Journal articles on the topic 'E3 LIGASE ACTIVITY'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'E3 LIGASE ACTIVITY.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Pao, Kuan-Chuan, Nicola T. Wood, Axel Knebel, Karim Rafie, Mathew Stanley, Peter D. Mabbitt, Ramasubramanian Sundaramoorthy, Kay Hofmann, Daan M. F. van Aalten, and Satpal Virdee. "Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity." Nature 556, no. 7701 (April 2018): 381–85. http://dx.doi.org/10.1038/s41586-018-0026-1.
Full textMarblestone, Jeffrey G., K. G. Suresh Kumar, Michael J. Eddins, Craig A. Leach, David E. Sterner, Michael R. Mattern, and Benjamin Nicholson. "Novel Approach for Characterizing Ubiquitin E3 Ligase Function." Journal of Biomolecular Screening 15, no. 10 (September 23, 2010): 1220–28. http://dx.doi.org/10.1177/1087057110380456.
Full textLi, Qianyan, Arshdeep Kaur, Kyoko Okada, Richard J. McKenney, and JoAnne Engebrecht. "Differential requirement for BRCA1-BARD1 E3 ubiquitin ligase activity in DNA damage repair and meiosis in the Caenorhabditis elegans germ line." PLOS Genetics 19, no. 1 (January 30, 2023): e1010457. http://dx.doi.org/10.1371/journal.pgen.1010457.
Full textKim, Jong Hum, Seok Keun Cho, Tae Rin Oh, Moon Young Ryu, Seong Wook Yang, and Woo Taek Kim. "MPSR1 is a cytoplasmic PQC E3 ligase for eliminating emergent misfolded proteins in Arabidopsis thaliana." Proceedings of the National Academy of Sciences 114, no. 46 (October 30, 2017): E10009—E10017. http://dx.doi.org/10.1073/pnas.1713574114.
Full textBustos, Francisco, Sunil Mathur, Carmen Espejo-Serrano, Rachel Toth, C. James Hastie, Satpal Virdee, and Greg M. Findlay. "Activity-based probe profiling of RNF12 E3 ubiquitin ligase function in Tonne-Kalscheuer syndrome." Life Science Alliance 5, no. 11 (June 28, 2022): e202101248. http://dx.doi.org/10.26508/lsa.202101248.
Full textChinnam, Meenalakshmi, Chao Xu, Rati Lama, Xiaojing Zhang, Carlos D. Cedeno, Yanqing Wang, Aimee B. Stablewski, David W. Goodrich, and Xinjiang Wang. "MDM2 E3 ligase activity is essential for p53 regulation and cell cycle integrity." PLOS Genetics 18, no. 5 (May 19, 2022): e1010171. http://dx.doi.org/10.1371/journal.pgen.1010171.
Full textGong, Yao, and Yue Chen. "UbE3-APA: a bioinformatic strategy to elucidate ubiquitin E3 ligase activities in quantitative proteomics study." Bioinformatics 38, no. 8 (February 9, 2022): 2211–18. http://dx.doi.org/10.1093/bioinformatics/btac069.
Full textHorn-Ghetko, Daniel, David T. Krist, J. Rajan Prabu, Kheewoong Baek, Monique P. C. Mulder, Maren Klügel, Daniel C. Scott, Huib Ovaa, Gary Kleiger, and Brenda A. Schulman. "Ubiquitin ligation to F-box protein targets by SCF–RBR E3–E3 super-assembly." Nature 590, no. 7847 (February 3, 2021): 671–76. http://dx.doi.org/10.1038/s41586-021-03197-9.
Full textKelsall, Ian R., Jiazhen Zhang, Axel Knebel, J. Simon C. Arthur, and Philip Cohen. "The E3 ligase HOIL-1 catalyses ester bond formation between ubiquitin and components of the Myddosome in mammalian cells." Proceedings of the National Academy of Sciences 116, no. 27 (June 17, 2019): 13293–98. http://dx.doi.org/10.1073/pnas.1905873116.
