Academic literature on the topic 'Earch convection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Earch convection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Earch convection"
Liu, Zijing, Min Min, Jun Li, Fenglin Sun, Di Di, Yufei Ai, Zhenglong Li, et al. "Local Severe Storm Tracking and Warning in Pre-Convection Stage from the New Generation Geostationary Weather Satellite Measurements." Remote Sensing 11, no. 4 (February 13, 2019): 383. http://dx.doi.org/10.3390/rs11040383.
Full textZheng, Zhang, Liu, Liu, and Che. "A Study of Vertical Structures and Microphysical Characteristics of Different Convective Cloud–Precipitation Types Using Ka-Band Millimeter Wave Radar Measurements." Remote Sensing 11, no. 15 (August 1, 2019): 1810. http://dx.doi.org/10.3390/rs11151810.
Full textHuang, Yipeng, Murong Zhang, Yuchun Zhao, Ben Jong-Dao Jou, Hui Zheng, Changrong Luo, and Dehua Chen. "Inter-Zone Differences of Convective Development in a Convection Outbreak Event over Southeastern Coast of China: An Observational Analysis." Remote Sensing 14, no. 1 (December 29, 2021): 131. http://dx.doi.org/10.3390/rs14010131.
Full textLai, Anwei, Jinzhong Min, Jidong Gao, Hedi Ma, Chunguang Cui, Yanjiao Xiao, and Zhibin Wang. "Assimilation of Radar Data, Pseudo Water Vapor, and Potential Temperature in a 3DVAR Framework for Improving Precipitation Forecast of Severe Weather Events." Atmosphere 11, no. 2 (February 9, 2020): 182. http://dx.doi.org/10.3390/atmos11020182.
Full textPalotai, Csaba, Shawn Brueshaber, Ramanakumar Sankar, and Kunio Sayanagi. "Moist Convection in the Giant Planet Atmospheres." Remote Sensing 15, no. 1 (December 30, 2022): 219. http://dx.doi.org/10.3390/rs15010219.
Full textNakagawa, Takashi, and Shun-ichiro Karato. "Influence of realistic rheological properties on the style of mantle convection: roles of dynamic friction and depth-dependence of rheological properties." Geophysical Journal International 226, no. 3 (May 11, 2021): 1986–96. http://dx.doi.org/10.1093/gji/ggab197.
Full textAnders, Evan H., Adam S. Jermyn, Daniel Lecoanet, J. R. Fuentes, Lydia Korre, Benjamin P. Brown, and Jeffrey S. Oishi. "Convective Boundary Mixing Processes." Research Notes of the AAS 6, no. 2 (February 28, 2022): 41. http://dx.doi.org/10.3847/2515-5172/ac5892.
Full textArango-Reyes, Karen, Marco Barranco-Jiménez, Gonzalo Ares de Parga-Álvarez, and Fernando Angulo-Brown. "A Simple Thermodynamic Model of the Internal Convective Zone of the Earth." Entropy 20, no. 12 (December 18, 2018): 985. http://dx.doi.org/10.3390/e20120985.
Full textRichardson, Mark T., Brian H. Kahn, and Peter Kalmus. "Trajectory enhancement of low-earth orbiter thermodynamic retrievals to predict convection: a simulation experiment." Atmospheric Chemistry and Physics 23, no. 13 (July 13, 2023): 7699–717. http://dx.doi.org/10.5194/acp-23-7699-2023.
Full textRybka, H., and H. Tost. "Uncertainties in future climate predictions due to convection parameterisations." Atmospheric Chemistry and Physics Discussions 13, no. 10 (October 16, 2013): 26893–931. http://dx.doi.org/10.5194/acpd-13-26893-2013.
Full textDissertations / Theses on the topic "Earch convection"
Rostami, Masoud. "Dynamical influence of diabatic processes upon developing instabilities of Earth and planetary jets and vortices." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066186.
