Dissertations / Theses on the topic 'Écoulement instationnaire (dynamique des fluides) – Simulation, Méthodes de'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Écoulement instationnaire (dynamique des fluides) – Simulation, Méthodes de.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Gevrin, Frédéric. "Modélisation dynamique de la fluidisation solide-liquide." Toulouse, INPT, 2002. http://www.theses.fr/2002INPT002G.
Full textSicot, Frédéric. "Simulation efficace des écoulements instationaires périodiques en turbomachines." Ecully, Ecole centrale de Lyon, 2009. http://www.theses.fr/2009ECDL0019.
Full textMany industrial applications involve flows periodic in time. Flutter prediction or turbomachinery flows are some examples. Such flows are not simulated with enough efficiency when using classical unsteady techniques as a transient regime must be by-passed. New techniques, dedicated to time-periodic flows and based on Fourier analysis, have been developed recently. These methods, called harmonic balance, cast a time-periodic flow computation in several coupled steady computations, corresponding to a uniform sampling of the period. Their efficiency allow to get a precision good enough for engineering but much faster than classical nonlinear timemarching algorithms. The present study aims at imlementing one of these, the Time Spectral Method, in the ONERA solveur elsA. It is extended to an arbitrary lagrangian/eulerian formulation to take into mesh deformation for aeroelasticity applications. New implicit algorithms are developped to improve robustness. The TSM is successfully validated on external aerodynamic applications. Turbomachinery flows necessitate complex space and time interpolations ro reduce the computational domain to a single blade passage per row regardless of its geometry. Some applications in rotor/stator interactions and aeroelasticity are presented
Mate, Annie. "Intéractions goutte-paroi dans un contacteur liquide-liquide." Toulouse, INPT, 1998. http://www.theses.fr/1998INPT008G.
Full textCallot, Stanislas. "Analyse des mécanismes macroscopiques produits par les interactions rotor/stator dans les turbomachines." Ecully, Ecole centrale de Lyon, 2002. http://bibli.ec-lyon.fr/exl-doc/scallot.pdf.
Full textUnsteady phenomena produced by the relative motion between fixed and moving rows in turbomachinery is caracterized by different scales in space and time. From the numerical point of view, taking into account those effets requires new models. The purpose of this work is a better understanding of the unstaeday mechanisms in a multistage turbomachinery. In ordre to cast of any restricting hypothesis over the spatial periodicities, numerical simulations are operated over the whole circumference of each row. In the single stage case, it is shown that the unsteady flow presents a phase-lagged periodic condition which may be described by the double Fourier decomposition proposed by Tyler & Sofrin. The spatial modes precise the interaction between rows and a comparison is made with the Adamczyk's decomposition. The numerical simulation of a one and a half stage brings an extension of the analysis of the interactions in a multistage machine
Al, Isber Aziz. "Modélisation de l'écoulement instationnaire décollé à la traversée d'un diaphragme par la méthode des vortex aléatoires." Toulouse, ENSAE, 1991. http://www.theses.fr/1991ESAE0002.
Full textDelay, Guillaume. "Analyse des écoulements transitoires dans les systèmes d'injection directe essence : effets sur l'entraînement d'air instationnaire du spray." Phd thesis, Toulouse, INPT, 2005. http://oatao.univ-toulouse.fr/7367/1/delay1.pdf.
Full textHauville, Frédéric. "Optimisation des méthodes de calculs d'écoulements tourbillonnaires instationnaires." Phd thesis, Université du Havre, 1996. http://tel.archives-ouvertes.fr/tel-00125000.
Full textLe cadre général de cette thèse est l'amélioration de l'efficacité de ces méthodes sous trois aspects :
- décomposition linéaire / non linéaire
- approximation par domaine
- la programmation parallèle (PVM).
Des applications concernant des problèmes d'énergie éoliens, soit sur des générateurs à hélice (éolienne), soit sur les voiles de bateau pour l'interaction fluide/structure sont développés.
Buffat, Marc. "Étude de la simulation numérique par une méthode d'éléments finis des écoulements internes subsoniques instationnaires bi et tridimensionnels." Lyon 1, 1991. http://www.theses.fr/1991LYO10002.
Full textTroadec, François. "Simulation numérique directe d'un écoulement supercritique pour validation des approches RANS et LES." Rouen, 2010. http://www.theses.fr/2010ROUES043.
