Academic literature on the topic 'ECG-derived respiratory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ECG-derived respiratory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "ECG-derived respiratory"
Kontaxis, Spyridon, Jesus Lazaro, Valentina D. A. Corino, Frida Sandberg, Raquel Bailon, Pablo Laguna, and Leif Sornmo. "ECG-Derived Respiratory Rate in Atrial Fibrillation." IEEE Transactions on Biomedical Engineering 67, no. 3 (March 2020): 905–14. http://dx.doi.org/10.1109/tbme.2019.2923587.
Full textDickhaus, H., and C. Maier. "Central Sleep Apnea Detection from ECG-derived Respiratory Signals." Methods of Information in Medicine 49, no. 05 (2010): 462–66. http://dx.doi.org/10.3414/me09-02-0047.
Full textBao, Xinqi, Aimé Kingwengwe Abdala, and Ernest Nlandu Kamavuako. "Estimation of the Respiratory Rate from Localised ECG at Different Auscultation Sites." Sensors 21, no. 1 (December 25, 2020): 78. http://dx.doi.org/10.3390/s21010078.
Full textKlum, Michael, Mike Urban, Timo Tigges, Alexandru-Gabriel Pielmus, Aarne Feldheiser, Theresa Schmitt, and Reinhold Orglmeister. "Wearable Cardiorespiratory Monitoring Employing a Multimodal Digital Patch Stethoscope: Estimation of ECG, PEP, LVET and Respiration Using a 55 mm Single-Lead ECG and Phonocardiogram." Sensors 20, no. 7 (April 4, 2020): 2033. http://dx.doi.org/10.3390/s20072033.
Full textSchrumpf, Fabian, Matthias Sturm, Gerold Bausch, and Mirco Fuchs. "Derivation of the respiratory rate from directly and indirectly measured respiratory signals using autocorrelation." Current Directions in Biomedical Engineering 2, no. 1 (September 1, 2016): 241–45. http://dx.doi.org/10.1515/cdbme-2016-0054.
Full textSchmidt, Marcus, Johannes W. Krug, Andy Schumann, Karl-Jürgen Bär, and Georg Rose. "Estimation of a respiratory signal from a single-lead ECG using the 4th order central moments." Current Directions in Biomedical Engineering 1, no. 1 (September 1, 2015): 61–64. http://dx.doi.org/10.1515/cdbme-2015-0016.
Full textStergiopoulos, Dimitrios C., Stylianos N. Kounalakis, Panagiotis G. Miliotis, and Nikolaos D. Geladas. "Second Ventilatory Threshold Assessed by Heart Rate Variability in a Multiple Shuttle Run Test." International Journal of Sports Medicine 42, no. 01 (August 7, 2020): 48–55. http://dx.doi.org/10.1055/a-1214-6309.
Full textSayadi, Omid, Eric H. Weiss, Faisal M. Merchant, Dheeraj Puppala, and Antonis A. Armoundas. "An optimized method for estimating the tidal volume from intracardiac or body surface electrocardiographic signals: implications for estimating minute ventilation." American Journal of Physiology-Heart and Circulatory Physiology 307, no. 3 (August 1, 2014): H426—H436. http://dx.doi.org/10.1152/ajpheart.00038.2014.
Full textGilfriche, Pierre, Laurent M. Arsac, Yannick Daviaux, Jaime Diaz-Pineda, Brice Miard, Olivier Morellec, and Jean-Marc André. "Highly sensitive index of cardiac autonomic control based on time-varying respiration derived from ECG." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 315, no. 3 (September 1, 2018): R469—R478. http://dx.doi.org/10.1152/ajpregu.00057.2018.
Full textSchumann, Andy, Marcus Schmidt, Marco Herbsleb, Charlotte Semm, Georg Rose, Holger Gabriel, and Karl-Jürgen Bär. "Deriving respiration from high resolution 12-channel-ECG during cycling exercise." Current Directions in Biomedical Engineering 2, no. 1 (September 1, 2016): 171–74. http://dx.doi.org/10.1515/cdbme-2016-0039.
Full textDissertations / Theses on the topic "ECG-derived respiratory"
Janáková, Jaroslava. "Odhad dechové frekvence z elektrokardiogramu a fotopletysmogramu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442594.
Full textTiinanen, S. (Suvi). "Methods for assessment of autonomic nervous system activity from cardiorespiratory signals." Doctoral thesis, Oulun yliopisto, 2019. http://urn.fi/urn:isbn:9789526223131.