Full textThe thesis is devoted to understanding dynamical influence of diabatic effects, like moist convection, on instabilities of vortices in Earth and planetary atmospheres. A vertically integrated atmospheric model with relaxational parameterisation of phase transitions and related heat release, and with convective fluxes included in mass and momentum equations, the moist-convective rotating shallow water model, was used for this purpose. The previous version of the model was improved to include precipitable water and its vaporisation and entrainment. The approach consists in 1)detailed stability analysis of idealised, or extracted from the data, vortex profiles, 2)study of nonlinear saturation of the instabilities with the help of finite-volume high-resolution numerical code. The main results of the thesis are: 1. Demonstration and quantification of strong influence of moist effects upon instabilities of synoptic vortices, including cyclone-anticyclone asymmetry of mid-latitude vortices of weak intensity, and intensification of tropical-cyclone like vortices with formation of typical cloud patterns. 2. Explanation of the dynamical origin of the Saturn's North Polar hexagon, and of the lack of similar structure at the South Pole, in terms of instability of the coupled polar vortex and circumpolar jet, and their nonlinear saturation.3. Explanation of the observed structure of Mars' winter polar vortex in terms of instability of the latter, and its saturation in the presence of radiative heating/cooling and CO2 deposition (gas-solid phase transition). A new simple parameterisation of the latter process, including the influence of deposition nuclei, was developed in the thesis
Hall, Paul S. "Free and forced convection in earth's upper mantle /." View online ; access limited to URI, 2003. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3115631.
Full textPark, Sewon. "Diurnal cycle of deep tropical convection." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/54985.
Full textTitle as it appears in the M.I.T. Graduate List, Feb. 1992: Diurnal cycle of deep cloud cover in tropics.
Includes bibliographical references (leaf 53).
by Sewon Park.
M.S.
Kocha, Cécile. "Interactions entre poussières désertiques et convection profonde en Afrique de l'Ouest : Observations et modélisation à échelle convective." Phd thesis, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-00741943.
Full textAlverson, Keith D. 1965. "Topographic preconditioning of open ocean deep convection." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/53023.
Full textIncludes bibliographical references (leaves 143-146).
by Keith D. Alverson.
Ph.D.
Amiri, Khanmakani Hosein. "The visible consequences of rising convective streams in the Earth." Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336266.
Full textBoldi, Robert A. (Robert Arthur). "A model of ion chemistry of electrified convection." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/51502.
Full textIncludes bibliographical references (leaves 175-182) and index.
by Robert A. Boldi.
Ph.D.
Larson, Vincent Edwin 1970. "The effects of thermal radiation on dry convection." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/54433.
Full textIncludes bibliographical references (p. 96-99).
This work seeks to improve understanding of atmospheres in radiative-convective equilibrium. We use two types of idealized, dry radiative-convective models. The first type of model resembles Rayleigh-Benard convection, except that thermal radiative transfer is included. This type of system can be investigated in the laboratory. The second type of model is a more faithful representation of the earth's atmosphere. In this model, the temperature at the upper boundary is left unspecified, unlike the case of Rayleigh-Benard convection. For these two types of radiative-convective models, we perform various theoretical and numerical analyses of the stability properties, and various analyses of the weakly nonlinear convecting state. We prove that in these models, convection arises as monotonically growing cells, not as an oscillatory instability. That is, we prove exchange of stabilities. We investigate the linear stability modes. We find that in most cases, the linear stability threshold can be described approximately or exactly in terms of a radiative Rayleigh number. The radiative Rayleigh numbers used are like the classical Rayleigh number but with modified temperature and thermal diffusivity scales. Inspection of the radiative Rayleigh numbers reveals how various external parameters, such as the net incoming solar radiation or infrared opacity, affect the stability properties. We use the energy method to find a threshold value of a stability parameter below which all disturbances to the radiative equilibrium state, regardless of magnitude, decay. For those radiative equilibrium states which have a linear temperature profile, the energy stability threshold coincides with the linear stability threshold, thereby ruling out the possibility of subcritical instabilities. When the temperature profile is nonlinear, the energy stability profile lies below the linear stability threshold. We study weakly nonlinear convection in the atmospheric radiative-convective model via the mean field approximation. In contrast to the stability threshold, the vertical convective heat flux in the weakly nonlinear convecting state turns out to be little affected by the values of viscosity, thermal diffusivity, or radiative damping. However, the convective heat flux is strongly affected by the net incoming solar radiation and the optical depth. We formulate scaling laws for vertical convective heat flux, vertical velocity, and temperature perturbations. These scales extend the Prandtl scales to higher altitudes.
by Vincent Edwin Larson.
Ph.D.
Bell, Peter Ian. "The effect of bumps on convection in the earth's core." Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335890.
Full textde, Lavaissiere de Lavergne Casimir. "Cessation of southern ocean deep convection under anthropogenic climate change." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119766.