Full textThe main aim of this work is to develop tools able to realise numerical simulation of cryogenic flows by proposing tests case based on numerical experiments through the use of Direct Numerical Simulation (DNS). Many problems encountered during experiments are due to experimental conditions (high pressure and very flammable reactives) that impose researchers to consider new numerical ways. Indeed, beyond a given pressure, the distinction between liquid and gaseous phase disappears and molecular interactions can’t be neglected anymore. This affects thermo-physical variables. So, different physical models have been studied and results have been compared to reference data (NIST). Some of them have been introduced in Asphodele solver. This solver is based on a low Mach number formulation. The reference configuration used simulates the destabilization of a jet in supercritical condition. Main aim being to reach conditions present inside the rocket’s combustion chamber and to test low Mach number formulation applied in supercritical flows. Finally, from results extracted from DNS simulation, a priori tests are used to study RANS and LES terms modelisation like the mixture fraction formulation (RANS) and the use of filtered variable in equation of state (LES)
Le, Touzé David. "Méthodes spectrales pour la modélisation non-linéaire d'écoulements à surface libre instationnaires." Phd thesis, Ecole centrale de nantes - ECN, 2003. http://tel.archives-ouvertes.fr/tel-00370200.
Full textUn bilan des différentes approches spectrales employées jusqu'à présent en hydrodynamique navale est d'abord dressé, étayant le choix des techniques développées au cours de ce travail. L'étude des propriétés de ces techniques est ensuite réalisée sur le ‘noyau' de la méthode, i.e. une cuve tri-dimensionnelle de géométrie figée. En particulier, différentes techniques High-Order Spectral sont comparées entre elles et à la méthode directe, et une nouvelle variante est proposée. Des validations sur des cas de lâchers de surface libre et d'oscillations forcées de surface libre sont présentées et confrontées à diverses méthodes.
L'approche est ensuite étendue, à partir de ce ‘noyau' et au moyen de stratégies de ‘potentiel additionnel', donnant lieu au développement de divers modèles. Ainsi, des houles non-linéaires sont modélisées à l'aide de doublets tournants instationnaires spécifiquement développés. Des cas de reproduction de signaux temporels cibles à une distance, et de génération et propagation de houle irrégulière sont présentés. De plus, une caractéristique avantageuse d'une telle approche spectrale est exploitée pour proposer des modèles originaux de diffraction autour de corps. Ceux-ci allient une génération de houle par méthode spectrale à des modèles de diffraction en fluide parfait ou visqueux, formulés en changement de variable. Des exemples illustratifs de diffraction de cette houle autour de corps bi- ou tri-dimensionnels sont proposés.
Enfin, un modèle original de simulation complète, au second-ordre, du processus de génération et propagation en bassin de houle tri-dimensionnel est réalisé. Il inclut la modélisation de différents batteurs, ainsi qu'un modèle d'absorption, permettant notamment de reproduire les caractéristiques complètes du nouveau bassin de houle de l'École Centrale de Nantes. Ce modèle est validé par comparaison à une solution analytique en régime établi et ses propriétés numériques sont étudiées. L'investigation des ondes libres et leur suppression, ainsi que la caractérisation de zones utiles sont proposées à titre d'application.
Jeanmasson, Guillaume. "Méthode explicite à pas de temps local pour la simulation des écoulements turbulents instationnaires." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0458.
Full textUnsteady simulations of turbulent flows (LES : Large Eddy Simulation, for instance) still present an important computational cost. Improvement of numerical time integration methods could reduce the computational effort needed by these simulations. Explicit time integration methods present attractive properties such that accuracy and good compatibility with HPC (parallelization, vectorization…). Nevertheless, the time step used by these methods is strongly restricted : it is chosen to respect the most severe CFL condition over the mesh. This makes explicit time integration methods very expensive in terms of computational cost. Explicit local time stepping methods use a non uniform time step to satisfy several local CFL conditions over the mesh. The time step is more optimal over the mesh, which leads to a reduction of computational cost with respect to an explicit time integration method with a uniform time step. Most of the local time stepping schemes proposed in the literature are applied to academical test cases, and very few applications are performed in CFD. This thesis's goal is to show the ability of explicit local time stepping schemes to carry out efficient and accurate simulations of turbulent flows. To reach this goal, two new explicit local time stepping schemes have been developed. Then, two LES have been carried out with our most efficient local time stepping scheme. Both cases have demonstrated the accuracy and the efficiency of our local time stepping scheme for the computations of turbulent flows
Pont, Grégoire. "Self adaptive turbulence models for unsteady compressible flows Modèles de turbulence auto-adaptatifs pour la simulation des écoulements compressibles instationnaires." Thesis, Paris, ENSAM, 2015. http://www.theses.fr/2015ENAM0008/document.