Full textLi, Haoyan, Yanjia Fang, Chunyi Niu, Hengyi Cao, Ting Mi, Hong Zhu, Junying Yuan, and Jidong Zhu. "Inhibition of cIAP1 as a strategy for targeting c-MYC–driven oncogenic activity." Proceedings of the National Academy of Sciences 115, no. 40 (September 4, 2018): E9317—E9324. http://dx.doi.org/10.1073/pnas.1807711115.
Full textZhang, Gui, Yunfang Zhang, Luxuan Chen, Langxia Liu, and Xuejuan Gao. "E3 ubiquitin ligase-dependent regulatory mechanism of TRIM family in carcinogenesis." Cancer Insight 2, no. 1 (June 28, 2023): 102–30. http://dx.doi.org/10.58567/ci02010007.
Full textCerqueira, Sofia A., Min Tan, Shijun Li, Franceline Juillard, Colin E. McVey, Kenneth M. Kaye, and J. Pedro Simas. "Latency-Associated Nuclear Antigen E3 Ubiquitin Ligase Activity Impacts Gammaherpesvirus-Driven Germinal Center B Cell Proliferation." Journal of Virology 90, no. 17 (June 15, 2016): 7667–83. http://dx.doi.org/10.1128/jvi.00813-16.
Full textBehera, Adaitya Prasad, Pritam Naskar, Shubhangi Agarwal, Prerana Agarwal Banka, Asim Poddar, and Ajit B. Datta. "Structural insights into the nanomolar affinity of RING E3 ligase ZNRF1 for Ube2N and its functional implications." Biochemical Journal 475, no. 9 (May 9, 2018): 1569–82. http://dx.doi.org/10.1042/bcj20170909.
Full textLama, Rati, Samuel L. Galster, Chao Xu, Luke W. Davison, Sherry R. Chemler, and Xinjiang Wang. "Dual Targeting of MDM4 and FTH1 by MMRi71 for Induced Protein Degradation and p53-Independent Apoptosis in Leukemia Cells." Molecules 27, no. 22 (November 8, 2022): 7665. http://dx.doi.org/10.3390/molecules27227665.
Full textChu, Y., and X. Yang. "SUMO E3 ligase activity of TRIM proteins." Oncogene 30, no. 9 (October 25, 2010): 1108–16. http://dx.doi.org/10.1038/onc.2010.462.
Full textWalden, Helen, and R. Julio Martinez-Torres. "Regulation of Parkin E3 ubiquitin ligase activity." Cellular and Molecular Life Sciences 69, no. 18 (April 19, 2012): 3053–67. http://dx.doi.org/10.1007/s00018-012-0978-5.
Full textChinnam, Meenalakshmi, Rati Lama, Chao Xu, Xiaojing Zhang, Carlos Cedeno, Yanqing Wang, Aimee B. Stablewski, David W. Goodrich, and Xinjiang Wang. "Abstract 2606: Requirement of MDM2 E3 ligase activity for regulating p53 during normal development, cell cycle regulation and genome integrity." Cancer Research 83, no. 7_Supplement (April 4, 2023): 2606. http://dx.doi.org/10.1158/1538-7445.am2023-2606.
Full textNurieva, Roza, Junmei Wang, and Andrei Alekseev. "Essential role of E3 ubiquitin ligase activity of GRAIL in T cell functions (P1111)." Journal of Immunology 190, no. 1_Supplement (May 1, 2013): 122.7. http://dx.doi.org/10.4049/jimmunol.190.supp.122.7.
Full textLin, You-Sheng, Yung-Chi Chang, Ting-Yu Lai, Chih-Yuan Lee, Tsung-Hsien Chuang, and Li-Chung Hsu. "The role of novel E3 ubiquitin ligase in the regulation of TLR3 signaling pathway." Journal of Immunology 204, no. 1_Supplement (May 1, 2020): 226.26. http://dx.doi.org/10.4049/jimmunol.204.supp.226.26.
