Journal articles on the topic 'Echo spectrometer'

To see the other types of publications on this topic, follow the link: Echo spectrometer.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Echo spectrometer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Nikitenko, Yu V. "Grazing incidence spin-echo neutron spectrometer." Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques 10, no. 1 (January 2016): 169–76. http://dx.doi.org/10.1134/s1027451016010274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Monkenbusch, M. "The Jüulich neutron spin echo spectrometer." Neutron News 8, no. 1 (January 1997): 25–27. http://dx.doi.org/10.1080/10448639708231960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Groitl, Felix, Thomas Keller, and Klaus Habicht. "Generalized resolution matrix for neutron spin-echo three-axis spectrometers." Journal of Applied Crystallography 51, no. 3 (May 29, 2018): 818–30. http://dx.doi.org/10.1107/s1600576718005307.

Full text
Abstract:
This article describes the energy resolution of spin-echo three-axis spectrometers (SE-TASs) by a compact matrix formalism. SE-TASs allow one to measure the line widths of elementary excitations in crystals, such as phonons and magnons, with an energy resolution in the µeV range. The resolution matrices derived here generalize prior work: (i) the formalism works for all crystal structures; (ii) spectrometer detuning effects are included; these arise typically from inaccurate knowledge of the excitation energy and group velocity; (iii) components of the gradient vector of the dispersion surface dω/dq perpendicular to the scattering plane are properly treated; (iv) the curvature of the dispersion surface is easily calculated in reciprocal units; (v) the formalism permits analysis of spin-echo signals resulting from multiple excitation modes within the three-axis spectrometer resolution ellipsoid.
APA, Harvard, Vancouver, ISO, and other styles
4

Chaplot, S. L., R. Mittal, and P. Goel. "Neutron spin-echo spectrometer at BARC, Trombay." Applied Physics A: Materials Science & Processing 74 (December 1, 2002): s280—s282. http://dx.doi.org/10.1007/s003390201544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zeyen, Claude, and Kazuhisa Kakurai. "Spin-echo three-axis spectrometer: A reality." Journal of Neutron Research 4, no. 1 (December 1, 1996): 241–50. http://dx.doi.org/10.1080/10238169608200090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Takeda, Takayoshi, Shigehiro Komura, Hideki Seto, Michihiro Nagai, Hideki Kobayashi, Eiji Yokoi, Tooru Ebisawa, et al. "Neutron spin-echo spectrometer at JRR-3M." Physica B: Condensed Matter 213-214 (August 1995): 863–65. http://dx.doi.org/10.1016/0921-4526(95)00305-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sarkissian, B. V. B. "The multidetector neutron spin echo spectrometer IN11B." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 273, no. 1 (December 1988): 185–202. http://dx.doi.org/10.1016/0168-9002(88)90814-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

GLAUSER, A. M., R. VAN BOEKEL, O. KRAUSE, TH HENNING, B. BENNEKE, J. BOUWMAN, P. E. CUBILLOS, et al. "CHARACTERIZING EXOPLANETS IN THE VISIBLE AND INFRARED: A SPECTROMETER CONCEPT FOR THE EChO SPACE MISSION." Journal of Astronomical Instrumentation 02, no. 01 (September 2013): 1350004. http://dx.doi.org/10.1142/s2251171713500049.

Full text
Abstract:
Transit-spectroscopy of exoplanets is one of the key observational techniques used to characterize extrasolar planets and their atmospheres. The observational challenges of these measurements require dedicated instrumentation and only the space environment allows undisturbed access to earth-like atmospheric features such as water or carbon dioxide. Therefore, several exoplanet-specific space missions are currently being studied. One of them is EChO, the Exoplanet Characterization Observatory, which is part of ESA's Cosmic Vision 2015–2025 program, and which is one of four candidates for the M3 launch slot in 2024. In this paper we present the results of our assessment study of the EChO spectrometer, the only science instrument onboard this spacecraft. The instrument is a multi-channel all-reflective dispersive spectrometer, covering the wavelength range from 400 nm to 16μm simultaneously with a moderately low spectral resolution. We illustrate how the key technical challenge of the EChO mission — the high photometric stability — influences the choice of spectrometer concept and fundamentally drives the instrument design. First performance evaluations underline the suitability of the elaborated design solution for the needs of the EChO mission.
APA, Harvard, Vancouver, ISO, and other styles
9