Full textThis thesis is mainly dedicated to the simulation of massively separated flows in the space domain. We restricted our study to afterbody flows, where the separation is imposed by abrupt geometry changes. In the space domain, highly compressible flows require the use of robust numerical schemes. On the other hand, the simulation of turbulence imposes high-order low dissipative numerical schemes. These two specifications, apparently contradictory, must coexist within the same simulation. The coupling between turbulence models and discretization schemes is of the utmost importance and must be considered. Numerical schemes should keep their formal accuracy on complex geometries and on very irregular meshes imposed by the industrial context. In this research, we analyze the discretization scheme implemented in the FLUSEPA solver, developed by Airbus Defence & Space. Such a scheme is robust and accurate for flows with shocks and exhibits a low sensitivity to the grid (the third order of accuracy being ensured, even on highly irregular grids). Unfortunately, the scheme possesses a too low resolvability related to a too high numerical dissipation for RANS/LES simulations. To circumvent this problem, we considered a conditional and local re-centering strategy: in regions dominated by vortical structures, an analytic function provides local re-centering when a numerical stability condition is satisfied. This stability condition ensures the coupling between the numerical scheme and the model. In this way, only the turbulent and the laminar viscosities play a role in regions dominated by vorticity, and also allow to stabilize the numerical scheme. This study provides also a qualitative and quantitative assessment of several hybrid RANS/LES models, using the same grids and discretization scheme. For this purpose some recent improvements (improving their ability to trigger the Kelvin-Helmohlotz instabilities without delay), proposed in the litterature or suggested in this work, are taken into account. Numerical applications include geometrical configurations ranging from a backward facing step to realistic launcher configurations
El, Mahi Imad. "Schémas volumes finis pour la simulation numérique de problèmes à fronts raides en maillages non structurés adaptatifs." Rouen, 1999. http://www.theses.fr/1999ROUES019.
Full textCouplet, Mathieu. "Modélisation POD-Galerkine réduite pour le contrôle des écoulements instationnaires." Phd thesis, Université Paris-Nord - Paris XIII, 2005. http://tel.archives-ouvertes.fr/tel-00142745.
Full textreposent sur la résolution d'un problème d'optimisation, sont développées afin de pouvoir calculer automatiquement des modèles
réduits fiables pour un coût informatique raisonnable.
Enfin, le dernier chapitre est consacré au problème du contrôle d'écoulements par des actionneurs de soufflage ou d'aspiration : les stratégies d'exploitation de la modélisation POD-Galerkine pour le contrôle sont abordées, puis des investigations numériques sont présentées.
Bizid, Wided. "Développement de méthodes de pénalisation pour la simulation de l’écoulement turbulent autour d’obstacles." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0631/document.
Full textIn the perspective of application to wind turbine design, this thesis aims to extend theuse of fictitious domain methods and in particular the method of penalization for the simulation of unsteady turbulent flows around obstacles of complex geometry. The unsteady turbulence modeling at high Reynolds numbers was studied by hybrid approaches(RANS / LES) such as (DES) and (DDES). In order to improve the prediction, a wall model based on simplified Thin Boundary Layer Equations (TBLE) was introduced.After a brief presentation of the tools and methods implemented, full 2D / 3D computations on cylinder and channel configuration are then presented, analyzed and compared to numerical and experimental results.The simulation results show the feasibility and effectiveness of the proposed models and the coupling method (DDES / TBLE).The latest investigation focuses on the simulation of the flow around the airfoil of a wind turbine. The success and fails of the computations are highlighted and explained
Barnaud, Félix. "Influence of advanced unsteady aerodynamic models on the aeroelastic response of an offshore wind turbine." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR31.