Full textTiivistelmä Autonominen hermosto säätelee tarkasti sydän- ja verenkiertoelimistöä sekä hengitystä. Autonomisen hermoston toimintaa voidaan analysoida laskennallisin menetelmin noninvasiivisesti mitatuista elektrokardiogrammi- (EKG, sydänsähkökäyrä), verenpaine- ja hengityssignaaleista. Useita tekijöitä ja sairauksia voidaan yhdistää autonomisen hermoston epätasapainoon. Väitöskirjassa kehitettiin menetelmiä sydän- ja verisuonijärjestelmän autonomisen säätelyn kuvaamiseksi lyhytaikaisista kardiorespiratorisista tallenteista. Erityistä huomiota on kiinnitetty hengityksen vaikutukseen perinteisiin taajuustasosta laskettaviin muuttujiin, jotka kuvaavat autonomisen hermoston toimintaa. Väitöskirjan päätuloksia ja -tuotoksia ovat: 1) uusi adaptiiviseen suodatukseen pohjautuva laskennallinen menetelmä hengitysvaikutuksien poistamiseksi sydän- ja verisuonisignaaleista. Adaptiivinen suodatin vähensi matalan hengitystaajuuden aiheuttamaa vääristymää hermoston toimintaa kuvaavista parametreistä. Uusi menetelmä mahdollistaa kontrolloimattoman eli vapaan hengitystaajuus-protokollan käytön autonomisen hermoston toiminnan mittauksissa. 2) Uusia menetelmiä respiratorisen sinus arrytmian (RSA) määrittämiseksi sydän- ja verisuonisignaaleista. Kehitetyissä menetelmistä kahdessa käytetään adaptiivista suodatusta hyödyntäen joko mitattua hengityssignaalia tai EKG:stä johdettua hengityssignaalia. Kolmas menetelmä pohjautuu itsenäisten komponenttien analyysiin. Kehitetyt menetelmät RSA:n laskemiseksi sallivat hengitystaajuuden vaihtelun mittauksien aikana, mikä tekee ne fysiologisesti tarkemmaksi kuin perinteisesti käytetty korkeataajuinen (HF) komponentti, joka lasketaan taajuustasossa tietyltä kaistalta riippumatta hengitystaajuudesta. 3) Kehitettiin ja sovellettiin menetelmiä EKG:n ja verenpaineen matalataajuisten (LF) heilahtelujen tutkimista varten. Yhdessä tutkimuksessa sovellettiin aika-taajuustason esitystapaa vaihtelevan datan analysoimiksi. Kokeellinen tutkimus tehtiin aineistolla, joka oli jatkumo sydän- ja verisuonitautien riskejä omaavista potilaista jo sairastuneisiin potilaisiin. Ikääntyminen pienensi matalataajuisen heilahtelun taajuutta ja sepelvaltimosairaus pienensi sitä edelleen. 4) Kaksi uutta hajotelmatekniikoita hyödyntävää menetelmää, joilla lasketaan EKG:stä hengitysvirtausignaali-estimaatti (EDR). Kehitettyjen EDR-menetelmien suorituskyky osoittautui tilastollisesti paremmaksi kuin aikaisemmat menetelmät. Koska hengityssignaali ja -taajuus voidaan johtaa suoraan EKG:stä, tarvittavien mittaussensoreiden määrää vähenee. Lisäksi EDR:ää voidaan hyödyttää autonomisen hermoston toimintaa kuvaavien parametrien estimoinnissa. Väitöskirja tarjoaa menetelmiä autonomisen hermoston toiminnan mittaamiseksi huomioiden erityisesti hengityksen vaikutus estimoitaviin parametreihin. Väitöskirjan tuloksia voidaan soveltaa useissa kardiorespiratorisia signaaleja hyödyntävissä sovelluksissa aina kliinisestä työstä fysiologian tutkimukseen ja kaupallisiin hyvinvointi-, terveys- ja urheilusovelluksiin
Huomautus/Notice Painetussa virheellinen ISBN: 978-952-62-2312-4, oikea 978-952-62-2310-0. Printed version has incorrect ISBN: 978-952-62-2312-4, it should be 978-952-62-2310-0
江政運. "Abnormal Sleep Breath Detection Based on the ECG Derived Respiratory Signal." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/07305267684692481290.
Full text逢甲大學
自動控制工程學系
102
Abstract The main purpose of this research is to develop a real-time abnormal breathing anomaly system, integrated with the physiological measurements smart clothing for monitoring abnormal breathing during sleep. In order to reduce the abnormal phenomena, physiological measurements will instead be done by smart-shirt measurements, and uses electrocardiograph derived respiratory signal from previous studies in order to achieve the same functionality with breathing bands. This system will be developed using LabVIEW® for analysis, while the signals will be measured and acquired using physiological cardiac signals smart-shirt with a sampling frequency 250 Hz, and linked by Bluetooth for real-time analysis and detection. In order to prove the accuracy of the system for the analysis of abnormal breathing detection, short-term controlled breathing data will be used, such as inhaling 2 seconds (s) exhaling 2s, inhaling 3s exhaling 2s, long breath holding, short breath holding, long weak breathing, short weak breathing, and other specific breathing pattern sampling, for instantaneous detection and analysis in order to achieve the accuracy measurement. After testing, the system has an accuracy of 90% when detecting normal breathing state and 90% when detecting abnormal breathing state. The results confirm the breathing state determining system has a good accuracy, and if more than ten seconds of abnormal breathing is detected, the system will alert caregivers. In the future, the data can also be combined with a respirator to achieve an ergonomic and efficient respirator. Keywords: ECG-derived respiratory signal, ECG, abnormal breathing, smart clothing.