Full textSicari, Daria, Janine Weber, Elena Maspero, and Simona Polo. "The NEDD4 ubiquitin E3 ligase: a snapshot view of its functional activity and regulation." Biochemical Society Transactions 50, no. 1 (February 7, 2022): 473–85. http://dx.doi.org/10.1042/bst20210731.
Full textBalaji, Vishnu, and Thorsten Hoppe. "Regulation of E3 ubiquitin ligases by homotypic and heterotypic assembly." F1000Research 9 (February 6, 2020): 88. http://dx.doi.org/10.12688/f1000research.21253.1.
Full textSantini, S., V. Stagni, R. Giambruno, G. Fianco, A. Di Benedetto, M. Mottolese, M. Pellegrini, and D. Barilà. "ATM kinase activity modulates ITCH E3-ubiquitin ligase activity." Oncogene 33, no. 9 (February 25, 2013): 1113–23. http://dx.doi.org/10.1038/onc.2013.52.
Full textEldin, Patrick, Laura Papon, Alexandra Oteiza, Emiliana Brocchi, T. Glen Lawson, and Nadir Mechti. "TRIM22 E3 ubiquitin ligase activity is required to mediate antiviral activity against encephalomyocarditis virus." Journal of General Virology 90, no. 3 (March 1, 2009): 536–45. http://dx.doi.org/10.1099/vir.0.006288-0.
Full textSpratt, Donald E., Helen Walden, and Gary S. Shaw. "RBR E3 ubiquitin ligases: new structures, new insights, new questions." Biochemical Journal 458, no. 3 (February 28, 2014): 421–37. http://dx.doi.org/10.1042/bj20140006.
Full textLazzari, Elisa, Medhat El-Halawany, Matteo De March, Floriana Valentino, Francesco Cantatore, Chiara Migliore, Silvia Onesti, and Germana Meroni. "Analysis of the Zn-Binding Domains of TRIM32, the E3 Ubiquitin Ligase Mutated in Limb Girdle Muscular Dystrophy 2H." Cells 8, no. 3 (March 16, 2019): 254. http://dx.doi.org/10.3390/cells8030254.
Full textRiling, Christopher, Hari Kamadurai, Suresh Kumar, Claire E. O'Leary, Kuen-Phon Wu, Erica E. Manion, Mingjie Ying, Brenda A. Schulman, and Paula M. Oliver. "Itch WW Domains Inhibit Its E3 Ubiquitin Ligase Activity by Blocking E2-E3 Ligase Trans-thiolation." Journal of Biological Chemistry 290, no. 39 (August 5, 2015): 23875–87. http://dx.doi.org/10.1074/jbc.m115.649269.
Full textGorelik, Maryna, and Sachdev S. Sidhu. "Regulation of SCF E3 ligase activity by Cand1." Biotarget 2 (June 2018): 10. http://dx.doi.org/10.21037/biotarget.2018.05.03.
Full textEggleston, Angela K. "E3 ligase activity and suppression of breast cancer." Nature Structural & Molecular Biology 11, no. 1 (January 2004): 8. http://dx.doi.org/10.1038/nsmb0104-8.
Full textPichler, Andrea, Andreas Gast, Jacob S. Seeler, Anne Dejean, and Frauke Melchior. "The Nucleoporin RanBP2 Has SUMO1 E3 Ligase Activity." Cell 108, no. 1 (January 2002): 109–20. http://dx.doi.org/10.1016/s0092-8674(01)00633-x.
Full textKane, Lesley A., Michael Lazarou, Adam I. Fogel, Yan Li, Koji Yamano, Shireen A. Sarraf, Soojay Banerjee, and Richard J. Youle. "PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity." Journal of Cell Biology 205, no. 2 (April 21, 2014): 143–53. http://dx.doi.org/10.1083/jcb.201402104.
Full textStevens, Rebecca V., Diego Esposito, and Katrin Rittinger. "Characterisation of class VI TRIM RING domains: linking RING activity to C-terminal domain identity." Life Science Alliance 2, no. 3 (April 26, 2019): e201900295. http://dx.doi.org/10.26508/lsa.201900295.