Full textThe size of modern offshore wind turbine rotors has reached very large dimensions and keeps increasing in order to reduce the cost of electricity. More challenging designs are thus needed to improve the aerodynamic performances and reduce the structural loads. The state-of-the-art tools such as Blade Element Momentum Theory (BEMT) used to predict the loads and performances of wind turbines have been designed for much smaller rotors in standard operating conditions. Load cases in specific conditions such as yaw misalignment are a priori out of the validity range for such tools. The goal of the thesis is to investigate more advanced aerodynamic models in order to assess the differences in load predictions compared to state-of-the-art tools. In particular, this work focuses on unsteady flows which represent a challenge for engineering tools. For this purpose, a panel method code including viscous effects such as dynamic stall is compared to a BEMT code in realistic wind conditions with large yaw misalignment. The calculations are performed in the framework of aero-servo-elasto coupling in order to be represen¬tative of the load calculations performed in industry following certification standards. The impact of the dynamic stall model is investigated in particular for both BEMT and panel method, for extreme and fatigue loading in cases of yaw misalignment. Differences have been observed between both codes and for several parametrizations of dynamic stall model. In addition, it has been noticed that including the servo-elasto coupling changes a lot the observations regarding aerodynamic loading. Large angles of at¬tack are observed on wind turbine blades in yaw misalignment cases, and the flow around blade sections in such conditions is particularly affected by viscous effects such as dynamic stall or vortex shedding which are not inherently solved by panel methods nor BEMT but modeled with semi-empirical models. Alternative models such as Large Eddy Simulation (LES) that would capture these effects have to be considered. Wall-modeled LES (WMLES) is thus used in the second part of this thesis to investigate the flow around wind turbine dedicated airfoils, much thicker than airfoils used in aeronautics. Several cases are simulated, for attached and detached flows and in steady or oscillating cases. Angles of attack up to 90° are investigated at realistic Reynolds number. It appears that WMLES is able to capture correctly the main flow features in attached conditions and at very high angle of attack with coarse meshes. However, the near stall cases are more challenging to capture even with appropriate wall laws and require very fine meshes to be correctly solved. A comparison is also performed for motions with high reduced frequency and compared to other models, revealing the promising capacities of WMLES in such cases
Pelletier, Karine. "Simulation au second ordre des interactions houle-structure en régime instationnaire." Nantes, 2002. http://www.theses.fr/2002NANT2090.
Full textMarzouk, Salwa. "Simulation numérique d'un écoulement de type jet pulsé." Aix-Marseille 2, 2002. http://www.theses.fr/2002AIX22078.
Full textDebard, Michel. "Simulation de l'écoulement lors du démarrage d'une turbopompe spatiale : contribution au développement d'un outil numérique." Ecully, Ecole centrale de Lyon, 1997. http://www.theses.fr/1997ECDL0007.
Full textAubert, Stéphane. "Étude des schémas à haute précision pour la simulation d'écoulements transsoniques instationnaires ou visqueux : application aux turbomachines." Ecully, Ecole centrale de Lyon, 1993. http://www.theses.fr/1993ECDL0033.
Full textHurisse, Olivier Pierre. "Couplage interfacial instationnaire de modèles diphasiques." Aix-Marseille 1, 2006. http://www.theses.fr/2006AIX11009.
Full textThe primary coolant circuit in a nuclear power plant contains several distinct components (vessel, core, pipes,. . . ). For all components, specific codes based on the discretization of partial differential equations have already been developed. In order to obtain simulations for the whole circuit, the interfacial coupling of these codes is required. The approach examined within this work consists in oupling codes by providing unsteady information through the coupling interface. The numerical technique relies on the use of an interface model, which is combined with the basic strategy that was introduced by Greenberg and Leroux in order to compute approximations of steady solutions of non-homogeneous hyperbolic systems. Three different coupling cases have been examined: the coupling of a one-dimensional Euler system with a two-dimensional Euler system ;the coupling of two distinct homogeneous two-phase flow models; the coupling of a four-equation homogeneous model with the standard two-fluid model
Médéric, Pascal. "Modélisation unidimensionnelle et simulation expérimentale du cathéterisme cardiaque." Toulouse, INPT, 1991. http://www.theses.fr/1991INPT003H.
Full textDeschamps, Véronique. "Simulation numérique de la turbulence inhomogène incompressible dans un écoulement de canal plan." Toulouse, INPT, 1988. http://www.theses.fr/1988INPT073H.
Full textPauthenet, Martin. "Macroscopic model and numerical simulation of elastic canopy flows." Thesis, Toulouse, INPT, 2018. http://www.theses.fr/2018INPT0072/document.