Huang, Po-Yu, and 黃柏諭. "Parallelized Empirical Mode Decomposition in CUDA and Its Application to ECG-Derived Respiratory." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/wz8x65.
Full text國立交通大學
電機工程學系
103
ECG-Derived Respiratory (EDR) is a technique to derive respiratory from electrocardiography (ECG), which can help to overcome limitation of traditional respiratory acquisition method. Empirical Mode Decomposition (EMD) is process of adaptive analysis applicable to non-linear and non-stationary data such as ECG, hence it can be used to deal with EDR application. EMD analyzes data by iteratively decomposing data into multiple Intrinsic Mode Functions (IMFs). Traditionally, EMD is computed on all data points in a serial manner, thus making its execution time grows linearly with the data size. In this work, a parallelized EMD algorithm working on a General-Purpose computing on Graphics Processing Units (GPGPU) in CUDA language is proposed to improve performance over traditional EMD. Moreover, additional merging cubic spline interpolation and GPU acceleration techniques are also incorporated for achieving high parallelism and high accuracy. Statistical result of database shows that our parallelized EMD in CUDA achieves 6.6X speedup with 0.0003% error after 50 times iteration on datasets of 1-million points. For EDR application, our parallelized EMD achieves average 69.75% accuracy with average execution time of 7.91 second for 1-minute windows ECG from Fantasia Database.
Books on the topic "ECG-derived respiratory"
Johnson, Nicholas J., and Judd E. Hollander. Management of cocaine poisoning. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0324.
Full textBook chapters on the topic "ECG-derived respiratory"
Sahin, Mesut, Howard Fidel, and Raquel Perez-Castillejos. "Extraction of Respiratory Rate from ECG (ECG-Derived Respiration-EDR)." In Instrumentation Handbook for Biomedical Engineers, 133–40. CRC Press, 2020. http://dx.doi.org/10.1201/9780429193989-11.
Full textConference papers on the topic "ECG-derived respiratory"
Rajagopalan, Pradeep, and Sabarish Ramachandran. "ECG derived respiratory rate estimation for wearable devices." In 2017 International Conference on Computational Intelligence in Data Science (ICCIDS). IEEE, 2017. http://dx.doi.org/10.1109/iccids.2017.8272664.
Full textCampolo, M., D. Labate, F. La Foresta, F. C. Morabito, A. Lay-Ekuakille, and P. Vergallo. "ECG-derived respiratory signal using Empirical Mode Decomposition." In 2011 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE, 2011. http://dx.doi.org/10.1109/memea.2011.5966727.
Full textBirrenkott, Drew A., Marco A. F. Pimentel, Peter J. Watkinson, and David A. Clifton. "Robust estimation of respiratory rate via ECG- and PPG-derived respiratory quality indices." In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016. http://dx.doi.org/10.1109/embc.2016.7590792.
Full textKonik, Arda, Joyeeta Mitra Mukherjee, Karen L. Johnson, Eric Helfenbein, Lingxiong Shao, and Michael A. King. "Comparison of ECG derived respiratory signals and pneumatic bellows for respiratory motion tracking." In 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (2011 NSS/MIC). IEEE, 2011. http://dx.doi.org/10.1109/nssmic.2011.6153746.
Full textAvci, Cafer, Ibrahim Delibasoglu, and Ahmet Akbas. "Sleep apnea detection using wavelet analysis of ECG derived respiratory signal." In 2012 International Conference on Biomedical Engineering (ICoBE). IEEE, 2012. http://dx.doi.org/10.1109/icobe.2012.6179019.
Full textSadr, Nadi, and Philip de Chazal. "Comparing ECG Derived Respiratory Signals and Chest Respiratory Signal for the Detection of Obstructive Sleep Apnoea." In 2016 Computing in Cardiology Conference. Computing in Cardiology, 2016. http://dx.doi.org/10.22489/cinc.2016.296-336.
Full textCorrea, L. S., E. Laciar, V. Mut, A. Torres, and R. Jane. "Sleep apnea detection based on spectral analysis of three ECG - derived respiratory signals." In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5334196.
Full text