Offloading Positioning onto Network Edge." Wireless Communications and Mobile Computing 2018 (October 23, 2018): 1–13. http://dx.doi.org/10.1155/2018/7868796.
Full textLiang, Tyng-Yeu, and You-Jie Li. "A Location-Aware Service Deployment Algorithm Based on K-Means for Cloudlets." Mobile Information Systems 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/8342859.
Full textZeng, Xin, Xiaomei Zhang, Shuqun Yang, Zhicai Shi, and Chihung Chi. "Gait-Based Implicit Authentication Using Edge Computing and Deep Learning for Mobile Devices." Sensors 21, no. 13 (July 5, 2021): 4592. http://dx.doi.org/10.3390/s21134592.
Full textDissertations / Theses on the topic "Edge devices"
Choi, Myung Cheon. "Traffic flow management for RSVP/ATM edge devices." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/15520.
Full textBarnes, Brian E. "Real-time resource management for RSVP/ATM edge devices." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/15395.
Full textPinkney, Thomas David. "Wound-edge protection devices to reduce surgical site infection." Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7588/.
Full textKaarlela, H. (Heikki). "Edge adaptive filtering of depth maps for mobile devices." Master's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201910313045.
Full textBrada, Matej. "Graphene electronic devices in magnetic field." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/21800.
Full textSankin, Igor. "Edge termination and RESURF technology in power silicon carbide devices." Diss., Mississippi State : Mississippi State University, 2006. http://library.msstate.edu/etd/show.asp?etd=etd-12162005-141206.
Full textHansson, Gustav. "Computation offloading of 5G devices at the Edge using WebAssembly." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85898.
Full textRajakaruna, A. (Archana). "Lightweight edge-based networking architecture for low-power IoT devices." Master's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201906072483.
Full textWood, Michael G. "Active Silicon Photonic Devices Based on Degenerate Band Edge Resonances." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480432902683812.
Full textTania, Zannatun Nayem. "Machine Learning with Reconfigurable Privacy on Resource-Limited Edge Computing Devices." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292105.
Full textDistribuerad databehandling möjliggör effektiv datalagring, bearbetning och hämtning men det medför säkerhets- och sekretessproblem. Sensorer är hörnstenen i de IoT-baserade rörledningarna, eftersom de ständigt samlar in data tills de kan analyseras på de centrala molnresurserna. Dessa sensornoder begränsas dock ofta av begränsade resurser. Helst är det önskvärt att göra alla insamlade datafunktioner privata, men på grund av resursbegränsningar kanske det inte alltid är möjligt. Att göra alla funktioner privata kan orsaka överutnyttjande av resurser, vilket i sin tur skulle påverka prestanda för hela systemet. I denna avhandling designar och implementerar vi ett system som kan hitta den optimala uppsättningen datafunktioner för att göra privata, med tanke på begränsningar av enhetsresurserna och systemets önskade prestanda eller noggrannhet. Med hjälp av generaliseringsteknikerna för data-anonymisering skapar vi användardefinierade injicerbara sekretess-kodningsfunktioner för att göra varje funktion i datasetet privat. Oavsett resurstillgänglighet definieras vissa datafunktioner av användaren som viktiga funktioner för att göra privat. Alla andra datafunktioner som kan utgöra ett integritetshot kallas de icke-väsentliga funktionerna. Vi föreslår Dynamic Iterative Greedy Search (DIGS), en girig sökalgoritm som tar resursförbrukningen för varje icke-väsentlig funktion som inmatning och ger den mest optimala uppsättningen icke-väsentliga funktioner som kan vara privata med tanke på tillgängliga resurser. Den mest optimala uppsättningen innehåller de funktioner som förbrukar minst resurser. Vi utvärderar vårt system på en Fitbit-dataset som innehåller 17 datafunktioner, varav 4 är viktiga privata funktioner för en viss klassificeringsapplikation. Våra resultat visar att vi kan erbjuda ytterligare 9 privata funktioner förutom de 4 viktiga funktionerna i Fitbit-datasetet som innehåller 1663 poster. Dessutom kan vi spara 26; 21% minne jämfört med att göra alla funktioner privata. Vi testar också vår metod på en större dataset som genereras med Generative Adversarial Network (GAN). Den valda kantenheten, Raspberry Pi, kan dock inte tillgodose storleken på den stora datasetet på grund av otillräckliga resurser. Våra utvärderingar med 1=8th av GAN-datasetet resulterar i 3 extra privata funktioner med upp till 62; 74% minnesbesparingar jämfört med alla privata datafunktioner. Att upprätthålla integritet kräver inte bara ytterligare resurser utan har också konsekvenser för de designade applikationernas prestanda. Vi upptäcker dock att integritetskodning har en positiv inverkan på noggrannheten i klassificeringsmodellen för vår valda klassificeringsapplikation.