Full textWe study the turbulent flow of a fluid over a canopy, that we model as a deformable porous medium. This porous medium is more precisely a carpet of fibres that bend under the hydrodynamic load, hence initiating a fluid-structure coupling at the scale of a fibre's height (honami). The objective of the thesis is to develop a macroscopic model of this fluid-structure interaction in order to perform numerical simulations of this process. The volume averaging method is implemented to describe the large scales of the flow and their interaction with the deformable porous medium. An hybrid approach is followed due to the non-local nature of the solid phase; While the large scales of the flow are described within an Eulerian frame by applying the method of volume averaging, a Lagrangian approach is proposed to describe the ensemble of fibres. The interface between the free-flow and the porous medium is handle with a One-Domain- Approach, which we justify with the theoretical development of a mass- and momentum- balance at the fluid/porous interface. This hybrid model is then implemented in a parallel code written in C$++$, based on a fluid- solver available from the \openfoam CFD toolbox. Some preliminary results show the ability of this approach to simulate a honami within a reasonable computational cost. Prior to implementing a macroscopic model, insight into the small-scale is required. Two specific aspects of the small-scale are therefore studied in details; The first development deals with the inertial deviation from Darcy's law. A geometrical parameter is proposed to describe the effect of inertia on Darcy's law, depending on the shape of the microstructure of the porous medium. This topological parameter is shown to efficiently characterize inertia effects on a diversity of tested microstructures. An asymptotic filtration law is then derived from the closure problem arising from the volume averaging method, proposing a new framework to understand the relationship between the effect of inertia on the macroscopic fluid-solid force and the topology of the microstructure of the porous medium. A second research axis is then investigated. As we deal with a deformable porous medium, we study the effect of the pore-scale fluid-structure interaction on the filtration law as the flow within the pores is unsteady, inducing time-dependent fluidstresses on the solid- phase. For that purpose, we implement pore-scale numerical simulations of unsteady flows within deformable pores, focusing for this preliminary study on a model porous medium. Owing to the large displacements of the solid phase, an immersed boundary approach is implemented. Two different numerical methods are compared to apply the no-slip condition at the fluid-solid interface: a diffuse interface approach and a sharp interface approach. The objective is to find the proper method to afford acceptable computational time and a good reliability of the results. The comparison allows a cross-validation of the numerical results, as the two methods compare well for our cases. This numerical campaign shows that the pore-scale deformation has a significant impact on the pressure drop at the macroscopic scale. Some fundamental issues are then discussed, such as the size of a representative computational domain or the form of macroscopic equations to describe the momentum transport within a soft deformable porous medium
Virot, Florent. "Contribution à l'étude expérimentale et numérique du régime hélicoïdal de détonation dans les systèmes H2, CH4, C2H6–O2 dilués ou non par N2 ou Ar." Phd thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aéronautique, 2009. http://tel.archives-ouvertes.fr/tel-00443884.
Full textCarte, Gilles. "Simulation d'écoulements instationnaires à dominante périodique application aux sillages laminaires et turbulents." Aix-Marseille 2, 1994. http://www.theses.fr/1994AIX22084.
Full textCieslak, Stéphane. "Développement de méthodes prévisionnelles pour les ondes de souffle : application à la protection civile." Lille 1, 1998. http://www.theses.fr/1998LIL10083.
Full textJacquot, Cédric. "Transfert instationnaire de chaleur en échangeur récupérateur de moteur de fusée : simulation expérimentale en échangeur bitube." Nancy 1, 2007. http://docnum.univ-lorraine.fr/public/SCD_T_2007_0010_JACQUOT.pdf.
Full textThe present thesis is concerned by experimental study of gas-gas bitubular heat exchangers, submitted to transient conditions, for counter current and cocurrent configurations. The transient imposes conditions are respective to entrance temperature or mass flux from one of the system fluids. After a synthesis of the state of the art, a study of a bitubular heat exchanger is developed, with two different modelling approachs. The first one considers the heat exchanger system as a whole (lumped system analysis) : only entrance and exit state are concerned. In the second approach, the heat exchanger is modelled on a local point of view : the various local 1D sections are taken into account ; the transient heat exchanger response to the solicitation is reported relative to temperatures evolution, and also heat fluxes exchanged. The various exposed models allow to consider fluid temperatures, but also internal and external walls temperatures. It is shown that the temperature response of the system is obtained with a first order exponential model for the walls and the non perturbed fluid ; a two exponent model is necessary for the temperature of the perturbed fluid. So we observe that a specific time constant exist for each subsystem inside the HEX ; the biexponential model allows us to take account of the non ideality of the perturbation, and implies to introduce a transition parameter in place of time lag. This last notion currently used for liquid-liquid HEX has not been caracterized until now. The time lag does not appear in the models concerning perturbed fluid, and internal wall ; however this time lag is necessary to describe adequately the internal wall
HUGUES, SANDRINE. "Developpement d'un algorithme de projection pour methodes pseudospectrales : application a la simulation d'instabilites tridimensionnelles dans les cavites tournantes. modelisations d'ecoulements turbulents dans les systemes rotor-stator." Aix-Marseille 2, 1998. http://www.theses.fr/1998AIX22104.
Full textRodes, Pascal. "Contribution à l'étude d'écoulements instationnaires transtionnels et turbulents autour d'une aile par simulation numérique et modélisation." Aix-Marseille 2, 1999. http://www.theses.fr/1999AIX22089.
Full textDevesa, Antoine. "Modélisation de paroi pour la simulation d'écoulements instationnaires non-isothermes." Montpellier 2, 2006. http://www.theses.fr/2006MON20145.
Full textDridi, Walid. "Influence de l’acoustic streaming sur les instabilités des écoulements chauffés latéralement." Lyon 1, 2008. http://n2t.net/ark:/47881/m6mc8x5j.