Franz, C., O. Soltwedel, C. Fuchs, S. Säubert, F. Haslbeck, A. Wendl, J. K. Jochum, P. Böni, and C. Pfleiderer. "The longitudinal neutron resonant spin echo spectrometer RESEDA." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 939 (September 2019): 22–29. http://dx.doi.org/10.1016/j.nima.2019.05.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ohl, M., M. Monkenbusch, and D. Richter. "Neutron spin-echo spectrometer development for spallation sources." Physica B: Condensed Matter 335, no. 1-4 (July 2003): 153–56. http://dx.doi.org/10.1016/s0921-4526(03)00228-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kollmar, A., A. Seeger, W. Schalt, and H. Thyssen. "A time-of-flight neutron spin echo spectrometer." Physica B: Condensed Matter 174, no. 1-4 (October 1991): 528–31. http://dx.doi.org/10.1016/0921-4526(91)90651-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Monkenbusch, Michael. "Construction of new spin-echo spectrometer in Jülich." Physica B: Condensed Matter 180-181 (June 1992): 935–37. http://dx.doi.org/10.1016/0921-4526(92)90514-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Komura, S., T. Takeda, T. Miyazaki, M. Saga, and S. Ueno. "A neutron spin echo spectrometer using superconducting magnets." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 267, no. 2-3 (May 1988): 425–35. http://dx.doi.org/10.1016/0168-9002(88)90484-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chakravarthy, R., S. L. Chaplot, and K. R. Rao. "Low-field neutron spin echo observation and development of a neutron spin echo spectrometer." Physica B: Condensed Matter 174, no. 1-4 (October 1991): 537–41. http://dx.doi.org/10.1016/0921-4526(91)90653-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Habicht, Klaus, Thomas Keller, and Robert Golub. "The resolution function in neutron spin-echo spectroscopy with three-axis spectrometers." Journal of Applied Crystallography 36, no. 6 (November 15, 2003): 1307–18. http://dx.doi.org/10.1107/s0021889803015681.

Full text
Abstract:
A resolution function for inelastic neutron spin-echo spectroscopy on a three-axis spectrometer is derived. Inelastic dispersive excitations where the tilted field technique applies are being considered. Using a Gaussian approximation of the transmission function of the three-axis spectrometer and a second-order expansion of the total Larmor phase, the instrumental resolution function of an idealized spin-echo instrument is obtained. Furthermore, the resolution function is extended to include the effects of sample properties, such as mosaicity, spread in lattice spacings and the curvature of the four-dimensional dispersion surface in a line-width measurement.
APA, Harvard, Vancouver, ISO, and other styles
16

Li, Fankang, and Roger Pynn. "A novel neutron spin echo technique for measuring phonon linewidths using magnetic Wollaston prisms." Journal of Applied Crystallography 47, no. 6 (October 17, 2014): 1849–54. http://dx.doi.org/10.1107/s1600576714020597.

Full text
Abstract:
A new method of implementing neutron spin echo measurement of phonon linewidths on a triple-axis neutron spectrometer is introduced, based on recently developed superconducting magnetic Wollaston prisms. Each arm of the spectrometer is composed of two Wollaston prisms with a rectangular field region between them. By introducing triangular and rectangular field regions, loci of constant spin echo phase can be manipulated easily to achieve the so-called phonon focusing condition. Unlike the neutron resonance spin echo method, which is tuned by physically tilting the field boundaries, the new device can be tuned electromagnetically to achieve the phonon focusing condition. By adjusting the field configurations, the linewidths of phonon excitations with high energy and large group velocity can be measured. By employing superconducting films to define the various field regions, high neutron transmission and good neutron polarization efficiency can be obtained.
APA, Harvard, Vancouver, ISO, and other styles
17