Books on the topic "Edge devices"
Krasheninnikov, Sergei, Andrei Smolyakov, and Andrei Kukushkin. On the Edge of Magnetic Fusion Devices. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49594-7.
Full textHirose, Akira. Collisionless edge instability in tokamaks. Saskatoon, Sask: Plasma Physics Laboratory, University of Saskatchewan, 1995.
Find full textZhang, Wei. Improved confinement and edge plasma fluctuations in the STOR-M tokamak. Saskatoon, Sask: University of Saskatchewan, Plasma Physics Laboratory, 1991.
Find full textSpringett, Alan. Do colour measuring devices maximise a printing company's competitive edge?. London: LCP, 2001.
Find full textScott, Samuel J. Effects of leading-edge devices on the low-speed aerodynamic characteristics of a highly-swept arrow-wing. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1985.
Find full textNakano, Hiroshi. DC-SQUIDs fabricated by shapes of sputtering deposition at step edge and anodic oxidization. Fukuoka, Japan: [Kyushu University Research Institute of Fundamental Information Science, 1986.
Find full textPitcher, Charles Spencer. Tokamak plasma interaction with limiters. Downsview, Ont: Institute for Aerospace Studies, 1988.
Find full textRudolph, Peter K. C. High-lift systems on commercial subsonic airliners. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1996.
Find full textStephen, Booth. The devil's edge: A Cooper & Fry mystery. New York]: Witness Impulse, an imprint of HarperCollinsPublisher, 2014.
Find full textCheruvu, Sunil. Demystifying Internet of Things Security: Successful IoT Device/Edge and Platform Security Deployment. Berkeley, CA: Springer Nature, 2020.
Find full textBook chapters on the topic "Edge devices"
Fordham, Stuart. "Edge Devices." In Learning SD-WAN with Cisco, 149–82. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7347-0_7.
Full textStackowiak, Robert. "IoT Edge Devices and Microsoft." In Azure Internet of Things Revealed, 55–72. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-5470-7_3.
Full textShin, Changhwan. "Line Edge Roughness (LER)." In Variation-Aware Advanced CMOS Devices and SRAM, 19–35. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-7597-7_2.
Full textVan Vaerenbergh, Kevin, and Tom Tourwé. "Distributed Data Compression for Edge Devices." In Artificial Intelligence Applications and Innovations. AIAI 2021 IFIP WG 12.5 International Workshops, 293–304. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79157-5_24.
Full textRogalla, H. "YBCO/PBCO/YBCO Edge Junctions and DC-SQUIDs." In Superconducting Devices and Their Applications, 106–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77457-7_18.
Full textKrasheninnikov, Sergei, Andrei Smolyakov, and Andrei Kukushkin. "Edge Plasma Issues in Magnetic Fusion Devices." In Springer Series in Plasma Science and Technology, 1–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49594-7_1.
Full textSiegel, M., F. Schmidl, E. Heinz, K. Zach, J. Fuchs, E. B. Kley, and P. Seidel. "DC-SQUID with Step Edge Junctions on (100) SrTiO3." In Superconducting Devices and Their Applications, 138–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77457-7_22.
Full textNguyen-Duc, Manh, Anh Le-Tuan, Jean-Paul Calbimonte, Manfred Hauswirth, and Danh Le-Phuoc. "Autonomous RDF Stream Processing for IoT Edge Devices." In Semantic Technology, 304–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41407-8_20.
Full textFathoni, Halim, Chao-Tung Yang, Chih-Hung Chang, and Chin-Yin Huang. "Performance Comparison of Lightweight Kubernetes in Edge Devices." In Pervasive Systems, Algorithms and Networks, 304–9. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30143-9_25.