Full textWe study the effect of acoustic streaming (steady flow generated by progressive acoustic waves) on the stability of convective flows associated with crystal growth from melt in horizontal Bridgman configurations. We consider two simple configurations: an extended fluid layer submitted to a horizontal temperature gradient and a laterally heated parallelepipedic cavity. In both cases, the dependence of the critical Grashof number Grc on the acoustic intensity (monitored through the acoustic parameter A) is determined for given values of the Prandlt number and of the dimension of the acoustic source Hb. In the case of the extended fluid layer, it is shown that for rather small beam widths Hb, the acoustic streaming destabilizes the buoyant flows, but for a large beam width, a range of acoustic intensities A is found for which the buoyant flows are stabilized. An adequate decentring of the beam can also enhance the stabilization. In the case of the parallelepipedic cavity of length Ax, both the structure of the flows and their stability properties are determined. The flows have different symmetries, but these symmetries are generally broken at the first bifurcation points. Bifurcation diagrams are obtained which show that the flows become oscillatory periodic at a Hopf bifurcation, either directly on the primary steady solution branch, or on a secondary branch which bifurcates from the primary branch at a steady bifurcation point. The critical Grashof numbers for these bifurcation points are calculated as a function of the cavity length Ax, the Prandtl number Pr and the acoustic streaming parameter A. The thresholds are generally found to increase when the acoustic streaming contribution is enhanced, which indicates a stabilizing effect induced by acoustic streaming and may explain the observed improvement of the crystal quality when ultrasound waves are applied during the growth process. Destabilization effects are, however, found in some parameter range
Ventura, Jérôme. "Réduction de modèle en convection forcée par des méthodes d'identification." Phd thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2010. http://www.theses.fr/2010ESMA0013.
Full textMost engineering processes dealing with aerothermics involve numerical simulations (CFD) which need to take transient phenomena into account to be realistic. Low order models and responses surfaces offer the engineer an alternative to the high costs associated with CFD processes, providing him with surrogates for the outputs of his interest. This work is devoted to extend the Modal Identification Method (MIM) in the field of fluid dynamics. MIM is a low order modelling techniques, based on the minimization of the discrepancy between a usually large reference model, and a low order model. It solves an optimization problem whose variables are the low order model parameters. Low order models are built for several kinds of turbulent flows. The circular cylinder in a crossflow provides us with several test cases. We cope with steady flows or unsteady ones, be them in forced convection or isothermal cases. Those models are able to produce outputs as different as velocity and temperature fields, heat fluxes. . . The compressible flow around a wing profile is also considered to investigate the sampling effect. Those models give quick approximates of the pressure distribution or the force coefficients
Carpy, Sabrina. "Contribution à la modélisation instationnaire de la turbulence : modélisations urans et hybride rans/les." Poitiers, 2006. http://www.theses.fr/2006POIT2342.
Full textThe aim of this work is to account for the unsteadiness effects on the turbulence in single point closure. The existence of large scale structures in statistically steady flows leads to reconsider some hypothesis. Much more than adding the time derivatives , the URANS equations needs to consider a new decomposition and an assiociated operator. Therefore, the applicability of usual closure methods has to be examined. For exemple, the periodicity of a synthetic jet leads to a non-equilibrium, which induces a permanent misalignment of anisotropy tensor and strain tensors. RSM are able to reproduce this misalignment, whereas k-ε. Model can't. A seamless hybrid RANS/LES method, based on the version of Schiestel's model, relies on transport equations for the subgrid stress (ij)SGS and dissipation. The decomposition operator is then assimilated as a filter with an adapatative cutoff frequency. The predictions obtained on a temporal mixing layer shows the ability of this model to capture the very large structure of the flow
Lancial, Nicolas. "Effets de la rotation sur la dynamique des écoulements et des transferts thermiques dans les machines électriques tournantes de grande taille." Thesis, Valenciennes, 2014. http://www.theses.fr/2014VALE0021/document.
Full textEDF operates a large number of electrical rotating machines in its electricity generation capacity. Thermal stresses which affect them can cause local heating, sufficient to damage their integrity. The present work contributes to provide methodologies for detecting hot spots in these machines, better understanding the topology of rotating flows and identifying their effects on heat transfer. Several experimental scale model were used by increasing their complexity to understand and validate the numerical simulations. A first study on a turbulent wall jet over a non-confined backward-facing step (half-pole hydrogenerator) notes significant differences compared to results from confined case : both of them are present in an hydrogenerator. A second study was done on a small confined rotating scale model to determinate the effects of a Taylor-Couette-Poiseuille on temperature distribution and position of hot spots on the heated rotor, by studying the overall flow regimes flow. These studies have helped to obtain a reliable method based on conjugate heat transfer (CHT) simulations. Another method, based on FEM coupled with the use of an inverse method, has been studied on a large model of hydraulic generator so as to solve the computation time issue of the first methodology. It numerically calculates the convective heat transfer from temperature measurements, but depends on the availability of experimental data. This work has also developped new no-contact measurement techniques as the use of a high-frequency pyrometer which can be applied on rotating machines for monitoring temperature
Marion, Yves. "Méthodes spectrales et décomposition en sous-domaines : application à la résolution des équations de Navier Stokes instationnaires." Lyon 1, 1987. http://www.theses.fr/1987LYO10009.