Full textEn 1974, des observations satellite nouvellement disponibles révélèrent la présence d'une géante surface d'eau libre au sein de la glace de mer entourant l'Antarctique, qui persista tout au long de l'hiver et réapparut les deux hivers suivants. Les recherches qui suivirent montrèrent que les eaux étaient maintenues libres de glace par la convection profonde, permettant à une grande quantité de chaleur de remonter des profondeurs pour être ensuite libérée dans l'atmosphère. Si la polynya continue de susciter l'intérêt des climatologues, elle n'est cependant pas réapparue depuis 1976. Nous utilisons ici des expériences de modélisation pour montrer que la convection profonde dans l'Océan Austral, commune dans les modèles de climat actuels, est fortement sensible au forçage anthropique, et cesse dans beaucoup de modèles quand ceux-ci sont forcés par un scénario de fortes émissions. Le ralentissement de la ventilation profonde résulte de la baisse progressive de la salinité des eaux de surface, une tendance corroborée par les observations des dernières décennies. Nos résultats suggèrent que la convection profonde dans l'Océan Austral sera moins fréquente dans le futur, et a peut-être déjà été significativement affaiblie relativement à la période préindustrielle, avec d'importantes conséquences pour la circulation océanique et le climat.
Books on the topic "Earch convection"
Dynamic earth: Plates, plumes, and mantle convection. Cambridge: Cambridge University Press, 1999.
Find full textRoyal Society (Great Britain). Discussion Meeting. Chemical reservoirs and convection in the earth's mantle: Papers of a discussion meeting. London: The Royal Society, 2002.
Find full textVan der Hilst, Robert D. (Robert Dirk), 1961-, ed. Earth's deep mantle: Structure, composition, and evolution. Washington, DC: American Geophysical Union, 2005.
Find full textErickson, Gary M. A mechanism for magnetospheric substorms. [Washington, D.C: National Aeronautics and Space Administration, 1994.
Find full textChassignet, Eric P. Buoyancy-driven flows. Cambridge: Cambridge University Press, 2012.
Find full textUnited States. National Aeronautics and Space Administration. and Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences., eds. Lateral variation in upper mantle temperature and composition beneath mid-ocean ridges inferred from shear-wave propagation, geoid, and bathymetry. [Cambridge, Mass.]: Dept. of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 1991.
Find full textA, Gnoffo Peter, and Langley Research Center, eds. Convective and radiative heating for vehicle return from the Moon and Mars. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Find full textWilson, Gordon R. The high latitude ionosphere-magnetosphere transition region: Simulation and data comparison. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textGordon, Howard R. Ocean observations with EOS/MODIS: Algorithm development and post launch studies : semi-annual report (for July - December 1995). [Washington, D.C: National Aeronautics and Space Administration, 1996.
Find full textUnited States. National Aeronautics and Space Administration., ed. Ocean observations with EOS/MODIS: Algorithm development and post launch studies : semi-annual report (for January - June 1996), contract number NAS5-31363. [Washington, DC: National Aeronautics and Space Administration, 1996.
Find full textBook chapters on the topic "Earch convection"
Bercovici, David, and Elvira Mulyukova. "Mantle Convection." In Encyclopedia of Solid Earth Geophysics, 1–21. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10475-7_130-1.
Full textBercovici, David. "Mantle Convection." In Encyclopedia of Solid Earth Geophysics, 832–51. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8702-7_130.
Full textBercovici, David, and Elvira Mulyukova. "Mantle Convection." In Encyclopedia of Solid Earth Geophysics, 1059–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58631-7_130.
Full textKistovich, Anatoly. "Convective Motions in Water: Linear and Nonlinear Models, Criteria of Convection Onset." In Springer Proceedings in Earth and Environmental Sciences, 174–88. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11533-3_18.
Full textHuppert, H. E., B. A. Buffett, J. R. Lister, and A. W. Woods. "Solidification and Convection in the Core of the Earth." In Interactive Dynamics of Convection and Solidification, 265–67. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2809-4_42.
Full textDavies, Geoffrey F. "Some Clarity: Two Convection Modes, Interacting." In Stories from the Deep Earth, 139–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91359-5_12.
Full textFedyushkin, A. I. "Stratification and Segregation Under Laminar Convection." In Advanced Hydrodynamics Problems in Earth Sciences, 153–69. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-23050-9_14.