Yamada, N. L., M. Nagao, Y. Kawabata, T. Takeda, H. Seto, H. Endo, N. Osaka, and M. Shibayama. "Detector Area Expansion at iNSE Neutron Spin Echo Spectrometer." hamon 17, no. 2 (2007): 132–35. http://dx.doi.org/10.5611/hamon.17.132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Georgii, R., J. Kindervater, C. Pfleiderer, and P. Böni. "RESPECT: Neutron resonance spin-echo spectrometer for extreme studies." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 837 (November 2016): 123–35. http://dx.doi.org/10.1016/j.nima.2016.08.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yamada, N. L., H. Endo, N. Osaka, Y. Kawabata, M. Nagao, T. Takeda, H. Seto, and M. Shibayama. "Detector area expansion at iNSE neutron spin echo spectrometer." Physica B: Condensed Matter 404, no. 17 (September 2009): 2607–10. http://dx.doi.org/10.1016/j.physb.2009.06.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Nagao, Michihiro, Norifumi L. Yamada, Youhei Kawabata, Hideki Seto, Hideki Yoshizawa, and Takayoshi Takeda. "Relocation and upgrade of neutron spin echo spectrometer, iNSE." Physica B: Condensed Matter 385-386 (November 2006): 1118–21. http://dx.doi.org/10.1016/j.physb.2006.05.383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Fouquet, Peter, Georg Ehlers, Bela Farago, Catherine Pappas, and Ferenc Mezei. "The wide-angle neutron spin echo spectrometer project WASP." Journal of Neutron Research 15, no. 1 (2007): 39–47. http://dx.doi.org/10.1080/10238160601048791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Monkenbusch, M., R. Schätzler, and D. Richter. "The Jülich neutron spin-echo spectrometer — Design and performance." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 399, no. 2-3 (November 1997): 301–23. http://dx.doi.org/10.1016/s0168-9002(97)00956-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tasaki, S., M. Hino, T. Ebisawa, N. Achiwa, T. Kanaya, D. Yamazaki, H. Tahata, and T. Akiyoshi. "A compact novel spin-echo spectrometer using quantum precession." Physica B: Condensed Matter 241-243 (December 1997): 175–76. http://dx.doi.org/10.1016/s0921-4526(97)00543-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Aksenov, V. L., Yu V. Nikitenko, and A. A. Osipov. "Neutron nano-spin-echo spectrometer based on magnetic nanostructures." Crystallography Reports 52, no. 5 (September 2007): 901–5. http://dx.doi.org/10.1134/s1063774507050215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dubbers, D., P. El-Muzeini, M. Kessler, and J. Last. "Prototype of a zero-field neutron spin-echo spectrometer." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 275, no. 2 (February 1989): 294–300. http://dx.doi.org/10.1016/0168-9002(89)90700-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Reddy, Narsimha, Arun Bhavsar, and P. T. Narasimhan. "Microprocessor-Controlled Pulsed NQR Spectrometer for Automatic Acquisition of Zeeman Perturbed Nuclear Quadrupole Spin Echo Envelope Modulations (ZSEEM )." Zeitschrift für Naturforschung A 41, no. 1-2 (February 1, 1986): 449–52. http://dx.doi.org/10.1515/zna-1986-1-288.