Full textWatrigant, Mathieu. "Investigation des méthodes d'estimation en aéroacoustique automobile par résolution temporelle rapide des équations intégrales." Poitiers, 2010. http://theses.edel.univ-poitiers.fr/theses/2010/Watrigant-Mathieu/2010-Watrigant-Mathieu-These.pdf.
Full textThe work exposed in this report refers to aeroacoustic calculations in source field for automotive applications. Indeed, a better estimation of the total or the acoustic pressure on the skin of the car is necessary in order to have a good estimation of the aerodynamic noise felt by the passengers of the car. The first aim seeks in this work is to develop a aeroacoustic analogy, that is the only aeroacoustic calculation method industrially used, which let us have access to de total pressure in the source field. This analogy is obtained by a simple Navier - Stokes equations combinaison, based on Lighthill’s and Doak’s works. Then, a validation of this analogy is done with increasing difficulties test cases. The first validation is done in the Fourier domain with the help of analytically defined source terms, in 2D and 3D. Those test cases are then re-used to determine the limits of the proposed analogy. The second test case is the flow around a 2D cylinder, that have been simulated both with a direct acoustic method and an incompressible 2D-LES with Fluent. The proposed analogy is applied with the source terms obtained by both the DNA and incompressible LES, and give quite good results compared to results directly obtained by the DNA. Finally, we open the work on an industrial application by studying analogy results on a complex tridimensionnal case with high Reynolds number. The aerodynamic simulation is based on a hybrid RANS/LES method (DES) and the analogy calculation is done in the temporal domain, with the help of the advanced times procedure
Abdollah-Shamshirsaz, Mehrdad. "Étude expérimentale et simulation numérique des écoulements de jets plans confinés instationnaires." Toulouse, INPT, 1986. http://www.theses.fr/1986INPT062H.
Full textSanchez, Laurent. "Etude expérimentale et simulation numérique d'un jet confiné en régime pulsé : application à la régurgitation de la valve mitrale." Poitiers, 2001. http://www.theses.fr/2001POIT2311.
Full textBoudghène-Stambouli, Mustapha-el-Habib. "Analyse physique, modélisation et simulation numérique des écoulements turbulents instationnaires en canal pulsés." Toulouse, INPT, 1995. http://www.theses.fr/1995INPT049H.
Full textPingaud, Hervé. "Simulation statique et simulation dynamique des échangeurs à plaques brasées." Toulouse, INPT, 1988. http://www.theses.fr/1988INPT028G.
Full textCordier, Hélène. "Simulation numérique de l'interaction en milieu confiné d'un écoulement de convection forcée avec un panache thermique : application à la ventilation de tunnels routiers en cas d'incendie." Aix-Marseille 2, 1999. http://www.theses.fr/1999AIX2A002.
Full textKaufmann, André. "Vers la simulation des grandes échelles en formulation Euler-Euler des écoulements réactifs diphasiques." Toulouse, INPT, 2004. http://ethesis.inp-toulouse.fr/archive/00000131/.
Full textAndro, Jean-Yves. "Aérodynamique d'un profil d'aile battante à bas nombre de Reynolds." Poitiers, 2008. http://theses.edel.univ-poitiers.fr/theses/2008/Andro-Jean-Yves/2008-Andro-Jean-Yves-These.pdf.
Full textRecent progress made in the domain of microtechnologies allow the design of very small sized Micro Air Vehicles (MAVs), whose wingspan is inferior than 15 cm, suitable for observation or intervention in hazardous environments. A biomimetic approach using flapping wing locomotion seems to be promising because it could allow hovering flight and great manoeuvrability in confined environments. However, flapping wings aerodynamics at low Reynolds numbers differs from classical applications aerodynamics due to the vortex shedding phenomenon and the superimposition of various unsteady mechanisms. In a first time, we have studied the vortex shedding on an airfoil by characterising theoretically and experimentally its apparition and then by simulating it numerically. Experiments in a water tank have finally specified the three dimensional effects and Reynolds number effects on the efforts generated by the vortex shedding. In a second time, thanks to direct numerical simulation (DNS), we have studied the fundamental movements of the flapping flight, i. E. Pure heaving and pitching movements, so as to emphasize the various unsteady mechanisms, to differentiate the various flapping flight strategies and to propose simplified models that could describe instantaneous efforts
Jin, Gang. "Simulation numérique et modélisation d'écoulements instationnaires turbulents autour d'un profil d'aile à forte incidence." Toulouse, INPT, 1994. http://www.theses.fr/1994INPT130H.