Full textMeghana, V., B. S. Anisha, and P. Ramakanth Kumar. "Monitoring Health of Edge Devices in Real Time." In Advances in Intelligent Systems and Computing, 555–66. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8443-5_47.
Full textConference papers on the topic "Edge devices"
Sharma, Ragini, Saman Biookaghazadeh, Baoxin Li, and Ming Zhao. "Are Existing Knowledge Transfer Techniques Effective for Deep Learning with Edge Devices?" In 2018 IEEE International Conference on Edge Computing (EDGE). IEEE, 2018. http://dx.doi.org/10.1109/edge.2018.00013.
Full textPandey, Manish, and Young-Woo Kwon. "Middleware for Edge Devices in Mobile Edge Computing." In 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). IEEE, 2021. http://dx.doi.org/10.1109/itc-cscc52171.2021.9501419.
Full textJo, Jongmin, Sucheol Jeong, and Pilsung Kang. "Benchmarking GPU-Accelerated Edge Devices." In 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2020. http://dx.doi.org/10.1109/bigcomp48618.2020.00-89.
Full textFan, Shu-Hao, Daniel Guidotti, Claudio Estevez, Gee-Kung Chang, Ying-Jung Chang, and Daoqiang Daniel Lu. "Short-reach flexible optical interconnection using embedded edge-emitting lasers and edge-viewing detectors." In Integrated Optoelectronic Devices 2008, edited by Alexei L. Glebov and Ray T. Chen. SPIE, 2008. http://dx.doi.org/10.1117/12.763336.
Full textGibson, Perry, Jose Cano, Jack Turner, Elliot J. Crowley, Michael O'Boyle, and Amos Storkey. "Optimizing Grouped Convolutions on Edge Devices." In 2020 IEEE 31st International Conference on Application-specific Systems, Architectures and Processors (ASAP). IEEE, 2020. http://dx.doi.org/10.1109/asap49362.2020.00039.
Full textPrabhu, Narendra, Daksha Naik, and Fatima Anwar. "Trusted Video Streaming on Edge Devices." In 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). IEEE, 2021. http://dx.doi.org/10.1109/percomworkshops51409.2021.9431058.
Full textTopno, Preeti, and Govind Murmu. "An Improved Edge Detection Method based on Median Filter." In 2019 Devices for Integrated Circuit (DevIC). IEEE, 2019. http://dx.doi.org/10.1109/devic.2019.8783450.
Full textLiu, Shiya, Lingjia Liu, and Yang Yi. "Quantized Reservoir Computing on Edge Devices for Communication Applications." In 2020 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2020. http://dx.doi.org/10.1109/sec50012.2020.00068.
Full textBenditkis, Daniel, Aviv Keren, Liron Mor-Yosef, Tomer Avidor, Neta Shoham, and Nadav Tal-Israel. "Distributed deep neural network training on edge devices." In SEC '19: The Fourth ACM/IEEE Symposium on Edge Computing. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3318216.3363324.
Full textQin, Zhuwei, Fuxun Yu, and Xiang Chen. "Task-adaptive incremental learning for intelligent edge devices." In SEC '19: The Fourth ACM/IEEE Symposium on Edge Computing. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3318216.3363373.
Full textReports on the topic "Edge devices"
Miller, L. S., S. Huang, and G. A. Quandt. Atmospheric tests of trailing-edge aerodynamic devices. Office of Scientific and Technical Information (OSTI), January 1998. http://dx.doi.org/10.2172/565655.
Full textDickens, John B., and Dean R. Dukes. Innovative Decentralized Decision-Making Enabling Capability on Mobile Edge Devices. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ad1008918.
Full textGriem, Hans R. High Resolution Spectroscopy in the Divertor and Edge Regions of Alcator-C Mode and Measurement of Radiative Transfer in Vacuum-UV Line Emission from Magnetic Fusion Devices. Office of Scientific and Technical Information (OSTI), March 2005. http://dx.doi.org/10.2172/1046049.
Full textAmmar H Hakim. Final Report for "Extending BOUT++ for Solution of Edge Plasma Equations for Use in Whole Device Simulation of Tokamaks". Office of Scientific and Technical Information (OSTI), October 2011. http://dx.doi.org/10.2172/1027635.
Full text