Academic literature on the topic 'EBG STRUCTURE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'EBG STRUCTURE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "EBG STRUCTURE"
Luo, Hui, Wei Wei Wu, Tao Xie, Le Peng Zhong, and Nai Chang Yuan. "Design of a Novel EBG Structure for Antenna Arrays." Advanced Materials Research 1044-1045 (October 2014): 1125–28. http://dx.doi.org/10.4028/www.scientific.net/amr.1044-1045.1125.
Full textOuassal, Hassna, Jafar Shaker, Langis Roy, Khelifa Hettak, and Reza Chaharmir. "Line Defect-Layered EBG Waveguides in Dielectric Substrates." International Journal of Antennas and Propagation 2018 (June 4, 2018): 1–9. http://dx.doi.org/10.1155/2018/3469730.
Full textAzarbar, A., and J. Ghalibafan. "A Compact Low-Permittivity Dual-Layer EBG Structure for Mutual Coupling Reduction." International Journal of Antennas and Propagation 2011 (2011): 1–6. http://dx.doi.org/10.1155/2011/237454.
Full textBenykhlef, F. "EBG Structures for Reduction of Mutual Coupling in Patch Antennas Arrays." Journal of Communications Software and Systems 13, no. 1 (March 28, 2017): 9. http://dx.doi.org/10.24138/jcomss.v13i1.242.
Full textGao, Qiang, Fen Tan, and Jun Sun. "Low RCS Antenna Based on EBG Structure." Advanced Materials Research 668 (March 2013): 771–75. http://dx.doi.org/10.4028/www.scientific.net/amr.668.771.
Full textJia, Ying, Ruo Meng Hou, Hong Ning Tian, Hou Sui Zhao, and Hu Xu. "Study on the EBG Structure Absorbing Composites." Advanced Materials Research 953-954 (June 2014): 1012–16. http://dx.doi.org/10.4028/www.scientific.net/amr.953-954.1012.
Full textChiau, C. C., X. Chen, and C. Parini. "Multiperiod EBG structure for wide stopband circuits." IEE Proceedings - Microwaves, Antennas and Propagation 150, no. 6 (2003): 489. http://dx.doi.org/10.1049/ip-map:20031087.
Full textJun, Sung Yun, Benito Sanz Izquierdo, and Edward A. Parker. "Liquid Sensor/Detector Using an EBG Structure." IEEE Transactions on Antennas and Propagation 67, no. 5 (May 2019): 3366–73. http://dx.doi.org/10.1109/tap.2019.2902663.
Full textChen, Peng, Xiao Dong Yang, Chao Yang Chen, and Yu Ning Zhao. "A NOVEL UNI-PLANAR COMPACT EBG STRUCTURE." Progress In Electromagnetics Research Letters 45 (2014): 31–34. http://dx.doi.org/10.2528/pierl14012308.
Full textPadhi, Shantanu K., and Marek E. Bialkowski. "A microstrip Yagi antenna using EBG structure." Radio Science 38, no. 3 (May 22, 2003): n/a. http://dx.doi.org/10.1029/2002rs002697.
Full textDissertations / Theses on the topic "EBG STRUCTURE"
Gnanagurunathan, Gnanam. "Electromagnetic bandgap (EBG) structure based patch antennas." Thesis, University of Nottingham, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.551055.
Full textLai, Ying-Chun. "A Development of a Common-Mode FilterUsing an EBG Structure in High Speed SerialLinks." Thesis, KTH, Elektroteknisk teori och konstruktion, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104986.
Full textChoi, Jinwoo. "Noise Suppression and Isolation in Mixed-Signal Systems Using Alternating Impedance Electromagnetic Bandgap (AI-EBG) Structure." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/10417.
Full textPítra, Kamil. "Antény pro oblasti (sub)milimetrových vln." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-233662.
Full textPalreddy, Sandeep R. "Wideband Electromagnetic Band Gap (EBG) Structures, Analysis and Applications to Antennas." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/54004.
Full textPh. D.
Venkateswaran, Ajay. "Analysis of planar EBG structures using transmission line models." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40812.