Full textLÖSCHER, Marlies, Klaus FORTSCHEGGER, Gustav RITTER, Martina WOSTRY, Regina VOGLAUER, Johannes A. SCHMID, Steven WATTERS, et al. "Interaction of U-box E3 ligase SNEV with PSMB4, the β7 subunit of the 20 S proteasome." Biochemical Journal 388, no. 2 (May 24, 2005): 593–603. http://dx.doi.org/10.1042/bj20041517.
Full textGoldenberg, Seth J., Jeffrey G. Marblestone, Michael R. Mattern, and Benjamin Nicholson. "Strategies for the identification of ubiquitin ligase inhibitors." Biochemical Society Transactions 38, no. 1 (January 19, 2010): 132–36. http://dx.doi.org/10.1042/bst0380132.
Full textMedina-Medina, Ixaura, Paola García-Beltrán, Ignacio de la Mora-de la Mora, Jesús Oria-Hernández, Guy Millot, Robin Fahraeus, Horacio Reyes-Vivas, José G. Sampedro, and Vanesa Olivares-Illana. "Allosteric Interactions byp53mRNA Govern HDM2 E3 Ubiquitin Ligase Specificity under Different Conditions." Molecular and Cellular Biology 36, no. 16 (May 23, 2016): 2195–205. http://dx.doi.org/10.1128/mcb.00113-16.
Full textYin, Chenlei, Ru Zhang, Yongyu Xu, Qiuyan Chen, and Xin Xie. "Intact MDM2 E3 ligase activity is required for the cytosolic localization and function of β-arrestin2." Molecular Biology of the Cell 22, no. 9 (May 2011): 1608–16. http://dx.doi.org/10.1091/mbc.e10-09-0779.
Full textCombs, Lauren R., Jacob Combs, Robert McKenna, and Zsolt Toth. "Protein Degradation by Gammaherpesvirus RTAs: More Than Just Viral Transactivators." Viruses 15, no. 3 (March 11, 2023): 730. http://dx.doi.org/10.3390/v15030730.
Full textWei, Wei, Jian-ye Chen, Ze-xiang Zeng, Jian-fei Kuang, Wang-jin Lu, and Wei Shan. "The Ubiquitin E3 Ligase MaLUL2 Is Involved in High Temperature-Induced Green Ripening in Banana Fruit." International Journal of Molecular Sciences 21, no. 24 (December 9, 2020): 9386. http://dx.doi.org/10.3390/ijms21249386.
Full textOkada, Maiko, Fumiaki Ohtake, Hiroyuki Nishikawa, Wenwen Wu, Yasushi Saeki, Keiji Takana, and Tomohiko Ohta. "Liganded ERα Stimulates the E3 Ubiquitin Ligase Activity of UBE3C to Facilitate Cell Proliferation." Molecular Endocrinology 29, no. 11 (November 1, 2015): 1646–57. http://dx.doi.org/10.1210/me.2015-1125.
Full textKawai, Hidehiko, Dmitri Wiederschain, and Zhi-Min Yuan. "Critical Contribution of the MDM2 Acidic Domain to p53 Ubiquitination." Molecular and Cellular Biology 23, no. 14 (July 15, 2003): 4939–47. http://dx.doi.org/10.1128/mcb.23.14.4939-4947.2003.
Full textYang, Cheng-Wei, Yue-Zhi Lee, Hsing-Yu Hsu, Guan-Hao Zhao, and Shiow-Ju Lee. "Tyrphostin AG1024 Suppresses Coronaviral Replication by Downregulating JAK1 via an IR/IGF-1R Independent Proteolysis Mediated by Ndfip1/2_NEDD4-like E3 Ligase Itch." Pharmaceuticals 15, no. 2 (February 17, 2022): 241. http://dx.doi.org/10.3390/ph15020241.
Full textMalonis, Ryan J., Wenxiang Fu, Mark J. Jelcic, Marae Thompson, Brian S. Canter, Mary Tsikitis, Francisco J. Esteva, and Irma Sánchez. "RNF11 sequestration of the E3 ligase SMURF2 on membranes antagonizes SMAD7 down-regulation of transforming growth factor β signaling." Journal of Biological Chemistry 292, no. 18 (March 14, 2017): 7435–51. http://dx.doi.org/10.1074/jbc.m117.783662.
Full textBossuyt, Stijn N. V., A. Mattijs Punt, Ilona J. de Graaf, Janny van den Burg, Mark G. Williams, Helen Heussler, Ype Elgersma, and Ben Distel. "Loss of nuclear UBE3A activity is the predominant cause of Angelman syndrome in individuals carrying UBE3A missense mutations." Human Molecular Genetics 30, no. 6 (February 19, 2021): 430–42. http://dx.doi.org/10.1093/hmg/ddab050.
Full textElliott, Joanne, Oonagh T. Lynch, Yvonne Suessmuth, Ping Qian, Caroline R. Boyd, James F. Burrows, Richard Buick, et al. "Respiratory Syncytial Virus NS1 Protein Degrades STAT2 by Using the Elongin-Cullin E3 Ligase." Journal of Virology 81, no. 7 (January 24, 2007): 3428–36. http://dx.doi.org/10.1128/jvi.02303-06.
Full textMoses, Niko, Mu Zhang, Jheng-Yu Wu, Chen Hu, Shengyan Xiang, Xinran Geng, Yue Chen, et al. "HDAC6 Regulates Radiosensitivity of Non-Small Cell Lung Cancer by Promoting Degradation of Chk1." Cells 9, no. 10 (October 4, 2020): 2237. http://dx.doi.org/10.3390/cells9102237.
Full textLin, Yachun, Qinli Hu, Jia Zhou, Weixiao Yin, Deqiang Yao, Yuanyuan Shao, Yao Zhao, et al. "Phytophthora sojae effector Avr1d functions as an E2 competitor and inhibits ubiquitination activity of GmPUB13 to facilitate infection." Proceedings of the National Academy of Sciences 118, no. 10 (March 3, 2021): e2018312118. http://dx.doi.org/10.1073/pnas.2018312118.
Full textMintis, Dimitris G., Anastasia Chasapi, Konstantinos Poulas, George Lagoumintzis, and Christos T. Chasapis. "Assessing the Direct Binding of Ark-Like E3 RING Ligases to Ubiquitin and Its Implication on Their Protein Interaction Network." Molecules 25, no. 20 (October 19, 2020): 4787. http://dx.doi.org/10.3390/molecules25204787.
Full textHong, Jeongkwan, Minho Won, and Hyunju Ro. "The Molecular and Pathophysiological Functions of Members of the LNX/PDZRN E3 Ubiquitin Ligase Family." Molecules 25, no. 24 (December 15, 2020): 5938. http://dx.doi.org/10.3390/molecules25245938.
Full textTracz, Michał, Ireneusz Górniak, Andrzej Szczepaniak, and Wojciech Białek. "E3 Ubiquitin Ligase SPL2 Is a Lanthanide-Binding Protein." International Journal of Molecular Sciences 22, no. 11 (May 27, 2021): 5712. http://dx.doi.org/10.3390/ijms22115712.
Full textUchida, Daisuke, Shigetsugu Hatakeyama, Akemi Matsushima, Hongwei Han, Satoshi Ishido, Hak Hotta, Jun Kudoh, et al. "AIRE Functions As an E3 Ubiquitin Ligase." Journal of Experimental Medicine 199, no. 2 (January 19, 2004): 167–72. http://dx.doi.org/10.1084/jem.20031291.
Full textLazarou, Michael, Derek P. Narendra, Seok Min Jin, Ephrem Tekle, Soojay Banerjee, and Richard J. Youle. "PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding." Journal of Cell Biology 200, no. 2 (January 14, 2013): 163–72. http://dx.doi.org/10.1083/jcb.201210111.
Full text