Full textHaberkorn, Marie. "Simulations des grandes échelles en canal plan turbulent : Effets de compressibilité et propagation acoustique." Université Louis Pasteur (Strasbourg) (1971-2008), 2004. https://publication-theses.unistra.fr/restreint/theses_doctorat/2004/HABERKORN_Marie_2004.pdf.
Full textGoncalves, de Miranda Fabienne. "Étude numérique de l'écoulement instationnaire diphasique dans les propulseurs à propergol solide d'Ariane 5." Toulouse, ENSAE, 2000. http://www.theses.fr/2000ESAE0021.
Full textReynier, Philippe. "Analyse physique, modélisation et simulation numérique des jets simples et des jets coaxiaux turbulents, compressibles et instationnaires." Toulouse, INPT, 1995. http://www.theses.fr/1995INPT084H.
Full textTaheri, Arash. "Detached eddy simulation of unsteady turbulent flows in the draft tube of a bulb turbine." Doctoral thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/27061.
Full textDraft tubes play a crucial role in elevating the available energy extraction of hydroturbines. In this project, turbulent flows in the draft tube of a low-head bulb turbine were simulated using, among others, an advance hybrid LES/RANS turbulent model, called DDES, which can resolve portions of the turbulent spectrum. Providing appropriate inflow boundary conditions for such models is a challenging issue. In this regard, different inflow boundary conditions were tested, including axisymmetric 1D profiles, and unsteady 2D inflow profiles that take runner blade wakes and vortices into account. Artificial fluctuation at the inlet section of the draft tube was also included to mimic the turbulence existing after the runner. Simulations were conducted for two draft tube configurations of the BulbT project. For one of them, intensive comparisons with experimental data were done for two operating conditions, one at part load and another in the sharp drop-off portion of the efficiency hill after the best efficiency point. This allowed to assess the effectiveness and shortcomings of the adopted turbulence modeling and boundary conditions through their effects on the global and local quantities. The results showed that the runner-related vortical structures and wakes are appropriately resolved using stand-alone DDES simulation of the draft tube flows. This is achieved by applying unsteady 2D inflow profiles along with adopting low dissipation scheme for the convective term. Furthermore, the effects of applying artificial turbulence at inlet were explored using separation intermittency, two-point correlation, energy spectrum and Lagrangian coherent structure concepts. These analyses revealed that the type of inflow boundary conditions modifies the details of the flow and separation dynamics as well as patterns of the transport barriers in different regions of the draft tube. However, the global quantities such as recovery coefficient are not influenced by these local features.
Kozuch, Ludovic. "Etude de l'écoulement dans une turbomachine axiale transsonique en présence ou non d'une distorsion amont : Validation d'un outil de simulation et analyse instationnaire." Ecully, Ecole centrale de Lyon, 2002. http://bibli.ec-lyon.fr/exl-doc/TH_T1890_lkozuch.pdf.
Full textThe aim of this study is the numerical study of the effects of distorted inlet flow conditions upon the transsonic flow through an axial turbomachine. This study has been carried out with the NSMB solver, which has been adapted for turbomachinery flow simulations. The main development is the introduction of a spatio-temporal hypothesis allowing to reduce the computational domain to a single blade-to-blade passage for unsteady flows. First, we have investigated the steady flow, with two-dimensionnal inviscid, two-dimensionnal viscous, and three-dimensionnal viscous simulations. Then, the unsteady case with inlet distortion has been considered. The inlet distortion, prescribed by the mean of the upstream boundary condition, is modeled by a gaussian deficit of the total pressure. In this last part of the work we consider the two-dimensionnal inviscid case. A methodology for the unsteady analysis has been set up. A first conclusion drawn from this analysis is that the distorsion does not modify the operating point, but it generates non negligible fluctuations in the shock waves structure. Moreover, the use of a double Fourier expansion, both in time and in circumferential direction, allowed us to identify turning acoustic modes propagating downstream the rotor, the other modes being evanescent. This expansion allowed us to quantify in a modal way the attenuation of the total pressure distorsion through the rotor of the fan. The obtained results suggest that this attenuation is strongly linked to the movement of the shock wave