Full textLes solutions analytiques basées sur des lignes de transmission ont simplifié l'ingénierie de circuits micro-ondes complexes, tel que les EBG. La présente thèse étudie les structures coplanaires EBG à partir d'éléments discrets et de modèles de lignes de transmission, auxquels sont ensuite appliquées des formules analytiques. Grâce à cette approche, un logiciel a été développé permettant de prédire les caractéristiques de dispersion de ces structures périodiques en quelques secondes seulement. Les structures coplanaires EBG contenant des sections courbes sont étudiées et un modèle de circuit équivalent à la portion courbe est proposé. L'analyse des structures EBG commence par une simple géométrie 1D, puis est étendue à des géométries 2D plus complexes. Le résultat des simulations analytiques est évalué par rapport au résultat des simulations analogues. Lorsque les sections courbes sont incluses, le début de la bande interdite est porté en deçà de 1GHz, rendant la structure plus intéressante pour le filtrage basse fréquence omni- directionnel.
Li, Qian. "Miniaturized DGS and EBG structures for decoupling multiple antennas on compact wireless terminals." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/10512.
Full textMasuda, Tetsuya. "Studies on structure-sweetness relationship in egg white lysozyme." Kyoto University, 2006. http://hdl.handle.net/2433/144346.
Full text0048
新制・論文博士
博士(農学)
乙第11784号
論農博第2590号
新制||農||923(附属図書館)
学位論文||H18||N4112(農学部図書室)
23839
UT51-2006-C706
京都大学大学院農学研究科食品工学専攻
(主査)教授 北畠 直文, 教授 吉川 正明, 教授 河田 照雄
学位規則第4条第2項該当
Dornan, Ben. "EEG and the default mode : a structured investigation." Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/8385/.
Full textFranco, Vitor Ramos. "Monitoramento da integridade em estruturas aeronáuticas /." Ilha Solteira : [s.n.], 2009. http://hdl.handle.net/11449/94527.
Full textAbstract: This work presents the study and development of a Structural Health Monitoring technique for identification and characterization of structural damages based on Lamb waves methodology using piezoelectric materials as actuators and sensors. Lamb waves are a form of elastic perturbation that remains guided between two parallel free surfaces. Lamb waves are formed when the actuator excites the structure's surface with a pulse after receiving a signal. When the wave propagates on the structure, it comes in a PZT sensor from different paths. One path is when the wave reaches the sensor directly, i.e. without obstacles in the path in which it propagated. Another possible path is when the wave reaches the sensor after spreads on discontinuities in the structure's surface. Damages can be detected and located through several features of the received signals and with the use of certain techniques of signal processing. In this context, several experimental tests were performed on different kinds of structures. Piezoelectric actuators and sensors networks were attached on the surface of these structures in order to make the Lamb waves configuration. The PZTs actuators excited the structure in high frequency ranges. Different kinds of structural damages were simulated by increasing mass, reduction of stiffness and cuts through the edge of the structures. Four damage-sensitive indexes were used to detect the presence of the damage in the structure: Root-Means-Square Deviation (RMSD), Metric Damage Index (MDI), H2 Norm and Correlation Coefficient Deviation (CCDM). These indices were computed in the frequency domain. The results showed the viability of the Lamb waves methodology for Structural Health Monitoring system using smart materials as actuators and sensors
Orientador: Vicente Lopes Junior
Coorientador: Michael J. Brennan
Banca: Gilberto Pechoto de Melo
Banca: José Roberto de França Arruda
Mestre
Books on the topic "EBG STRUCTURE"
Orlandi, Antonio, Bruce Archambeault, Francesco De Paulis, and Samuel Connor. Electromagnetic Bandgap (EBG) Structures. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119281559.
Full textWelch, Ivo. Columbus' egg: The real determinants of capital structure. Cambridge, MA: National Bureau of Economic Research, 2002.
Find full textauthor, Geiser Samuel 1950, Hollinger Ruben photographer, Bähler Anna contributor, and Eisenbahner-Baugenossenschaft Bern (Bern Switzerland), eds. Welcome home: 100 Jahre Eisenbahner-Baugenossenschaft Bern (EBG) 1919-2019. Baden: Hier und Jetzt, 2019.
Find full textZabashta, Andrey, Tat'yana Shalimova, and Valer'yan Basov. Egg processing technology. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1085371.
Full textGroves, SE, and AL Highsmith, eds. Compression Response of Composite Structures. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1994. http://dx.doi.org/10.1520/stp1185-eb.
Full textGrant, P., and C. Rousseau, eds. Composite Structures: Theory and Practice. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2001. http://dx.doi.org/10.1520/stp1383-eb.
Full textMarini, Edoardo. The Castle of the Egg: (history and images). Napoli: Grimaldi, 2006.
Find full textRaquel, Paul F. Striped bass egg and larval monitoring near the proposed Montezuma Slough control structure, 1987. [California]: Interagency Ecological Study Program for the Sacramento-San Joaquin Estuary, 1988.