Full text
Abstract:
A simple microprocessor-controlled pulsed NQR spectrometer system has been developed with the capability to acquire Zeeman perturbed spin echo envelope modulations (ZSEEM). The CPU of the system is based on the Intel Corporation 8085 A microprocessor. The performance of the spectrometer is illustrated with the presentation of ZSEEM spectra of NaClO3 and KClO3.
APA, Harvard, Vancouver, ISO, and other styles
27

Pappas, C., G. Kali, P. Böni, R. Kischnik, L. A. Mertens, P. Granz, and F. Mezei. "The novel multidetector neutron spin echo spectrometer SPAN at BENSC." Physica B: Condensed Matter 276-278 (March 2000): 162–63. http://dx.doi.org/10.1016/s0921-4526(99)01300-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ohl, M., M. Monkenbusch, N. Arend, T. Kozielewski, G. Vehres, C. Tiemann, M. Butzek, et al. "The spin-echo spectrometer at the Spallation Neutron Source (SNS)." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 696 (December 2012): 85–99. http://dx.doi.org/10.1016/j.nima.2012.08.059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Keller, T., R. Golub, F. Mezei, and R. Gähler. "A neutron resonance spin-echo spectrometer (NRSE) with tiltable fields." Physica B: Condensed Matter 241-243 (December 1997): 101–3. http://dx.doi.org/10.1016/s0921-4526(97)00522-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zeyen, C. M. E., M. Berneron, K. Kakurai, M. Nishi, K. Nakajima, T. Sakaguchi, Y. Kawamura, S. Watanabe, K. Sasaki, and Y. Endoh. "Thermal neutron spin echo three-axis spectrometer with μeV resolution." Neutron News 8, no. 4 (January 1997): 7–10. http://dx.doi.org/10.1080/10448639708231993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ichikawa, Tsuneki. "Microcomputer-controlled pulse generator for an electron spin-echo spectrometer." Journal of Magnetic Resonance (1969) 70, no. 2 (November 1986): 280–89. http://dx.doi.org/10.1016/0022-2364(86)90010-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Takeda, T., H. Seto, Y. Kawabata, D. Okuhara, T. Krist, C. M. E. Zeyen, I. S. Anderson, et al. "Improvement of neutron spin echo spectrometer at C2-2 of JRR3M." Journal of Physics and Chemistry of Solids 60, no. 8-9 (September 1999): 1599–601. http://dx.doi.org/10.1016/s0022-3697(99)00182-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kawabata, Yuji, Masahiro Hino, Masaaki Kitaguchi, Hirotoshi Hayashida, Seiji Tasaki, Toru Ebisawa, Dai Yamazaki, et al. "Neutron resonance spin echo and MIEZE spectrometer development project in Japan." Physica B: Condensed Matter 385-386 (November 2006): 1122–24. http://dx.doi.org/10.1016/j.physb.2006.05.387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Monkenbusch, M., M. Ohl, D. Richter, C. Pappas, G. Zsigmond, K. Lieutenant, and F. Mezei. "Aspects of Neutron Spin-echo Spectrometer Operation on a Pulsed Source." Journal of Neutron Research 13, no. 1-3 (March 1, 2005): 63–66. http://dx.doi.org/10.1080/10238160412331299555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Groitl, F., T. Keller, D. L. Quintero-Castro, and K. Habicht. "Neutron resonance spin-echo upgrade at the three-axis spectrometer FLEXX." Review of Scientific Instruments 86, no. 2 (February 2015): 025110. http://dx.doi.org/10.1063/1.4908167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Tasaki, Seiji, Toru Ebisawa, and Masahiro Hino. "Development of a neutron spin echo spectrometer with multilayer spin splitters." Physica B: Condensed Matter 267-268 (June 1999): 299–303. http://dx.doi.org/10.1016/s0921-4526(99)00084-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Stingaciu, Laura R. "The Neutron Spin Echo Spectrometer at SNS and its Biophysics Applications." Biophysical Journal 116, no. 3 (February 2019): 431a—432a. http://dx.doi.org/10.1016/j.bpj.2018.11.2323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Probst, Sebastian, Gengli Zhang, Miloš Rančić, Vishal Ranjan, Marianne Le Dantec, Zhonghan Zhang, Bartolo Albanese, et al. "Hyperfine spectroscopy in a quantum-limited spectrometer." Magnetic Resonance 1, no. 2 (December 17, 2020): 315–30. http://dx.doi.org/10.5194/mr-1-315-2020.