Full textSingh, R. N., and A. Manglik. "Parameterized Mantle Convection Analysis for Crustal Processes." In Society of Earth Scientists Series, 75–88. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06471-0_4.
Full textSanchez, David A., Christopher Gonzalez, David A. Yuen, Grady B. Wright, and Gregory A. Barnett. "High Rayleigh Number Mantle Convection on GPU." In Lecture Notes in Earth System Sciences, 335–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16405-7_22.
Full textLin, Li Xi, and H. T. Hsu. "Excitement of the Toroidal Field in Mantle Convection." In Geodesy and Physics of the Earth, 291–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78149-0_68.
Full textConference papers on the topic "Earch convection"
Timchenko, Victoria. "Eddie Leonardi Memorial Lecture: Natural Convection from Earth to Space." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23354.
Full textChang, Tiejun, Xiaoxiong Xiong, and Ashish Shrestha. "Assessment of MODIS TEB calibration performance using deep convective clouds." In Earth Observing Systems XXIV, edited by James J. Butler, Xiaoxiong (Jack) Xiong, and Xingfa Gu. SPIE, 2019. http://dx.doi.org/10.1117/12.2528043.
Full textMu, Qiaozhen, Amit Angal, Aisheng Wu, and Xiaoxiong Xiong. "Performance assessment of the NOAA-20 VIIRS RSB using deep convective clouds." In Earth Observing Systems XXVI, edited by James J. Butler, Xiaoxiong (Jack) Xiong, and Xingfa Gu. SPIE, 2021. http://dx.doi.org/10.1117/12.2593514.
Full textJeong, Gi Ho, Soo In Jeong, Kui Soon Kim, and Man Young Ha. "Numerical Analysis of Natural Convection and Phase Change Problem With Finite Volume Method." In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-3108.
Full textChang, Tiejun, Carlos Pérez Díaz, Ashish Shrestha, and Xiaoxiong Xiong. "Application of quasi-deep convective clouds method for MODIS and VIIRS TEB calibration assessments." In Earth Observing Systems XXV, edited by James J. Butler, Xiaoxiong (Jack) Xiong, and Xingfa Gu. SPIE, 2020. http://dx.doi.org/10.1117/12.2567221.
Full textBoth, J. W., S. E. Gasda, I. Aavatsmark, and R. Kaufmann. "Gravity-driven Convective Mixing of CO2 in Oil." In The Third Sustainable Earth Sciences Conference and Exhibition. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201414266.
Full textColombani, Jean. "Microgravity and earth thermal diffusion in liquids holographic visualization of convection." In HADRONS AND NUCLEI: First International Symposium. AIP, 2000. http://dx.doi.org/10.1063/1.1302586.
Full textWang, Xin, Ning Mei, Xijun Yu, and Yan Li. "A Method of Identifying the Ingredient of Homo-Zeotrope by Measurable Temperature Field of Pipe Convective Heat Transfer Model." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62066.
Full textReynier, Philippe. "Convective Blockage for High-Speed Earth Entries: A Review." In 40th Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-3806.
Full textBhatt, Rajendra, David R. Doelling, Benjamin R. Scarino, Arun Gopalan, and Conor O. Haney. "Advances in utilizing tropical deep convective clouds as a stable target for on-orbit calibration of satellite imager reflective solar bands." In Earth Observing Systems XXIV, edited by James J. Butler, Xiaoxiong (Jack) Xiong, and Xingfa Gu. SPIE, 2019. http://dx.doi.org/10.1117/12.2530636.
Full textReports on the topic "Earch convection"
Gallagher, Alex, Sandra LeGrand, Taylor Hodgdon, and Theodore Letcher. Simulating environmental conditions for Southwest United States convective dust storms using the Weather Research and Forecasting Model v4.1. Engineer Research and Development Center (U.S.), August 2022. http://dx.doi.org/10.21079/11681/44963.
Full textKedzierski, Mark A., and Donggyu Kang. Horizontal convective boiling of R1234yf, R134a, and R450A within a micro-fin tube :. Gaithersburg, MD: National Institute of Standards and Technology (U.S.), August 2017. http://dx.doi.org/10.6028/nist.tn.1966.
Full textBoily-Auclair, É., P. Mercier-Langevin, P. S. Ross, and D. Pitre. Alteration and ore assemblages of the LaRonde Zone 5 (LZ5) deposit and Ellison mineralized zones, Doyon-Bousquet-LaRonde mining camp, Abitibi, Quebec. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329637.
Full text