Find full textKim, H., and KT Kedward, eds. Joining and Repair of Composite Structures. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2004. http://dx.doi.org/10.1520/stp1455-eb.
Full textChaney, RC, and HY Fang, eds. Marine Geotechnology and Nearshore/Offshore Structures. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1986. http://dx.doi.org/10.1520/stp923-eb.
Full textBook chapters on the topic "EBG STRUCTURE"
Vani, R. M., K. Prahlada Rao, and P. V. Hunagund. "Study of Microstrip Antenna Array with EBG Structure." In Lecture Notes in Electrical Engineering, 81–90. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7293-2_9.
Full textAjay Yadav, Dinesh Sethi, Priyanka Rahi, and R. K. Khanna. "Design and Analysis of Right-Angled EBG Structure." In Proceedings of the International Conference on Recent Cognizance in Wireless Communication & Image Processing, 645–55. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2638-3_72.
Full textNeto, Almir Souza e. Silva, Marta Laís de Macedo Dantas, Joicy dos Santos Silva, and Humberto César Chaves Fernandes. "Antenna for Fifth Generation (5G) Using a EBG Structure." In New Contributions in Information Systems and Technologies, 33–38. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16528-8_4.
Full textRamesh, M., V. Rajya Lakshmi, and P. Mallikarjuna Rao. "Miniaturized Textile Antenna Using Electromagnetic Band Gap (EBG) Structure." In Proceedings of 2nd International Conference on Micro-Electronics, Electromagnetics and Telecommunications, 13–20. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4280-5_2.
Full textEl Abdi, Abdellah, Moussa El Ayachi, and Mohammed Rahmoun. "Mutual Coupling Reduction in Array Antenna Using a New EBG Structure." In Digital Technologies and Applications, 322–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-02447-4_34.
Full textMahajan, Rajshri C., Vini Parashar, and Vibha Vyas. "Modified Unit Cell Analysis Approach for EBG Structure Analysis for Gap Width Study Effect." In Lecture Notes in Electrical Engineering, 235–43. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7091-5_22.
Full textKumar, Niraj, and Priyanka Usha. "Design of Compact UWB MIMO Antenna with High Isolation Using Square Swirl Shape EBG Structure." In Proceedings of the 2nd International Conference on Signal and Data Processing, 25–33. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1410-4_3.
Full textSouza e Silva Neto, Almir, Artur Luiz Torres de Oliveira, Sérgio de Brito Espinola, João Ricardo Freire de Melo, José Lucas da Silva, and Humberto César Chaves Fernandes. "Dual Band Patch Antenna for 5G Applications with EBG Structure in the Ground Plane and Substrate." In Advances in Intelligent Systems and Computing, 1044–49. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56538-5_107.
Full textDhakad, Shailendra Kumar, Umesh Dwivedi, Sudeep Baudha, and Tapesh Bhandari. "Performance Improvement of Fractal Antenna with Electromagnetic Band Gap (EBG) and Defected Ground Structure for Wireless Communication." In Lecture Notes in Electrical Engineering, 9–19. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7293-2_2.
Full textZoubiri, Bachir, Abdelhalim Mayouf, and Mokhtar Mokhtari. "Mutual Coupling Reduction Between Two Closely Spaced Microstrip Antennas Using Electromagnetic Band Gap (EBG) Structure for IoT Applications." In Lecture Notes in Networks and Systems, 189–95. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21216-1_20.
Full textConference papers on the topic "EBG STRUCTURE"
Yang, S. L. S., A. A. Kishk, and Kai-Fong Lee. "Comparison of patch antenna performance using wideband planar EBG structure and mushroom type EBG structure." In 2008 Asia Pacific Microwave Conference. IEEE, 2008. http://dx.doi.org/10.1109/apmc.2008.4958419.
Full textAbdelreheem, A. M., and M. A. Abdalla. "A novel bilateral UC-EBG structure." In 2014 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2014. http://dx.doi.org/10.1109/aps.2014.6905216.
Full textElayachi, M., P. Brachat, and J. M. Ribero. "Novel EBG structure for antenna miniaturization." In 2nd European Conference on Antennas and Propagation (EuCAP 2007). Institution of Engineering and Technology, 2007. http://dx.doi.org/10.1049/ic.2007.1405.
Full textMohan, Akhilesh, Animesh Biswas, Andrew Gibson, and Danielle Kettle. "Bandstop filter using hybrid EBG structure." In 2009 European Microwave Conference (EuMC). IEEE, 2009. http://dx.doi.org/10.23919/eumc.2009.5296508.
Full textHassan, S. M. Shakil, Mohammad Nurunnabi Mollah, M. A. Rashid, N. H. Ramly, and M. Othman. "Dumbbell shape EBG structure — Worth to EBG assisted microwave filter designing." In 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE). IEEE, 2012. http://dx.doi.org/10.1109/apace.2012.6457620.
Full textRipin, Nabilah, Robi'atun Adayiah Awang, Ahmad Asari Sulaiman, Noor Hasimah Baba, and Suhaila Subahir. "Rectangular microstrip patch antenna with EBG structure." In 2012 IEEE Student Conference on Research and Development (SCOReD). IEEE, 2012. http://dx.doi.org/10.1109/scored.2012.6518651.
Full textLiang, Yu-fei, Yan Zhang, Tao Dong, and Shan-wei Lu. "A novel conformal jigsaw EBG structure design." In 2016 IEEE International Conference on Communication Systems (ICCS). IEEE, 2016. http://dx.doi.org/10.1109/iccs.2016.7833649.
Full textLi-wei Wang, Yan Zhang, Lin-yu Kong, Ning Fang, and Hao-qian Song. "Design of reconfigurable multi-finger EBG structure." In 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). IEEE, 2016. http://dx.doi.org/10.1109/apemc.2016.7522788.
Full textAyop, Osman, Mohamad Kamal A. Rahim, and Thelaha Masri. "Dual band Electromagnetic Band Gap (EBG) structure." In 2007 Asia-Pacific Conference on Applied Electromagnetics (APACE). IEEE, 2007. http://dx.doi.org/10.1109/apace.2007.4603904.
Full textTan, M. N. Md, M. T. Ali, S. Subahir, T. A. Rahman, and S. K. A. Rahim. "Backlobe reduction using mushroom-like EBG structure." In 2012 IEEE Symposium on Wireless Technology & Applications (ISWTA). IEEE, 2012. http://dx.doi.org/10.1109/iswta.2012.6373844.
Full textReports on the topic "EBG STRUCTURE"
Rahmani, Mehran, and Manan Naik. Structural Identification and Damage Detection in Bridges using Wave Method and Uniform Shear Beam Models: A Feasibility Study. Mineta Transportation Institute, February 2021. http://dx.doi.org/10.31979/mti.2021.1934.
Full textWelch, Ivo. Columbus' Egg: The Real Determinant of Capital Structure. Cambridge, MA: National Bureau of Economic Research, February 2002. http://dx.doi.org/10.3386/w8782.
Full textRyan, J. J., A. Zagorevski, N. R. Cleven, A J Parsons, and N. L. Joyce. Architecture of pericratonic Yukon-Tanana terrane in the northern Cordillera. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/326062.
Full textBell, Matthew, Rob Ament, Damon Fick, and Marcel Huijser. Improving Connectivity: Innovative Fiber-Reinforced Polymer Structures for Wildlife, Bicyclists, and/or Pedestrians. Nevada Department of Transportation, September 2022. http://dx.doi.org/10.15788/ndot2022.09.
Full textHernandez-Abrams, Darixa, Bruce Pruitt, Samantha Wiest, and S. McKay. Stormwater management practices, monitoring, and maintenance plan for US Army Garrison at West Point, NY. Engineer Research and Development Center (U.S.), April 2023. http://dx.doi.org/10.21079/11681/46933.
Full textSmith, Ernest R. Toe Stability of Rubble-Mound Structures in a Breaking Wave and Ebb Flow Environment. Fort Belvoir, VA: Defense Technical Information Center, July 1999. http://dx.doi.org/10.21236/ada369056.
Full textSrivastava, Shiv. Structure and Function of the Splice Variants of TMPRSS2-ERG, a Prevalent Genomic Alteration in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada517260.
Full textSrivastava, Shiv. Structure and Function of the Splice Variants of TMPRSS2-ERG, a Prevalent Genomic Alteration in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada566991.
Full textSrivastava, Shiv. Structure and Function of the Splice Variants of TMPRSS2-ERG, a Prevalent Genomic Alteration in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada552720.
Full textOliynyk, Kateryna, and Matteo Ciantia. Application of a finite deformation multiplicative plasticity model with non-local hardening to the simulation of CPTu tests in a structured soil. University of Dundee, December 2021. http://dx.doi.org/10.20933/100001230.
Full text