Full text
Abstract:
Abstract. We report measurements of electron-spin-echo envelope modulation (ESEEM) performed at millikelvin temperatures in a custom-built high-sensitivity spectrometer based on superconducting micro-resonators. The high quality factor and small mode volume (down to 0.2 pL) of the resonator allow us to probe a small number of spins, down to 5×102. We measure two-pulse ESEEM on two systems: erbium ions coupled to 183W nuclei in a natural-abundance CaWO4 crystal and bismuth donors coupled to residual 29Si nuclei in a silicon substrate that was isotopically enriched in the 28Si isotope. We also measure three- and five-pulse ESEEM for the bismuth donors in silicon. Quantitative agreement is obtained for both the hyperfine coupling strength of proximal nuclei and the nuclear-spin concentration.
APA, Harvard, Vancouver, ISO, and other styles
39

Clarke, John. "Low Frequency Nuclear Quadrupole Resonance with SQUID Amplifiers." Zeitschrift für Naturforschung A 49, no. 1-2 (February 1, 1994): 5–13. http://dx.doi.org/10.1515/zna-1994-1-204.

Full text
Abstract:
Abstract The dc SQUID (Superconducting QUantum Interference Device) can be configured as an ampli­fier of spin-echos with a noise temperature of approximately 10 mK (f/1 M Hz) at an operating temperature of 1.5 K. A Fourier transform spectrometer based on a SQUID with a superconducting input circuit and operated in a flux-locked loop is used to obtain nuclear quadrupole resonance (NQR) spectra in a broadband m ode over the bandwith 0 -1 M Hz. Spin-echo spectra of 14N in NH4ClO4 reveal sharp NQR resonances, obtained simultaneously, at 17.4, 38.8 and 56.2 kHz. At 1.5 K, the measured longitudinal and transverse relaxation times T1 and T2 for the 38.8 kHz transition are 63 ± 3 ms and 22±2 ms, respectively.
APA, Harvard, Vancouver, ISO, and other styles
40

Liyong, Qian, Wu Decheng, Zhou Xiaojun, Zhong Liujun, Wei Wei, Deng Qian, Chu Yufei, Liu Dong, and Wang Yingjian. "The Design of Focal Plane Splitting Unit in a Hyperspectral Lidar System." EPJ Web of Conferences 237 (2020): 07024. http://dx.doi.org/10.1051/epjconf/202023707024.

Full text
Abstract:
A hyperspectral lidar system with focal plane splitting unit is proposed, including an off-axis receiving telescope, a grating spectrometer, and a single-tube detector array. The spectrum of the system covers 380-930nm, and is separated by grating spectrometer. The microlens-fiber coupling system guides the echo signal of 50 channels into each detector. The system solves the data processing problem of the bandwidth and gain the line array and area array detector in traditional hyperspectral lidar. And it also meets the requirement of the high efficiency splitting coupling and weak signal acquisition and detection.
APA, Harvard, Vancouver, ISO, and other styles
41

Stude, Joan, Heinfried Aufmhoff, Hans Schlager, Markus Rapp, Frank Arnold, and Boris Strelnikov. "A novel rocket-borne ion mass spectrometer with large mass range: instrument description and first-flight results." Atmospheric Measurement Techniques 14, no. 2 (February 9, 2021): 983–93. http://dx.doi.org/10.5194/amt-14-983-2021.

Full text
Abstract:
Abstract. We present a novel rocket-borne ion mass spectrometer named ROMARA (ROcket-borne MAss spectrometer for Research in the Atmosphere) for measuring atmospheric positive and negative ions (atomic, molecular and cluster ions) and positively and negatively charged meteor smoke particles. Our ROMARA instrument has, compared to previous rocket-borne ion mass spectrometers, a markedly larger mass range of up to m/z 2000 and a larger sensitivity, particularly for meteor smoke particle detection. The major objectives of this first ROMARA flight included the following: a functional test of the ROMARA instrument, measurements between 55 and 121 km in the mass range of atmospheric positive and negative ions, a first attempt to conduct mass spectrometric measurements in the mass range of meteor smoke particles with mass-to-charge ratios up to m/z 2000, and measurements inside a polar mesospheric winter echo layer as detected by ground-based radar. Our ROMARA measurements took place on the Arctic island of Andøya, Norway, at around noon in April 2018 and represented an integral part of the polar mesospheric winter radar echo (PMWE) rocket campaign. During the rocket flight, ROMARA was operated in a measurement mode, offering maximum sensitivity and the ability to qualitatively detect total ion signatures even beyond its mass-resolving mass range. On this first ROMARA flight we were able to meet all of our objectives. We detected atmospheric species including positive atomic, molecular and cluster ions along with negative molecular ions up to about m/z 100. Above m/z 2000, ROMARA measured strong negative-ion signatures, which are likely due to negatively charged meteor smoke particles.
APA, Harvard, Vancouver, ISO, and other styles
42

Tasaki, S., T. Ebisawa, M. Hino, T. Kawai, D. Yamazaki, N. Achiwa, R. Maruyama, and S. Kawakami. "Development of new neutron spin echo spectrometer based on neutron spin interferometry." Physica B: Condensed Matter 311, no. 1-2 (January 2002): 102–5. http://dx.doi.org/10.1016/s0921-4526(01)01117-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kitaguchi, M., M. Hino, Y. Kawabata, S. Tasaki, H. Hayashida, R. Maruyama, and T. Ebisawa. "Development of neutron resonance spin flipper for high resolution spin echo spectrometer." Physica B: Condensed Matter 404, no. 17 (September 2009): 2590–93. http://dx.doi.org/10.1016/j.physb.2009.06.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Tasaki, S., T. Ebisawa, R. Maruyama, N. Achiwa, T. Kawai, Y. Kawabata, M. Hino, and D. Yamazaki. "Development of a modified neutron spin echo spectrometer using multilayer spin splitters." Physica B: Condensed Matter 335, no. 1-4 (July 2003): 234–37. http://dx.doi.org/10.1016/s0921-4526(03)00245-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Meer, H. J. van der, J. A. J. M. Disselhorst, J. Allgeier, J. Schmidt, and W. T. Wenckebach. "A low-temperature insert for a 95 GHz electron-spin-echo spectrometer." Measurement Science and Technology 1, no. 5 (May 1, 1990): 396–400. http://dx.doi.org/10.1088/0957-0233/1/5/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Häussler, W., R. Schwikowski, D. Streibl, and P. Böni. "Scientific Review: The Resonance Spin Echo Spectrometer RESEDA at the FRM II." Neutron News 18, no. 4 (November 2, 2007): 17–19. http://dx.doi.org/10.1080/10448630701623178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Keller, T., F. Mezei, C. Guy, S. Schorr, and J. Stride. "Performance of a spin echo spectrometer at a long pulse spallation source." Journal of Neutron Research 6, no. 1 (November 1, 1997): 95–102. http://dx.doi.org/10.1080/10238169708200099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Holderer, O., M. Monkenbusch, R. Schätzler, H. Kleines, W. Westerhausen, and D. Richter. "The JCNS neutron spin-echo spectrometer J-NSE at the FRM II." Measurement Science and Technology 19, no. 3 (January 30, 2008): 034022. http://dx.doi.org/10.1088/0957-0233/19/3/034022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kole, P. R., A. P. Jardine, H. Hedgeland, and G. Alexandrowicz. "Measuring surface phonons with a3He spin echo spectrometer: a two-dimensional approach." Journal of Physics: Condensed Matter 22, no. 30 (July 13, 2010): 304018. http://dx.doi.org/10.1088/0953-8984/22/30/304018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Fouquet, P., A. P. Jardine, S. Dworski, G. Alexandrowicz, W. Allison, and J. Ellis. "Thermal energy He3 spin-echo spectrometer for ultrahigh resolution surface dynamics measurements." Review of Scientific Instruments 76, no. 5 (May 2005): 053109. http://dx.doi.org/10.1063/1.1896945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography